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Metastable attractors and heteroclinic orbits are present in the dynamics of various

complex systems. Although their occurrence is well-known, their identification and

modeling is a challenging task. The present work reviews briefly the literature and

proposes a novel combination of their identification in experimental data and their

modeling by dynamical systems. This combination applies recurrence structure analysis

permitting the derivation of an optimal symbolic representation of metastable states and

their dynamical transitions. To derive heteroclinic sequences of metastable attractors in

various experimental conditions, the work introduces a Hausdorff clustering algorithm

for symbolic dynamics. The application to brain signals (event-related potentials) utilizing

neural field models illustrates the methodology.

Keywords: recurrence structure analysis, event-related brain potentials, metastability, neural fields, kernel

construction, heteroclinic sequences

1. INTRODUCTION

Metastable states (MS) and heteroclinic orbits (HO) are prevalent in various biological and physical
systems with essentially separated time scales. A MS can be characterized as a domain in a
system’s phase space with relatively large dwell time and slow evolution that is separated from
another MS through a fast transient regime. Such slow phases may be constant states, oscillatory
states or even parts of chaotic attractors [1]. In general, one may say that MS are quasistationary
states with an attractive input channel and a repelling output channel, the simplest examples are
hyperbolic saddles that may be connected along their stable and unstable manifolds, thus forming a
heteroclinic orbit (HO) [2]. In case of dispersive saddles with one-dimensional unstable manifolds,
a HO may assume the form of a stable heteroclinic sequence (SHS) [3, 4] or a heteroclinic
network [5]. In the following, we will investigate a set of several of such connected dispersive saddles
and call it SHS in accordance to Rabinovich et al. [4].

Well-known examples of such sequences are the solution of the generalized Lotka-Volterra
model for the population of species [3, 6], the Küppers-Lortz instability occurring at the onset
of convection in a Rayleigh-Benard experiment in the presence of rotation [7, 8] or even the well-
known chaotic Lorenz attractor [9] where the two butterfly wings represent MS. In recent years,
several experimental studies of biological systems have revealed that the systems’ activities evolve
between some equilibria [10–12]. Such HOs between MS may occur in neural responses in the
insect olfactory bulb [13], in bird songs [14], in human scalp brain activity at rest [15], during
cognitive tasks [16, 17], in schizophrenia [18] and during emergence from unconsciousness [19].
HOs are even hypothesized to represent a coding scheme in neural systems [1] termed chaotic
itinerancy in this context [20, 21].
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To explore the nature and underlying mechanisms of
HOs, it is necessary to identify their constituent MS and
heteroclinic connections between them and to develop models
for describing them analytically. These models give insights
into possible underlying dynamics. For instance, in a previous
series of studies, sequences of MS have been identified in
encephalographic data during cognitive tasks [17] and in early
human auditory processing [22]. Since the brain processes
stimuli under experimental conditions from a starting state at rest
and returns to a resting state, sequences of MS in a heteroclinic
network represent HOs [5]. Studies on the dimensionality of
the system dynamics of these MS have revealed that the data
close to MS can be described analytically by low-dimensional
dynamical systems [22], whereas the transitions between MS
are high-dimensional. In the view of the theory of complex
systems [23, 24] such low-dimensional dynamics reflects a certain
order or self-organization in the underlying system whereas
high-dimensional transitions may be viewed as being unordered.
Moreover, the MS show very good accordance in phase space
location, onset time and duration to so-called event-related
potentials (ERP) in case of cognitive tasks or evoked potentials
(EP) in case of early auditory processing. These components
are well-known to reflect neural processing mechanisms [22,
25]. Summarizing, brain signals may exhibit HO, processing
information in steps of low-dimensional self-organized MS [5].

To understand HO observed in experimental data, we
propose a sequence of interweaving data analysis and modeling
techniques. Since a HO exhibits a temporal sequence of MS,
in a first step these states are extracted by data analysis
techniques identifying their location in phase space, their onset
times and their durations as essential features [8, 12, 22, 25–
27]. These features are assumed to fully describe the HO
and typically are rather invariant in experimental repetitions.
For instance, in human cognitive neuroscience experiments
measuring electroencephalographic activity (EEG), these MS are
the so-called event-related components reflecting specific neural
processing tasks during cognition [22, 25]. For bird songs, MS
are firing states of neural cell assemblies [14].

The corresponding data analysis methods are based on
certain model assumptions on the underlying dynamics. Some
methods separate MSs from transients by machine learning
techniques while neglecting the latter [8, 22]. This implies a clear
separation of time scales between slow MS and fast transients. A
consequence is that measured data are assumed to accumulate
strongly in MS and are sparse during transients. Other methods
consider MS as recurrence domains and transients between
them as non-recurrent regimes. Then the recurrent and non-
recurrent states partition the underlying phase space into disjoint
cells, thereby yielding a symbolic dynamics where all non-
recurrent transients are mapped to a single symbol, i.e., they are
undistinguishable [12, 26, 27]. To determine such a symbolic
dynamics, an underlying stochastic model on the temporal
distribution of MS is mandatory.

Once the sequence of MS has been identified as principle
features of the measured data, their HO can be modeled as a
dynamical system. Themodel features are the spatial localization,
the onset time and the duration of each MS. To this end, we

choose the dynamic skeleton of a sequence of MS and insert
the corresponding features. The resulting model represents a
combination of optimally extracted experimental data and a
dynamical model.

The present work illustrates a certain combination of system
identification and modeling techniques to extract sequences of
MS in HOs. Parts of this combination have been developed in
recent years while we present novel extensions that improve
the identification of MS in experimental data under different
experimental conditions. In the application, we focus on
brain signals but the methodology may be applied easily to
experimental data measured in other physical, biological, or
geo-systems.

2. MATERIALS AND METHODS

The following sections illustrate in detail both a data analysis
method for the extraction of MS features and a model approach
to describe the HO of experimental data mathematically.

2.1. Identification of HO: The Recurrence
Structure Analysis
Let us consider a set of discretely sampled trajectories

{(x
(c)
t )1≤t≤T |t,T, c ∈ N} in the phase space X of a dynamical

system with sampling time t. The system depends on a
(discretized) control parameter c ∈ N (hence taken from natural
numbers, here), indicating several experimental conditions. T
denotes the number of samples and X is a subset of R

n. An
example might be a multivariate measured signal with dimension
n. Note that for univariate time series, X can be reconstructed
through phase space embedding [28] or, more recently, through
spectral embedding techniques [29, 30]. For a given c ∈ N the

system’s realization (x
(c)
t ) is a function from the index set T =

{t|1 ≤ t ≤ T} into X, i.e., (x
(c)
t ) ∈ XT .

Starting point of the (symbolic) recurrence structure analysis
(RSA) is Poincaré’s famous recurrence theorem [31] stating that
almost all trajectories starting in a “ball” Bε(x0) of radius ε > 0
centered at an initial condition x0 ∈ X return infinitely often to
Bε(x0) as time elapses, when the dynamics possesses an invariant
measure and is restricted to a finite portion of phase space.
For time-discrete dynamical systems, these recurrences can be
visualized by means of Eckmann et al.’s [32] recurrence plot (RP)
technique where the element

Rij =

{

1 if xj ∈ Bε(xi)

0 else
. (1)

of the recurrence matrix R = (Rij) is unity if the state xj at time j
belongs to an ε-ball

Bε(xi) = {x ∈ X| d(x, xi) < ε} (2)

centered at state xi at time i and zero otherwise [32, 33]. Here
d : X × X → R

+ denotes some distance function, which is a
metric in general.

Recurrent events (Rij = 1) of the dynamics lead to intersecting
ε-balls Bε(xi) ∩ Bε(xj) 6= ∅ which can be merged together into
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equivalence classes of phase space X. By merging balls together
into a set Aj = Bε(xi)∪ Bε(xj) when states xi and xj are recurrent
and when i > j, we simply replace the larger time index i in the
recurrence plot R by the smaller one j, symbolized as a rewriting
rule i → j of a recurrence grammar [12, 26, 27].

Applying the recurrence grammar that corresponds to a
recurrence plot R for given ball size ε recursively to the sequence
of sampling times ri = i with 1 ≤ i ≤ T yields a segmentation
of the system’s multivariate time series into discrete states si = k,
i.e., a symbolic dynamics based on a finite partition P = {Ak ⊂

X|0 ≤ k ≤ ma} of the phase space X intoma + 1 disjoint sets Ak,
such that xi ∈ Ak. In this representation the distinguished state
0 captures all transients, while ma is the number of detected MS
[12].

The results of the RSA and the obtained symbolic dynamics
depend heavily on the parameter ε that defines the ball size
of recurrent events. For finding an optimal partition and
hence an optimal value for ε, beim Graben and Hutt [12, 26]
and beim Graben et al. [27] have suggested several entropy-
based criteria. To gain an optimal segmentation, the idea is
to assume an underlying stochastic model for the symbolic
sequences. Then the optimal segmentation is as close as possible
to the model under consideration. For instance, assuming a
uniform probability distribution of symbols, the optimal value
ε maximizes the entropy of the states [26]. Here, we employ
the most recently suggested Markov optimization criterion [27],
maximizing a utility function

u(ε) =
1

n+ 2

[

tr P(ε)+ hr(ε)+ hc(ε)
]

(3)

for a Markov transition matrix P estimated from the bi-gram
distribution of the symbolic sequence s. Here

hr = −
1

log(n− 1)

n− 1
∑

j= 1

p′0j log p
′
0j

hc = −
1

log(n− 1)

n− 1
∑

i= 1

p′i0 log p
′
i0 (4)

are renormalized entropies with p′0j = p0j/
∑n− 1

j= 1 p0j for the

first row and p′i0 = pi0/
∑n− 1

i= 1 pi0 for the first column of P.
The transition rates pij in P are estimated for each value of ε.
The parameter ε∗ maximizing u(ε) is then the optimal threshold
for which the recurrence structure detected from the time series
mostly resembles an unbiased Markov chain model.

Applying the RSA to the time series (x
(c)
i ) ∈ XT for several

experimental conditions separately yields a symbolic sequence
s(c) for each condition. Each sequence is based on a unique phase

space partition P(c) = {A
(c)
k

⊂ X|0 ≤ k ≤ m(c)}, c ∈ N.
In order to unify such different descriptions for all experimental
conditions within a common picture based on a single partition,
beim Graben and Hutt [12] suggested a recursive Hausdorff
clustering method. As this method turned out to be rather time
consuming in practical applications, we present a substantially
improved non-recursive algorithm for the alignment of multiple
realizations of dynamical system’s trajectories in the sequel.

For this aim let us assume two experimental conditions, i.e.,
c = 1, 2, without loss of generality. Our new, more parsimonious,
approach is introduced by a recoding of the symbolic sequences
s(c) for c > 1 based on the symbolic sequence s(1). Thus we
leave the symbols for the first condition (c = 1) unchanged but
alter the symbols for the second condition through an additive
constant, i.e.,

q
(c)
i =

{

s
(c)
i + (c− 1)T if s

(c)
i 6= 0

0 else
(5)

with T as the length of each sequence s(c). This is possible
as symbols are simply represented as integer numbers in our
framework1. Note that the “transient symbol” 0 is not affected
by the recoding, thereby merging together all transients across
conditions.

Afterwards, both the original time series (x
(c)
i ) ∈ XT and their

recoded segmentations q(c) are concatenated into two long series

(ξi)1≤i≤2T = (x
(1)
1 . . . x

(1)
T x

(2)
1 . . . x

(2)
T )

(ηi)1≤i≤2T = (q
(1)
1 . . . q

(1)
T q

(2)
1 . . . q

(2)
T ) (6)

such that the concatenation products are now functions from
2T = {t|1 ≤ t ≤ 2T} into X, i.e., (ξi) ∈ X2T .

From these data we gather all sampling points that belong to
the same phase space cell Bk labeled by the symbol k, i.e., Bk =

{ξ i|ηi = k} ⊂ X. The family of these mb sets is in general not a
partition, but certainly a covering Q = {Bk ⊂ X|0 ≤ k ≤ mb} of
X. From the members of Q we calculate the pairwise Hausdorff
distances [34]

Dij = max{max{δ(y,Bj) | y ∈ Bi}, max{δ(y,Bi) | y ∈ Bj}} (7)

where

δ(x,A) = min{d(x, y) | y ∈ A} (8)

measures the “distance” of the point x from the compact set
A ⊂ X. The Hausdorff distance of two overlapping compact sets
vanishes.

Now we proceed as in the previous approach by beim Graben
and Hutt [12]: From the pairwise Hausdorff distances (7) we

compute a θ-similarity matrix S with elements

Sij =

{

1 if Dij < θ

0 else
(9)

which consists of zeros and ones as the recurrence matrix R from
Equation (1). Therefore, S can also be regarded as a recurrence
grammar, for merging the members ofQ into new partition cells
by rewriting large indices of Bi through smaller ones from Bj (i >

j) when they are θ-similar (Sij = 1). The result of the Hausdorff
clustering is a unique new partition R = {Ck ⊂ X|0 ≤ k ≤ mc}

1Note that this recoding scheme applies accordingly to the case of more than two

conditions.
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entailing a symbolic dynamics p(c) for both conditions based on
the same symbolic repertoire.

For the application to the ERP data shown below, we chose a
rather small similarity distance of θ = 0.25 in order to identify at
least the pre-stimulus domain across conditions.

In the view of our subsequent modeling in Section 2.2, recall
that the found segments of the RSA are MS in phase space.
Therefore, we compute their centers of gravity as time-averaged
topographies

vk =
1

Tk

∑

i∀pi=k

xi (10)

where xi ∈ Ck and Tk is the number of samples in Ck.

2.2. Construction of SHS: Neural Fields
The recurrence structure analysis, Section 2.1, of the measured
data yields a sequential dynamics for each experimental
condition. From our present analysis Section 3.1 let us assume
that we obtain a total number of mc MS after Hausdorff
clustering. For illustration reasons (cf. Section 3), we assume
mc = 8 and we gain the following pattern sequences

V(1) = (v1, v2, v3, v4, v5, v6)

V(2) = (v1, v2, v7, v3, v6, v8) (11)

forming n × l matrices for the n-dimensional EEG observation
space with l = 6 MS per condition. The spatial patterns result
from an underlying system dynamics, that exhibits a HO. To
gain deeper insight into the system dynamics that generates the
SHS gained experimentally, a second step aims to derive the
underlying system model dynamics. To this end, we identify the
MS as equilibria in the underlying dynamical systemmodel. Each
pattern, i.e., column of V(c) can be seen as a spatial discretization
of a continuous spatial neural field v(x) [35] serving as a saddle in
a heteroclinic sequence of field activations [36–38].

In the following we use the findings of beim Graben and Hutt
[36] and Schwappach et al. [38] for the modeling of the SHS
dynamics by means of heterogeneous neural fields. Our starting
point is the Amari equation

τ
∂u(x, t)

∂t
+ u(x, t) =

∫

�

w(x, y)f (u(y, t)) dy (12)

describing the evolution of neural activity u(x, t) at site x ∈

� ⊂ R
b and time t [39]. Here, � is a b-dimensional manifold,

representing neural tissue. Furthermore, w(x, y) is the synaptic
weight kernel, and f is a sigmoidal activation function, often
taken as f (u) = 1/(1 + exp(−β(u − θ))), with gain β > 0,
and threshold θ > 0. The characteristic time constant τ will be
deliberately absorbed by the kernel w(x, y) in the sequel.

FIGURE 1 | Snapshot sequence of ERP scalp topographies for correct condition (22-a).
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The metastable segmentation patterns of the RSA (11) are
interpreted as stationary states, v(x), of the Amari equation that
are connected along their stable and unstable directions, thereby
forming a stable heteroclinic sequence (SHS: 3, 4). Such SHS are
examples of heteroclinic orbits connecting different equilibria.
Let {vk(x)}, 1 ≤ k ≤ n be a collection of MS which we
assume to be linearly independent. Then, this collection possesses
a biorthogonal system of adjoints {v+

k
(x)} obeying

∫

�

v+j (x)vk(x) dx = δjk . (13)

For the particular case of Lotka-Volterra neural populations,
described by activities ξk(t),

dξk

dt
= ξk



σk −

n
∑

j=1

ρkjξj



 (14)

with growth rates σk > 0, interaction weights ρkj > 0 and
ρkk = 1 that are tuned according to the algorithm of Afraimovich
et al. [3] and Rabinovich et al. [4], the population amplitude

αk(t) =
ξk

σk
(15)

recruits its corresponding MS vk(x), leading to an order
parameter expansion

u(x, t) =

n
∑

k=1

αk(t)vk(x) (16)

of the neural field.
Under these assumptions, beim Graben and Potthast [40] and

beim Graben and Hutt [36] have explicitly constructed the kernel
w(x, y) through a power series expansion of the right-hand-side
of the Amari Equation (12),

∂u(x, t)

∂t
= −u(x, t)+

∫

�

w1(x, y)u(y, t) dy

+

∫

�

∫

�

w2(x, y, z)u(y, t)u(z, t) dy dz (17)

with Pincherle-Goursat [41] kernels

w1(x, y) =
∑

k

(σk + 1)vk(x)v
+
k
(y) (18)

w2(x, y, z) = −
∑

kj

σjρkjvk(x)v
+
k
(y)v+j (z) . (19)

FIGURE 2 | Snapshot sequence of ERP scalp topographies for violation condition (22-b).
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The kernel w1(x, y) describes a Hebbian synapse between sites
y and x whereas the three-point kernel w2(x, y, z) further
generalizes Hebbian learning to interactions between three sites
x, y, z of neural tissue.

The kernels w1(x, y) and w2(x, y, z) allow the identification of
the given system, characterized by the real kernel w(x, y) and the
activation function f (u) through a Taylor series expansion of f
around u = 0:

∫

�

w(x, y)f (u(y, t)) dy =

∫

�

w(x, y)[f (0)+ f ′(0)u(y, t)

+
1

2
f ′′(0)u(y, t)2 + . . . ] dy

The linear term in this expansion is simply f ′(0)w(x, y) which
equals w1(x, y) above.

Applying this method for each condition separately, yields
two kernels w(c)(x, y) for c = 1, 2. Interestingly, their convex
combination

w(x, y;µ) = µw(1)(x, y)+ (1− µ)w(2)(x, y) (20)

for µ ∈ [0, 1] entails a dynamical system depending on a
continuous control parameter µ with limiting cases w(c)(x, y) for
µ = 1, 0.

Summarizing the modeling approach, we assume a Lotka-
Volterra dynamics of the underlying system while identifying
its fixed points with the MS gained experimentally from the
data. To derive a spatio-temporal neural model that evolves
according to the Lotka-Volterra dynamics, and hence exhibits the
right number of HOs, we have employed a neural field model.
The final underlying neural model (17) evolves similarly to the
experimental data.

In our later brain signal simulation, we construct a b = 2
dimensional neural field with l = 6 MS per condition that are
discretized with a spatial grid of n = 59 sites. Adjoint patterns
are obtained as Moore-Penrose pseudoinverses [42, 43] of the
matrices (11), i.e.,

V(c)+ = (V(c)TV(c))−1V(c)T (21)

For the temporal dynamics we prepare the HO solving

Equation (14) with growth rates σ
(1)
1 = 0.15, σ

(1)
2 = 0.21, σ

(1)
3 =

0.27, σ
(1)
4 = 0.33, σ

(1)
5 = 0.39, σ

(1)
6 = 0.45 for condition

(22-a) and σ
(2)
1 = 0.15, σ

(2)
2 = 0.21, σ

(2)
7 = 0.27, σ

(2)
3 =

0.33, σ
(2)
6 = 0.39, σ

(2)
8 = 0.45 for condition (22-b), respectively.

The interaction matrices have been tuned according to the
algorithm of Afraimovich et al. [3] and Rabinovich et al. [4] with
a competition bias of ρ0 = 3.

For the simulations with the neural field toolbox of
Schwappach et al. [38], we prepare as initial conditions the first
MS v1 for two control parameters c and integrate the Amari
Equation (12) over the pre-stimulus interval [−200, 0] ms. Since
v1 is an (unstable) fixed point, the system remains in this
stationary state during this time. At time t = 0, we introduce
a slight perturbation of the system mimicking the stimulation by

the upcoming word. This kicks the state out of equilibrium and
triggers the evolution along the prescribed heteroclinic sequence.

Running simulations for different conditions with their
respective parameters allows finally the computation of
simulated brain signal data and comparison of their functional
connectivities.

2.3. RSA Validation
In order to validate our neural field model of HO, we subject
the simulated data to the recurrence structure analysis as well.
Since the amplitude of the simulated data is slightly diminished,
we use a Hausdorff similarity threshold θ = 0.1 in case of the
experimental data. Other analysis details are the same as above in
Section 2.1.

2.4. Experimental Data: Event-Related
Brain Potentials
We reanalyze an ERP experiment on the processing of
ungrammaticalities in German [44, Exp. 1] for easy comparison
with our presentation in beim Graben and Hutt [12]. Frisch et al.
[44] reported processing differences for different violations of
lexical and grammatical rules. Here we focus on the contrast
between a so-called phrase structure violation (22-b), indicated
by the asterisk, in comparison to grammatical control sentences
(22-a).

(22) a. Im
In the

Garten
garden

wurde
was

oft
often

gearbeitet

worked

und
and

. . .

. . .
“Work was often going on in the garden . . . ”

b. ∗Im
In the

Garten
garden

wurde
was

am
on-the

gearbeitet

worked

und
and

. . .

. . .
“Work was on-the going on in the garden . . . ”

In German, sentences of type (22-b) are ungrammatical because
the preposition am is followed by a past participle instead of a
noun. A correct continuation would be, e.g., im Garten wurde am
Zaun gearbeitet (“work at the fence was going on in the garden”)
with am Zaun (“at the fence”) as an admissible prepositional
phrase.

The ERP study was carried out in a visual word-by-word
presentation paradigm with 17 subjects. Subjects were presented
with 40 trials per condition, each trial comprising one sentence
example that was structurally identical to either (22-a) or (22-b).
The critical word was the past participle printed in bold font
across all conditions. EEG and additional electro-ocologram
(EOG) for controlling eye-movement were recorded with 64
electrodes; EEG was measured with n = 59 channels which
spanned the observation space [45] of our multivariate analysis.

For preprocessing, continuous EEG data were cut into
[−200,+1, 000]ms epochs, baseline aligned along the
prestimulus interval [−200, 0]ms and averaged over trials
per condition per subject after artifact rejection. Subsequently,
those single-subject ERP averages were averaged over all 17
subjects per condition in order to obtain the grand average ERPs
as the bases of our recurrence structure analysis Section 2.1 and
neural field modeling Section 2.2.
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FIGURE 3 | Snapshot sequence of ERP scalp topographies for difference potential, cf. movie data.gif in Supplementary Material.

First we report the grand average ERPs as snapshot sequences
of the respective scalp topographies. Figure 1 shows the results
for the correct condition (22-a) where every snapshot presents
the EEG activation pattern at the indicated point in time. The
color scale range is [−15, 15]µV.

The sequence exhibits only one prominent pattern, a frontal
positivity around 232 ms, known as the attentional P200
component.

Accordingly, we present in Figure 2 the grand average for the
phrase structure violation condition (22-b). Again the color scale
ranges between [−15, 15]µV.

Also in this condition the P200 effect is visible as
a frontally pronounced positivity between 232 and 280
ms. Moreover, an earlier effect with reversed polarity
can be recognized around 136 ms, the tentative N100
component. Most important is a parietal positivity
starting at 472 ms until the end of the epoch window at
952 ms. This late positivity is commonly regarded as a
neurophysiological correlate of syntactic violations [46],
reanalysis [47, 48], ambiguity [49] and general integration
problems [50].

However, a proper interpretation of ERP effects relies on
considering condition differences. Thus, we plot the ERP
difference between violation condition (22-b) and correct
condition (22-a) in the range [−8, 8]µV in Figure 3.

FIGURE 4 | RSA Markov utility functions for conditions (22-a) (solid) and (22-b)

(dotted).

The difference patterns in Figure 3 clearly indicate the
posteriorly distributed P600 ERP component that evolves
between 500 and 1,000 ms post-stimulus.
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FIGURE 5 | ERP grand averages and optimal recurrence grammar partition for experimental data taken from [44]. The panels (A,C,E) show results for the correct

condition (22-a), the panels (B,D,F) for the phrase structure violation condition (22-b). (A,B) grand average ERPs over 17 subjects for all EEG channels, e.g., blue =

electrode C5, green = electrode T7, and red = electrode FC5 (according to the 10–20 system of EEG electrode placement); each trace shows the time series of

measured voltages in one recording channel. (C,D) Optimal encodings p aligned through Hausdorff clustering, where each color denotes one symbol. (E,F) Centers of

gravity as time-averaged scalp topographies. The numbers denote the segment numbers. The P600 ERP component corresponds to segment 8. It is important to

note that the voltage axis is inverted according to the EEG literature.

During cognitive tasks, Lehmann et al. [51, 53] and
Wackermann et al. [52] observed segments of quasistationary
EEG topographies, which they called brain microstates. The
microstate analysis extracts MS in multivariate EEG signals
based on the similarity of their spatial scalp distributions. It
considers the multivariate EEG as a temporal sequence of
spatial activity maps and extracts the time windows of the
microstates by computing the temporal difference between
successive maps. This procedure allows to compute the time
windows of microstates from the signal and classifies them by the
spatial averages over EEG electrodes in the extracted state time
window.

In order to detect brain microstates by means of the RSA
method in Section 2.1 we compute recurrence plots based on the
cosine distance function

dcos(x, y) =
x · y

||x|| ||y||
(23)

as we are interested in detecting recurrent scalp topographies.
This choice has also the advantage that the sparse 59-dimensional
observation space is projected onto the unit sphere, resulting into
a denser representation of ERP trajectories.

3. RESULTS

Next we present the results of our ERP recurrence structure
analysis and neural field modeling.

3.1. Recurrence Structure Analysis
For the recurrence structure analysis we optimize the Markov
utility function (3) for the grand averages of both conditions
(22-a) and (22-b) separately. The resulting utility functions are

depicted in Figure 4.
Figure 4 indicates that both conditions lead to optimal

segmentations for ε∗ ≈ 0.014.
The results of the recurrence structure analysis (RSA) for this

optimal value of ε are shown in Figure 5. Figure 5A displays
the grand average ERPs for the correct condition (22-a) and
Figure 5B for the violation condition (22-b) where each colored
trace denotes one recording electrode. The language-related P600
ERP component is clearly visible in Figure 5B as a positive
going half-wave across many recording sites. The resulting
segmentations are shown in Figure 5C for condition (22-a)
and Figure 5D for condition (22-b) after additional Hausdorff
clustering (θ = 0.25) for alignment between conditions.
Moreover, we present the centers of gravity Equation (10) in
Figure 5E for condition (22-a) and Figure 5F for condition
(22-b) of the corresponding segments. The ERPs of both
conditions start in a metastable baseline state 1 in the pre-
stimulus interval. After a first transient (dark blue) still in the
pre-stimulus interval both ERPs proceed into another baseline
state 2. The P200 attentional component is realized as segment 3
in both conditions. Yet in condition (22-b) also the earlier N100
is detectable as MS 7 that does not exist in condition (22-a). The
remaining segments 4, 5, 6 in the control condition (22-a) exhibit
rather spatially flat topographies (cf. Figure 5E,F). While MS 6 is
common to both conditions, the final state 8 in condition (22-b)
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FIGURE 6 | Reconstructed connectivity kernels for the neural field models for conditions (22-a) (A) and (22-b) (B); the difference kernel is shown in (C). Recording

channels are given in topographic order: LF, left-frontal; LT, left-temporal; LP, left-parietal; LO, left-occipital; C, central (midline electrodes); RF, right-frontal; RT,

right-temporal; RP, right-parietal; RO, right-occipital.

FIGURE 7 | Snapshot sequence of neural field scalp topographies for correct condition (22-a).

reflects the crucial difference, namely the posteriorly distributed
positive P600 component. These results are in full agreement with
the understanding of language processing.

3.2. Neural Field Construction
After identification of theMS, we construct the neural fieldmodel
based on results of Section 2.2. First we present the functional

connectivity kernels w(c)(x, y) for conditions (22-a) (c = 1)
and (22-b) (c = 2) in Figures 6A,B. Figure 6C additionally
displays the kernel difference w(2)(x, y) − w(1)(x, y). For better
visualization, we have ordered the recording electrodes according
to their hemispheric topography, thus creating nine “regions
of interest” (ROI): LF: left-frontal, LT: left-temporal, LP: left-
parietal, LO: left-occipital, C: central (midline electrodes), RF:
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FIGURE 8 | Snapshot sequence of neural field scalp topographies for violation condition (22-b).

right-frontal, RT: right-temporal, RP: right-parietal, RO: right-
occipital2.

Figure 6 reveals a kind of checkerboard texture for the
kernels w(c)(x, y). Mostly obvious is the strength along the
main diagonal, indicating mainly self-connections within brain
areas, such as in ROIs LO and RO. Since primary visual cortex
V1 is situated at occipital brain areas, these patterns may be
interpreted as reflecting the visual presentation paradigm of
the experiment. Interestingly, also the kernel difference exhibits
largest differences in LO-LO and RO-RO areas. There is also a
hemispheric asymmetry between reciprocal connections of left-
parietal (LP) with left-occipital (LO) and right-parietal (RP)
with right-occipital (RO) areas. It is quite tempting to speculate
that this asymmetry is due to the brain’s asymmetry regarding
language processing: The largest difference between conditions is
in the RF area, which is strong for the correct condition (22-a),
but rather weak for the phrase structure violation condition

2Electrode selection for ROIs: left-frontal (LF) = “FP1,” “AF3,” “AF7,” “F9,” “F7,”

“F5,” “F3,” “FC5,” “FC3”; left-temporal (LT)= “FT9,” “FT7,” “T7,” “C5,” “C3,” “TP9,”

“TP7,” “CP5,” “CP3,” left-parietal (LP)= “P9,” “P7,” “P5,” “P3”; left-occipital (LO)=

“O1,” “PO7,” “PO3”; midline-central (C)= “FPZ,” “AFZ,” “FZ,” “FCZ,” “CZ,” “CPZ,”

“PZ,” “POZ,” “OZ”; right-frontal (RF) = “FP2,” “AF4,” “AF8,” “F10,” “F8,” “F6,”

“F4,” “FC6,” “FC4”; right-temporal (RT)= “FT10,” “FT8,” “T8,” “C6,” “C4,” “TP10,”

“TP8,” “CP6,” “CP4”; right-parietal (RP) = “P10,” “P8,” “P6,” “P4”; right-occipital

(RO)= “O2,” “PO8,” “PO4.”

(22-b). This might be seen as a neural correlate of semantic and
pragmatic integration processes that are supported by the right
hemisphere [50]. These processes fail in the case of the violation
condition.

Next we show the simulated spatiotemporal dynamics of
the neural field simulation from Section 2.2. To this end, the
dynamics is illustrated as a temporal snapshot sequence of spatial
topographies.

Figure 7 shows the simulation results for the correct condition
(22-a) where every snapshot presents the neural field activation
pattern at the indicated point in time. The color scale range is
[−10, 10]µV.

The sequence exhibits one prominent pattern, a frontal
positivity around 235 ms, reflecting the attentional P200
component. Hence it resembles well the original time series
shown in Figure 1.

Accordingly, we present in Figure 8 the simulated neural field
for the phrase structure violation condition (22-b). Again the
color scale ranges between [−10, 10]µV.

In this condition the P200 effect is visible as a frontally
pronounced positivity between 331 and 426 ms, however that
is delayed compared to the original ERP data (cf. Figure 2).
Hence our simulation entails a desynchronization in comparison
with the experimentally observed ERP dynamics. The reason
for this deviation is the presence of only one time scale in
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FIGURE 9 | Snapshot sequence of neural field scalp topographies for difference potential, cf. movie model.gif in Supplementary Material.

the underlying dynamic model, reflected by the growth rates of
neural populations in the Lotka-Volterra Equation (14) that are
all of the same order of magnitude. Hence, the phasic MS 7 is not
appropriately captured by our phenomenological model.

Moreover, the earlier N100 component with reversed polarity
is now shifted toward the time window between 139 and 235 ms.
The final parietal positivity starting off at about 470ms in the ERP
data is already present in our simulation, now starting at 618 ms
until the end of the epoch window at 952 ms.

As above, a proper interpretation of ERP effect requires the
computation of condition differences. We plot the simulated
neural field difference between violation condition (22-b) and
correct condition (22-a) in the range [−10, 10]µV in Figure 9

similar to the ERP difference plot shown in Figure 3.
A strong artifact effect from 139 until 235 ms is visible that is

due to the misalignment of N100 and P200 in both conditions.
However, the difference patterns clearly indicate the posteriorly
distributed P600 ERP component that evolves between 618 and
1,000 ms post-stimulus.

3.3. RSA Validation
For the recurrence structure analysis of the neural field
simulation we optimize the Markov utility function (3) for the
grand averages of both conditions (22-a) and (22-b) separately.
The resulting utility functions are depicted in Figure 10.

Figure 10 indicates that both conditions lead to optimal
segmentations for ε∗ ≈ 0.0051.

The results of the recurrence structure analysis (RSA) are
shown in Figure 11.

Figure 11A displays the simulated neural fields for the correct
condition (22-a) and Figure 11B for the violation condition
(22-b) where each colored trace denotes one simulated electrode.
In both simulations the initial conditions were prepared as
the stationary base line state 1 that does not change during
the pre-stimulus interval. At stimulation time t = 0 a slight
perturbation kicks the state out of equilibrium, triggering the
sequential heteroclinic dynamics. The resulting segmentations
are shown in Figure 11C for condition (22-a) and Figure 11D for
condition (22-b) after additional Hausdorff clustering (θ = 0.1)
for alignment between conditions. Despite the timing differences
the pattern sequence is essentially the same as in Figure 5.
This is confirmed by the centers of gravity Equation (10) in
Figure 11E for condition (22-a) and Figure 11F for condition
(22-b) of the corresponding segments. The simulated ERPs of
both conditions start in a metastable baseline state 1 in the pre-
stimulus interval. After a first transient (dark blue) still in the pre-
stimulus interval both ERPs proceed into another baseline state 2.
The P200 attentional component is realized as segment 3 in both
conditions. In condition (22-b) also the earlier N100 is detectable
as MS 7 yet with much longer duration than in the experimental
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ERP analysis. The remaining segments 4, 5, 6 in the control
condition (22-a) exhibit rather flat topographies. While MS 6 is
common to both conditions, the final state 8 in condition (22-b)
reflects the crucial difference, namely the posteriorly distributed
positive P600 component.

4. DISCUSSION

The present work illustrates how to extract MS in a HO
in experimental time series and how to model the sequence

FIGURE 10 | RSA Markov utility functions for neural fields simulations for

conditions (22-a) (solid) and (22-b) (dotted).

of metastable attractors. Both the feature extraction and the
modeling part is based on underlying model assumptions on the
dynamics of the heteroclinic sequence. The RSA is based on a
stochastic Markov chain model, while the HOmodel is supposed
to obey a Lotka-Volterra dynamics that can be mapped to a
heterogeneous neural field equation.

The application to measured EEG data demonstrates that the
combination of the feature extraction and modeling part allows
to describe the heteroclinic sequences of metastable attractors in
good agreement to experimental data. It is possible to reproduce
the sequence of states and the time-averaged mean of the states
well. However, details of the heteroclinic sequence, such as
variability of durations of states and the duration of transients,
may not be captured by both the feature extraction and/or the
HOmodel and may stipulate closer investigations. This is seen in
the simulated EEG data of Figure 8 that shows such differences
to the experimental data.

The methodology presented improves previous attempts to
derive dynamical models of HO in experimental brain data by
the combination of RSA and the HOmodel for neural fields. The
work introduces a novel approach based on Hausdorff clustering
to combine several symbolic sequences gained from different
experimental conditions to distinguish common and distinct MS.
This analysis provides insights at which time instant and for
which spatial EEG distribution common underlying mechanisms
are present and when the brain behaves characteristically in
different conditions. Moreover, the analysis provides spatial
kernels of the neural field models for each experimental
condition. The spatial kernels exhibit a hemispheric asymmetry
reflecting the brains asymmetry in language processing, e.g., the
semantic and pragmatic integration processes supported by the
right hemisphere.

FIGURE 11 | Neural field simulation and its optimal recurrence grammar partition for experimental data from Frisch et al. [44]. The panels (A,C,E) show results for the

correct condition (22-a), the panels (B,D,F) for the phrase structure violation condition (22-b). (A,B) The time series of the simulated EEG channels in the respective

condition. (C,D) Optimal encodings p aligned through Hausdorff clustering. (E,F) Centers of gravity as time-averaged spatial scalp topographies. The P600 ERP

component corresponds to segment 8.
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Models of heteroclinic sequences exhibit sequences of
metastable attractors including attractive and repelling
manifolds. By virtue of this construction, the dynamics is
sensitive to random fluctuations yielding uncontrolled jumps
outside the basin of attraction of the heteroclinic cycle and the
divergence from the stationary cycle. The probability to leave the
basin of attraction is small for tiny noise levels while increasing
the noise level endangers the system to diverge. However, we
point out that the modeled stable heteroclinic sequence is
constructed in such a way that it is rather stable toward small
levels of noise due to the dissipation [6]. This sensitivity may
limit the applicability of the model proposed and requests either
less noise-sensitive models [54] or noise-induced heteroclinic
orbits [55].

Future work will apply the Hausdorff clustering to additional
intracranially measured Local Field Potentials in animals and
human EEG recordings to explore gain deeper insights into the
brains heteroclinic underlying dynamics. For the neural field
simulation, HO with multiple time scales as discussed by Yildiz

and Kiebel [14] and beim Graben and Hutt [36] may be suitable
to avoid alignment artifacts between MS.
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