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Advances in DNA synthesis have enabled the construction of artificial genes, gene cir-
cuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs
provides significant power in studying the impact of mutations in sequence features, and
verifying hypotheses on the functional information that is encoded in nucleic and amino
acids. To aid this goal, a large number of software tools of variable sophistication have
been implemented, enabling the design of synthetic genes for sequence optimization
based on rationally defined properties. The first generation of tools dealt predominantly
with singular objectives such as codon usage optimization and unique restriction site incor-
poration. Recent years have seen the emergence of sequence design tools that aim to
evolve sequences toward combinations of objectives.The design of optimal protein-coding
sequences adhering to multiple objectives is computationally hard, and most tools rely on
heuristics to sample the vast sequence design space. In this review, we study some of the
algorithmic issues behind gene optimization and the approaches that different tools have
adopted to redesign genes and optimize desired coding features. We utilize test cases
to demonstrate the efficiency of each approach, as well as identify their strengths and
limitations.

Keywords: computational biology, synthetic biology, gene design, codon bias, codon context

INTRODUCTION
Expression of genes is fundamental to modern biotechnology.
Expression is the process by which information from a gene is
used in the synthesis of a functional gene product, most often
a protein. Gene expression may be modulated at intermediate
steps, including transcription, RNA splicing, translation, and post-
translational modification of a protein. In this review, we will
primarily concentrate on the process of translation, and the effect
that synonymous mutations in a protein-coding gene confer to
the expression of the corresponding protein. Working toward the
objectives of synthetic biology, precise protein expression con-
trol has direct implications in improving heterologous expression,
and in successfully designing and fine-tuning gene regulatory net-
works. Gene design has applications for metabolic engineering,
particularly in biofuel production, where rate-limiting steps can
be overcome through gene optimization (Wiedemann and Boles,
2008).

Advances in large-scale DNA synthesis, cloning, DNA sequenc-
ing, and design and assembly of building blocks to engineer
biological systems have created unique opportunities for high-
throughput experimentation toward broadening our understand-
ing of gene structure, protein function, and genetic organization
(Bugl et al., 2007; Czar et al., 2009a). Recent years have seen the
development of a large number of computational tools that aim
to enable life scientists to create their own synthetic genes and
constructs. The first generation of design tools focused primarily
on optimizing designs for manufacturability (i.e., oligos without
local secondary structures and end repeats) instead of biological

activity. But soon the oligo design process was separated from the
gene optimization process, and new tools emerged that address
the two processes separately.

This review focuses on software tools that aim to aid the
redesign of existing genes for optimized protein expression, and
the algorithms behind these tools, all viewed from a computational
perspective. There exists a different set of tools that aid the design
of synthetic DNA sequences based on functional blocks called
genetic parts, which often utilize libraries of standard biological
parts, such as Biobricks (Shetty et al., 2008). GenoCAD (Czar et al.,
2009b) is one such tool that facilitates the construction of artifi-
cial DNA sequences by relying on formal design strategies and the
notion of grammars, sets of rules describing the structure of DNA
sequences. The genomic sequences that GenoCAD uses as biolog-
ical parts are immutable, and no optimizations are applied in the
creation of the constructs. Other circuit design tools include GEC
(Pedersen and Phillips, 2009), TinkerCell (Chandran et al., 2009),
and Clotho (Xia et al., 2011).

In Section “Gene Design Objectives and Algorithms,” we exam-
ine some of the most important objectives in synthetic gene design
toward optimized expression, accompanied by a brief analysis of
their computational complexity. Section “Gene Design Tools” is
devoted to 11 currently available gene design tools incorporating
the aforementioned objectives. We detail our experiences using
these tools in optimizing the green fluorescent protein (GFP) gene
in silico for heterologous expression in Section “Gene Design Tools
in Practice,” followed by a brief discussion on the strengths and
limitations of examined tools.
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Gould et al. Gene design tools and algorithms

GENE DESIGN OBJECTIVES AND ALGORITHMS
Gene design software tools aim to guide the redesign of protein-
coding genes using pre-defined features of interest, predomi-
nantly targeting improved protein expression, and simplified DNA
sequence manipulation. In this section, we examine several criteria
that have been traditionally used in optimizing gene expression,
all of which are incorporated in one or more of the evaluated
tools.

CODON BIAS
In most species, synonymous codons are used at unequal frequen-
cies. Codon usage bias is recognized as crucial in shaping gene
expression and cellular function, affecting diverse processes from
RNA processing to protein translation and protein folding. Rarely
used codons have been associated with rare tRNAs and have been
shown to inhibit protein translation, where favorable codons have
the opposite effect, something that is particularly pronounced in
prokaryotic organisms (Lithwick and Margalit, 2003). The process
of substituting rare codons with favorable ones is referred to as
codon optimization. Controlling codon bias, without consider-
ing other optimization objectives, to modulate translation rates is
computationally easy, since it involves only certain synonymous
substitutions to reach a desired distribution. The quantification of
the effect though is much more difficult, due to the limited number
of gene variants from only a handful of model organisms that have
been evaluated in literature, limiting the reliability of gene expres-
sion predictions based on codon bias measures [such as the Codon
Adaptation Index (CAI), described below]. Nevertheless, the use
of particular codons through synonymous mutations has been
shown to influence gene expression (Welch et al., 2009), and in cer-
tain cases to increase the expression of transgenes (genes expressed
in a heterologous host) by more than 1000-fold (Gustafsson et al.,
2004).

Numerous statistical methods have been proposed and used
to analyze codon usage bias. Methods such as the Frequency of
optimal codons (Fop) (Ikemura, 1981), the CAI (Sharp and Li,
1987), and the tRNA adaptation index (tAI) (Dos Reis et al., 2004)
are used to quantify codon preferences toward over- or under-
represented codons, and to predict gene expression levels, while
methods such as the Effective Number of codons (ENc) and Shan-
non entropy from information theory (Suzuki et al., 2004) are used
to measure codon usage evenness. Relative Synonymous Codon
Usage (RSCU) (Sharp et al., 1986) and Synonymous Codon Usage
Order (SCUO) (Wan et al., 2004) are additional examples in the
latter category. Several of these methods have been used in stud-
ies examining the effect of codon bias on gene expression, often
with little justification. CAI is the most prevalently used codon
bias measure in pertinent literature, but that preference seems to
be better explained by historical precedence rather than superior
predictive power.

Optimization of codon bias as a singular objective is algorith-
mically straightforward and can be performed in linear time as
a function of the sequence length. This is true for maximiza-
tion or minimization toward any given codon bias measure (such
as CAI, RSCU, ENc, etc.), as well as adoption/emulation of any
given codon distribution, including the case when codon position
assignments are performed randomly.

CODON CONTEXT BIAS
Gutman and Hatfield (1989) first noticed that codon pairs in
prokaryotic genes exhibit another significant bias toward specific
combinations. Further studies (Irwin et al., 1995) revealed that
codon pair optimization influences translational elongation step
times, but their functional significance was studied only in very
small datasets. More recent work by Coleman et al. (2008), Mueller
et al. (2010), and Coleman et al. (2011) who synthesized novel
coding regions utilizing large-scale codon pair optimization and
de-optimization, coupled with de novo synthesis of the constructs
and in vivo experimentation, provided evidence of the influence
codon pair bias has on translational efficiency. Several mathemat-
ical methods have been proposed for the study of codon context
bias, including (Fedorov et al., 2002; Hooper and Berg, 2002; Shah
et al., 2002; Boycheva et al., 2003; Moura et al., 2005; Coleman
et al., 2008). Three of the gene design tools examined in this review
provide functionality for controlling codon context, albeit no two
tools share the same measure of codon context bias.

Codon reuse (or autocorrelation) is the grouping of synonymous
codons in distinct regions of the mRNA transcript. Rare codons
often form clusters, both in eukaryotic and prokaryotic genomes
(Clarke et al., 2008), and codon reuse is considered to be a result
of tRNA recycling, where a single tRNA is used, recharged, and
used again for the same transcript (Godinic-Mikulcic et al., 2014).
Genes that group their synonymous codons often express higher
than those that do not (Cannarrozzi et al., 2010).

Optimization of codon context as a singular objective has linear
time complexity as a function of sequence length. Optimization
of codon pair bias with a fixed codon distribution is considerably
harder, although polynomially time solvable. This latter problem
can be reduced to a variation of the Traveling Salesperson Prob-
lem, which can be solved with a dynamic programing algorithm
having a time bound of O(n65)1, where n is the length of the
sequence being optimized (Mueller et al., 2010). As a consequence,
all currently available tools that attempt to codon context opti-
mize synthetic genes in conjunction with other objectives utilize
metaheuristics such as simulated annealing or genetic algorithms.
These heuristics do not guarantee an optimal solution, but limit
the running time of the optimization procedure, while typically
computing reasonable approximations.

RNA SECONDARY STRUCTURE
The status of RNA in molecular biology has changed dramati-
cally over the last decade. RNA molecules have been shown to
function as key regulatory elements and participate in a wide spec-
trum of cellular processes (Dunham et al., 2004; Carninci et al.,
2005; Kin et al., 2007). The number of known non-coding RNA
sequences has surpassed 30 million, grouped into more than 1400
families (Gardner et al., 2009). Significant RNA structural ele-
ments in viruses, such as the CRE in poliovirus (Goodfellow et al.,

1The big-O notation is used to describe upper bounds on the growth rate of func-
tions. In this case, a time complexity of O(n65) indicates that the running time of
the algorithm will be roughly proportional to a 65th order polynomial function of
the size of the input, in the worst case. As the input size increases, in this case the
length of an RNA molecule, the time it takes to compute its optimal codon pair bias
score increases roughly proportional to the 65th power of the molecule length.
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2000, 2003), have distinct functions and their presence or absence
is often critical in replication or translation. Such elements, in
addition to well-described functional centers and catalytic cores
of RNA molecules, will have many synthetic bioengineering uses
and can be beneficial if inserted or removed from mRNA coding
sequences, which can then assume catalytic activities and other
secondary roles on top of their protein encoding functions.

Certain secondary structures within an mRNA can affect ribo-
some transit rates by temporarily stalling ribosomes while they
attempt to unwind and translate through them (Buchan and Stans-
field, 2007). Dense secondary structures have also been correlated
with longer half-life of an RNA molecule in eukaryotic cells (Sim-
monds et al., 2004; Davis et al., 2008), a point of significance in
the context of viral RNA. These results imply that by controlling
the structure and free energy of an mRNA molecule, one may
modulate its translation rate and persistence in a cell.

The most popular algorithms for RNA folding use empirically
determined thermodynamic parameters (Freier et al., 1986; Serra
and Turner, 1995) and dynamic programing for identifying the
globally minimal energy structure; these are implemented in pack-
ages such as MFOLD (now UNAFold) (Zuker, 1989; Markham
and Zuker, 2008) and ViennaRNA (Schuster et al., 1994), which
are available as open source projects. The O(n3) time complexity
of these algorithms render them of limited use when evaluat-
ing substantial numbers of RNA sequences, variants of genes,
or when employing iterative methods to design customized syn-
thetic genes. Cohen and Skiena (2003) have experimented with
the most and least stable mRNA structures coding for a given pro-
tein (by applying only synonymous changes), having shown that
the former can be computed in O(n3) time – the same complex-
ity with RNA folding – and the latter is NP-hard2 to compute,
implicating no algorithm is expected to exist that can generate an
optimal solution for any realistically sized mRNA in reasonable
time.

RIBOSOMAL BINDING SITE
The rate of protein synthesis in a cell depends on both the rates of
translation initiation and elongation (Plotkin and Kudla, 2010).
Translation initiation is often a critical rate-limiting step in pro-
tein production from mRNA, and is largely dependent on weak
secondary mRNA structure in the 5′ untranslated region and near
the start codon. A number of randomly mutated GFP transcripts
were analyzed by Kudla et al. (2009), and they explained varia-
tion in expression with mRNA secondary structure in the first
47 nucleotides of the transcript. Espah Borujeni et al. (2014)
provide direct evidence for this hypothesis by showing that sec-
ondary structure inhibits mRNA loading onto the 30s subunit
and that partial unwinding of this mRNA usually occurs before
accommodation by the ribosome.

As of today, there are three available tools that model transla-
tion initiation and aid the design of ribosomal binding site (RBS)

2NP-hard are algorithmic problems for which no one currently knows whether they
can be solved in polynomial time, meaning that the time we need to solve such a
problem for an input of size n is expected to be an exponential function of n in the
worst case. Such problems are considered hard to solve optimally for any but the
smallest input instances.

sequences with desired translation initiation rates. These are RBS
Calculator (Salis et al., 2009; Salis, 2011), UTR Designer (Sang et al.,
2009; Seo et al., 2013), and RBS Designer (Na and Lee, 2010; Na
et al., 2010). A recent review article analyzes these tools in detail
(Reeve et al., 2014), and we will not delve into these tools’ func-
tionality, since the design of an RBS sequence can be accomplished
independently from the other characteristics of the protein-coding
sequence.

RESTRICTION SITES, HIDDEN STOP CODONS, AND OTHER MOTIF
AVOIDANCE
Restriction enzymes are laboratory agents that cleave DNA at
specific motifs. Each occurrence of these motifs within a DNA
sequence is called a restriction site recognition site or restriction
site. Restriction sites that appear uniquely in a sequence allow for
unambiguous cleavage, enabling DNA manipulation techniques
such as subcloning, where a new sequence can be inserted between
two different unique restriction sites. Thousands of restriction
enzymes have been identified and indexed in databases such as
REBASE (Roberts et al., 2009), and hundreds are available com-
mercially. Most of the synthetic gene design tools we examine
offer restriction site manipulation features, such as elimination
and unique placement.

In prokaryotes, translation is initiated by hybridization of
the 16S rRNA to the Shine–Dalgarno (SD) consensus sequence
upstream of the start codon of the mRNA. It is thought that
rare codon bias in N-terminal regions of prokaryotic genes may
actually be a result of avoidance of SD-like sequences in the
remainder of the gene. If SD consensus sequences are found
in the rest of the gene, hybridization can actually occur again
and cause translational pausing (Li et al., 2012). Thus, it is pos-
tulated that avoidance of SD-like codons is a driving force for
codon bias, although it is expected that this SD-driven codon bias
would only have implications for genes expressed in prokaryotic
cells.

Several other factors have been posited to affect gene expres-
sion, including repeated nucleotides, potential polyadenylation
sites (Pfarr et al., 1986), cryptic splice sites (Bukovac et al., 2008),
nuclease cleavage sites (Smolke and Keasling, 2002), hidden stop
codons (Seligmann and Pollock, 2004), and GC content (Kudla
et al., 2006). Several of the gene design tools being reviewed address
one or more of these factors, by providing simple mechanisms
to remove the undesirable patterns. In particular, polyadenyla-
tion sites, nuclease cleavage sites, and hidden stop codons can
be incorporated and/or eliminated with standard pattern inclu-
sion/exclusion mechanisms that many tools offer. GC content
modulation is usually performed by gene design tools offering
multi-objective optimization.

Restriction site and other pattern placement/elimination is an
NP-hard problem in its general form (Montes et al., 2010). Because
most patterns have sufficient length to occur sparsely by chance,
in conjunction with the small number of patterns that are usually
targeted when designing genes, the problem of incorporating and
eliminating patterns becomes trivial, and as a singular objective
it has a linear time complexity as a function of sequence length.
When pursued in conjunction with other objectives such as codon
usage utilization, pattern elimination can lead to unattainable
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solutions, such as one amino acid – one codon designs with irre-
movable restriction sites. Most tools resolve such conundrums by
prioritizing objectives, to the detriment of a universally optimum
solution.

GENE DESIGN TOOLS
We have decided to investigate 11 software packages that are avail-
able at the time of this writing: DNAWorks, Jcat, Synthetic Gene
Developer, GeneDesign, Gene Designer 2.0, OPTIMIZER, Visual
Gene Developer, Eugene, mRNA Optimizer, Codon Optimization
OnLine (COOL), and D-Tailor. All of these tools are available on
the web and can be freely downloaded and/or used without any
special permissions, requests, or elaborate procedures. The sole
prerequisite for our selections is that the tools can be used to opti-
mize DNA sequences that code for proteins, without altering the
chain of amino acids. In Table 1, we summarize the gene design
tools we examined, the web address where each tool can be found,
and the corresponding publication where the software was first
introduced.

In Table 2, we summarize major design objectives of each gene
design tool. Several of the tools provide additional functionality
not listed here, but mentioned in the following subsections.

DNAWORKS
DNAWorks (Hoover and Lubkowski, 2002) is a web-based applica-
tion that enables codon usage customization and oligo generation.
It was originally created to automate the process of oligonucleotide
design for synthetic gene construction. It includes functionality to
adjust codon utilization, albeit with peculiar restrictions and an
idiosyncratic codon assignment method. The user can customize
codon usage via a frequency percentage threshold. The value of this
threshold determines which synonymous codons will be substi-
tuted. For example, setting the frequency threshold to 20% allows
only codons with representation greater than 20% of all instances
of that particular amino acid to be viable substitutes. However,
the program always considers the first and second most abundant
codons to be viable candidates, independent of their absolute fre-
quency. Therefore, maximizing the frequency threshold (100%)
would force all amino acids to be coded by the top two most
abundant codons. As such, one amino acid – one codon design

is unattainable with DNAWorks. Once the optimization/oligo
generation process commences, the software uses a randomized
substitution heuristic strategy similar to simulated annealing. As
codons are randomly mutated, changes are accepted or rejected
based on a volatility (temperature) value. At higher volatilities, the
program will be more likely to accept detrimental mutations while
the converse is true at lower temperatures.

The codon optimization features of the tool supplement its
oligo generation capabilities.

JCAT
Java Codon Adaptation Tool (Jcat) (Grote et al., 2005) is a web-
based application featuring codon usage optimization based on
CAI score, restriction enzyme binding site elimination, rho-
independent transcription terminator elimination, and prokary-
otic ribosome binding site elimination.

Jcat optimizes target gene codon usage by maximizing its CAI
score, which leads to designs that utilize a single codon for each
amino acid. Reference sets of highly expressed genes for expres-
sion in a target host are retrieved from the PRODORIC database
(Münch et al., 2003; Grote et al., 2009), which is maintained by
the authors of the Jcat software. The methodology for generating
codon usage data regarding highly expressed genes stored in the
PRODORIC database is described in Carbone et al. (2003).

In addition to optimizing genes based on CAI score, Jcat
allows users to eliminate certain restriction sites from a pre-
defined list. The tool also offers options to avoid rho-independent
transcription terminators and prokaryotic ribosome binding sites.

SYNTHETIC GENE DESIGNER
Synthetic Gene Designer (Wu et al., 2005) is a web-based tool
with the gene optimization functionality including codon usage
optimization based on CAI score, restriction site elimination,
repetitious segment elimination, and oligo generation.

The program allows the user to control the CAI score by set-
ting an optimality factor, which varies from 0 to 64. Setting the
optimality factor to 0 forces the program to utilize predominantly
the most frequent codon for each amino acid, where the opposite
effect takes place when the optimality factor is set to 64, with inter-
mediate values producing less polarized designs. Codon changes

Table 1 | Gene design tools.

Gene design tool Web URL Reference

DNAWorks http://helixweb.nih.gov/dnaworks/ Hoover and Lubkowski (2002)

Jcat http://www.jcat.de/ Grote et al. (2005)

Synthetic gene designer http://userpages.umbc.edu/~wug1/codon/sgd/ Wu et al. (2005)

GeneDesign http://genedesign.org/ Richardson et al. (2006)

Gene Designer 2.0 http://www.dna20.com/resources/genedesigner Villalobos et al. (2006)

OPTIMIZER http://genomes.urv.es/OPTIMIZER Puigbò et al. (2007)

Visual gene developer http://www.visualgenedeveloper.net/ Jung and McDonald (2011)

Eugene http://bioinformatics.ua.pt/eugene Gaspar et al. (2012)

mRNA Optimizer http://bioinformatics.ua.pt/software/mRNA-optimiser Gaspar et al. (2013)

COOL http://bioinfo.bti.a-star.edu.sg/COOL/ Chin et al. (2014)

D-Tailor http://sourceforge.net/projects/dtailor/ Guimaraes et al. (2014)
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are performed randomly at any set value of the optimality factor,
and each time the program is run produces a different design.

The program also provides for the elimination of unwanted
restriction sites from a pre-compiled list of popular restriction
enzymes (but only 29 in total), and the repetitious segments
GGGGG/CCCCC and AAAAA/TTTTT. These modifications are
performed once codon optimization has been concluded; restric-
tion sites and repetitious segments are avoided at the expense of
the synthetic gene’s codon usage. The program also allows the
user to manually edit the gene. The synthetic gene can be easily
regenerated with the same set of constraints (optimality factor,
motifs to avoid, etc.) at the push of a button, facilitating user
experimentation.

At the time it was created, Synthetic Gene Designer utilized
the CUTG database (Nakamura et al., 2000), enabling gene opti-
mization based on reference codon usage of any organism within
GenBank. However, as of this writing, this feature is not func-
tional. The program does make available through sets of highly
expressed genes from model organisms, as referenced in studies
such as Sharp and Li (1986), Carbone et al. (2003), and others.

GENE DESIGN
GeneDesign (Richardson et al., 2006) is a web-based suite of
tools/modules aiming to aid both the analysis and design of syn-
thetic genes. Available modules can perform codon usage manip-
ulation, restriction site incorporation and elimination, sequence
analysis, and oligo generation.

The program offers a modular approach to gene design in
which each individual modification (codon manipulation, restric-
tion site addition/subtraction, etc.) is performed independently.
In addition, the software comes with the option to successively
manipulate a single gene through the selection of the “Design a
Gene” method. In this case, the program automates the process of
exporting modified genetic material from one module to the next.
This affords the user the flexibility to manipulate a single target
gene using any of the provided modules in any order.

Codon optimization can be performed with two modules: the
codon juggling module and the back-translation module. Both
methods only allow for a single codon to code for any particu-
lar amino acid. When optimizing through the back-translation
module, this single codon will always be the most optimal codon,
where using the codon juggling module the user can customize
which codon is used. These customization options include a “next
most optimal” design in which the second most optimal codon
is used, and a “most different” design in which the codon most
different from the optimal codon is used. Reference codon usage
data come from Sharp et al. (1986).

GENE DESIGNER
Gene Designer (Villalobos et al., 2006) is a stand-alone software
that facilitates the construction of novel genetic material through
an intuitive drag-and-drop approach to add and remove genetic
elements. However, at its current state, the software lacks optimiza-
tion functionality, which seems to have been available in previous
versions. In order to optimize a gene, a quote must be requested
from DNA 2.0, the company that created Gene Designer (DNA
2.0), and the optimized sequence must be purchased. As such,

we were unable to test the claimed optimization functionality of
Gene Designer. As it stands, the only features that come with Gene
Designer upon download are those to manually build/edit a gene.

OPTIMIZER
OPTIMIZER (Puigbò et al., 2007) is a web-based tool. Its func-
tionality includes codon usage optimization based on CAI and
ENc, restriction site elimination, motif avoidance, and oligo
generation.

The software makes use of a pre-compiled set of codon usage
statistics for about 150 genomes as the basis for its optimization.
These reference sets consist of ribosomal proteins and other highly
expressed genes within genomes that have been determined to be
under translational selection, based on the RSCU codon evenness
measure, which were created using a customized iterative process.

Codon usage in OPTIMIZER can be adjusted using three
methodologies:

1. CAI Optimal : Every amino acid within the sequence is coded
for by exactly one optimal codon (the most frequent in the
group of highly expressed genes).

2. Guided random: Monte Carlo synonymous substitutions are
performed to approximate the target codon distribution of the
reference set of highly expressed genes.

3. Selective optimization: The user selects the number of least
frequently used codons that should be eliminated from the
sequence.

VISUAL GENE DEVELOPER
Visual Gene Developer (Jung and McDonald, 2011) is a stand-
alone tool utilizing modular optimization components, enabling
user-accessible programing and addition of new functionality. The
program implements an intuitive graphical user interface with a
multitude of gene design options, which could prove overwhelm-
ing to the casual user. Optimization functions that are natively
supported by the program include mRNA secondary structure
and free energy prediction/optimization, CAI score optimization,
and restriction site and other user-designated pattern elimination.
The source code for inbuilt modules cannot be modified; how-
ever, Visual Gene Developer does support script programing using
Visual Basic script or Java script for development of additional
modules.

Modules with distinct functionality can be selected in any order
to be applied toward the optimization of a gene. For example, one
could designate to initially optimize the mRNA free energy, then
use a Monte Carlo probabilistic algorithm to optimize the gene’s
CAI (in a similar fashion to OPTIMIZER and Gene Designer), and
finally silently remove undesirable restriction sites. Codon usage
datasets used in CAI optimization are obtained from the CUTG
database (Nakamura et al., 1999), where user-defined tables are
provided as an option.

COOL
Codon Optimization OnLine (Chin et al., 2014) is another web-
based utility that can optimize for multiple objectives. Optimiza-
tion functions that the program can perform include codon usage
optimization based on CAI and Individual Codon Usage (ICU),
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Gould et al. Gene design tools and algorithms

codon context bias optimization, hidden stop codon optimization,
G/C content adjustment, and restriction site and other pattern
elimination.

Codon optimization based on ICU aims to modify the codon
distribution to resemble a given reference set. The tool pro-
vides suggested reference gene sets for four organisms (without
any information about the origin of the sets), and the user can
customize reference genes manually.

The optimization process uses a genetic algorithm to pro-
duce several approximately Pareto-optimal solutions given a set
of design criteria. Randomly generated sequences are evaluated,
ranked, and mutated until a stability threshold is reached, at which
point the fittest sequences based on the chosen properties are
outputted and the algorithm terminates.

EUGENE
Eugene (Gaspar et al., 2012) is a stand-alone tool developed for
multi-objective gene optimization. The program uses an intu-
itive user interface that is straightforward and easy to use. Eugene
also automatically loads relevant database data (KEGG, NCBI
databases) upon loading a gene to the workspace using iden-
tifier information provided in the gene’s FASTA/GenBank file.
Optimization functions available through Eugene include hidden
stop codon optimization, mRNA free energy optimization, codon
usage harmonization based on CAI or RSCU, restriction site elim-
ination, G/C content customization (provided as a percentage),
codon autocorrelation adjustment, repetitious segment removal,
and codon context bias optimization.

In our opinion, Eugene is one of the most versatile tools avail-
able for gene optimization; however, the program is accompanied
with scarce documentation, obstructing our efforts to effectively
interpret its output. Obfuscation of results is exacerbated by
the use of “percentages” to indicate improvement toward a tar-
get objective, instead of widely accepted scores. Genes can be
redesigned using either a rapid simulated annealing approach
or a slower genetic algorithm that provides the user with sev-
eral approximately Pareto-optimal solutions, one of which can be
selected and uploaded to the workspace.

mRNA OPTIMIZER
mRNA Optimizer (Gaspar et al., 2013) is a command-line stand-
alone utility developed solely for the purpose of optimizing mRNA
secondary structure free energy. The program itself is easy to use
if one has a working understanding of operating the command
line. The software is written in Java and is distributed as a jar
archive.

As mentioned in Section “RNA Secondary Structure,” opti-
mization of a protein-coding sequence for minimum free energy
(MFE) has time complexity of O(n3) as a function of the sequence
length n when maximizing MFE, and is NP-hard when minimiz-
ing. The mRNA Optimizer utilizes a simulated annealing heuristic
to explore the RNA folding landscape, and uses a pseudo-MFE
measure to approximate the Gibbs free energy. A simpler algorithm
with quadratic complexity is employed to compute a pseudo-MFE,
which correlates well with the actual MFE, by processing all single
stem-loop conformations of the molecule during each iteration of
the simulated annealing procedure.

D-TAILOR
D-Tailor (Guimaraes et al., 2014) is another stand-alone tool (writ-
ten in Python) that employs multi-objective optimization and
modularity in creation of synthetic genes. Optimization functions
that the program natively supports include codon usage opti-
mization based on CAI score, restriction site and other pattern
elimination, G/C or A/T content optimization, mRNA secondary
structure optimization, and hydropathy index optimization.

For an experienced Python programmer, D-Tailor is the most
customizable gene synthesis tool of the ones considered; all other
users will struggle to perform even a single optimization task. The
source code is available for access and modification, unlike most
other tools. On the other hand, in order to run a user-defined
optimization, the user must add a Python class or edit an existing
class to designate which features to use and to what extent they will
be optimized. D-Tailor comes with template code to guide one’s
efforts.

D-Tailor provides a generic class that can be extended to modify
any criteria the user considers relevant. These features are opti-
mized through the designation of levels that a sequence should
exhibit after optimization. For example, one could divide the
entire spectrum of CAI scores (0–1) into five levels (1: 0–0.2, 2:
0.2–0.4, etc.). By then setting the desired CAI level of the syn-
thetic sequence, D-Tailor will generate solutions until a satisfactory
sequence is found.

The optimization procedure of D-Tailor consists of two steps:
sequence selection and sequence evolution. In the first step, a tem-
plate sequence is retrieved from the repository of sequences, a
MySQL database that is populated as the algorithm iterates (on
first iteration, the database contains only the seed sequence) based
on the optimization objectives. This selected sequence is then
synonymously mutated a number of times (default 100) until a
sequence exhibiting preferential target property levels is generated.
This mutation process starts by analyzing the current sequence’s
fitness in each relevant property and identifying one property that
needs improvement. The sequence is then modified toward the
improvement of this property (adhering simultaneously to any
user-designated avoidance features such as restriction sites, motifs,
promoter sequences). The algorithm then computes the Euclidian
distance of the modified sequence relative to the given design target
to determine whether improvement was made toward the optimal
solution, in which case the new sequence is added to the database.
The process can be customized using three user-selected options:

1. Direction optimization: solely accept sequences with smaller
Euclidian distances to the target.

2. Neutral optimization: accept modified sequence based on
defined probabilities.

3. Temperature-based optimization: probability of choosing less
favorable sequences decreases as successive iterations of the
algorithm are performed (similar to simulated annealing).

OTHER TOOLS
In addition to the tools listed in the previous subsections, a num-
ber of additional software applications have been created to aid
gene redesign and customization for synthesis. Few of these tools
were unattainable at the time of this study. These include Upgene

www.frontiersin.org October 2014 | Volume 2 | Article 41 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gould et al. Gene design tools and algorithms

(Gao et al., 2004), Gene Morphing System (GeMS) (Jayaraj et al.,
2005), and Gene Composer (Lorimer et al., 2009). The basic func-
tionality of these programs can be largely found in other currently
available tools.

GENE DESIGN TOOLS IN PRACTICE
We downloaded, installed, configured, and run all stand-alone
gene design programs,and configured and used all web-based tools
that were detailed in the previous section. To test their functional-
ity, we redesigned a copy of the Aequorea victoria GFP gene, with
GenBank Accession Number M62653, for heterologous expression
in Escherichia coli. We used the E. coli strain K12 for all exper-
iments where we had to provide coding sequences, and for all
comparisons.

All programs except for Visual Gene Developer were tested on a
desktop computer with an Intel Haswell i7-4770 CPU (22 nm lith-
ography) running at 3.4 GHz, with 16 GB of main memory, and
Ubuntu 14.04 operating system. The Visual Gene Developer tool
was tested on a laptop equipped with an Intel Haswell i7-4700MQ
CPU (22 nm lithography) running at 2.4 GHz, with 8 GB of main
memory, and MS Windows 8.

We tested all basic functionality of the programs, and most
of the optimization features and combinations provided. We are
reporting our results and impressions on a subset of these features,
for the following reasons:

• Functionality of all tools for most optimization objectives works
as described in corresponding documentation. We attempt to

note discrepancies instead of reporting conformity. Codon
usage optimization in one amino acid – one codon design
produces consistently the expected results.
• Many optimized designs cannot be effectively evaluated for

accuracy or efficiency, since they are created based on unique
objective measures of each specific tool, the tools use customized
reference sets of genes, or heuristics are employed, which are
not comparable between tools. Heuristics implemented in the
majority of tools often generate suboptimal results, which
cannot be compared to unattainable optimal solutions.

We chose to present experimental results for the following
design objectives:

• Codon usage optimization for heterologous expression, based
on a target distribution.
• RNA Gibbs free energy optimization.
• Restriction site elimination.

In addition, we report our personal experiences installing,
customizing, and running the software (where applicable). We
describe a tool as unresponsive when the time period to optimize
a gene toward a set of objectives surpasses half an hour without
producing a design or updating a progress indicator.

EASE OF INSTALLATION AND USE
Table 3 displays the form of availability of each tool (web based
or stand-alone), the operating system where it can be accessed,

Table 3 | Availability and ease of installation/use of computational gene design tools.

Gene design

tools

Availability Operating

system

Implementation

language

Source code

availability

Ease of

installation

Ease of

use

DNAWorks Web based Any Fortran90 N/A N/A Easy

Jcat Web based Any Java N/A N/A Easy

Synthetic gene

designer

Web based Any PHP, Javascript,

and Perl

N/A N/A Medium

GeneDesign Web based Any Perl and C N/A (github

repository

unavailable)

N/A Easy

Gene Designer 2.0 Stand-alone Mac OS X,

Windows, Linux

Unknown N/A Easy Medium

OPTIMIZER Web based Any PHP N/A N/A Medium

Visual gene

developer

Stand-alone Windows .Net Framework Partially availablea Easy Medium

Eugene Stand-alone Mac OS X,

Windows, Linux

Java N/A Easy Easy

mRNA Optimizer Stand-alone,

command line

Mac OS X,

Windows, Linux

Java N/A Easy Medium

COOL Web based Any Perl (functional

back-end)

Partially availableb N/A Medium

D-Tailor Stand-alone Mac OS X,

Windows, Linux

Python Available Hard Hard

aVisual gene developer allows users to develop new optimization modules, but not edit existing modules.
bThe source code of COOL is partially available for modification. Certain parts of the code are only provided as machine executable binary files.

The terms “easy,” “medium,” and “hard” are subjective and refer to the ease of installation and use of the tools by a user with limited to moderate ICT and programing

skills.
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FIGURE 1 | Gene design software data flow.

the availability of its source code, the ease of installation, and
overall ease of use. The reference point for the last two subjec-
tive measures is a confident user of the listed operating systems
(MS Windows, Linux, and Mac OS X), with limited computer
programming experience, moderate Information and Communi-
cation Technologies (ICT) background, and moderate experience
in program installation and terminal command-line usage in Un*x
systems.

The data flow model of each gene design tool is shown in
Figure 1. DNAWorks, Jcat, Synthetic Gene Designer, and OPTI-
MIZER run optimization tasks sequentially, with the potential of
each successive optimization running antagonistically against pre-
ceding tasks. Visual Gene Developer and Gene Design offer mod-
ules each providing an individual optimization, but can also suffer
from antagonism. These modules can be used in any user-designed
order and frequency. Eugene, COOL, and D-Tailor optimize all
objectives concurrently, utilizing metaheuristics.

CODON OPTIMIZATION TESTS
We redesigned the GFP gene encoding for expression in E. coli,
based on codon usage optimization. We selected to randomize the
synonymous substitutions for each program that provides such
an option, and to pursue emulation of the target distribution
when available, instead of maximization of CAI, since the latter
exclusively utilizes a single codon for each amino acid. Results
are displayed in Figure 2, where the first column displays the

cumulative codon distribution of all E. coli genes (strain K12),
and the second shows the cumulative codon distribution of all E.
coli highly expressed genes, as determined by Sharp and Li (1986).

DNAWorks
By observing the optimized codon distribution, it is not obvious
that DNAWorks uses the two most abundant codons for the major-
ity of synonymous substitutions. This could be attributed to uti-
lization of a different reference set than the one displayed, the E. coli
class II genes, which are highly and continuously expressed dur-
ing exponential growth, as determined by Medigue et al. (1991).
Another possible explanation is the use of a simulated annealing
procedure to decide synonymous changes, which adds an element
of randomness.

JCat and GeneDesign
The “one amino acid – one codon” approach is clearly evident in
our results. The synthesized gene in this test case had a CAI of 1,
since codon usage was the single target of this optimization.

Synthetic gene designer
Codon usage closely resembles the distribution of highly expressed
E. coli genes. For the displayed design, the optimality factor of the
program was set to 1. The GFP gene was optimized based on a
reference set defined in Carbone et al. (2003), which may have
produced some of the observed variation.
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OPTIMIZER
Selecting the Guided Random option for optimizing codon usage,
OPTIMIZER generates a design with a codon distribution that
differs in several amino acids from the reference sets displayed.
OPTIMIZER has pre-compiled its own reference datasets of highly
expressed genes based on RSCU evenness. Codon usage for sev-
eral amino acids resemble the Sharp/Li set distribution, where
for other amino acids there is a close resemblance to the overall
E. coli gene distribution. After running a number of optimization
cycles with the guided random method (results not shown), OPTI-
MIZER appear to vary widely its codon usage patterns between
designs, occasionally utilizing under-represented codons in the
reference set more frequently than overrepresented ones.

Visual gene developer
Codon utilization generally reflects the overall E. coli codon usage,
which is supported by the tool’s dependence on the CUTG data-
base to obtain reference sets. Certain variation could be possibly
explained by the use of a Monte Carlo randomized algorithm for
synonymous mutations.

Eugene
To test Eugene’s codon optimization capabilities, we selected the
harmonization method based on CAI option. The resulting codon
usage design does not resemble any of the reference datasets that
other programs are using. Successive iterations of the same opti-
mization method using simulated annealing always produce the
same result, which leads us to believe that the discrepancy is sys-
tematic. Eugene’s documentation mentions that reference datasets
are retrieved from KEGG and PDB, but specifics on the selections
are absent.

COOL
We chose the option to maximize codon usage based on ICU.
The method COOL uses to create customized reference sets is
not documented, but the tool makes available the list of genes
used as a reference, and allows the user to customize it. Using the
built-in reference set, we generated an optimized design whose
codon distribution resembles the overall E. coli usage.

D-Tailor
We performed codon optimization based on CAI, with a target
score range of 0.7–0.95. The actual score obtained after opti-
mization was approximately 0.7. The resulting codon distribution
resembles the highly expressed gene set of Sharp and Li, which is
the reference set that D-Tailor is using as well. However, should

one wish to optimize for expression in another host, he/she would
have to manually generate this same information from their own
set of highly expressed genes and make necessary edits within the
source code.

Comments
The Eugene tool becomes unresponsive when optimizing for a sin-
gle objective using the evolutionary heuristic, for which reason it
was not tested. D-Tailor becomes unresponsive or fails to termi-
nate when target score ranges are set unrealistically, although it is
hard to determine a priori which ranges would be realistic for each
objective. All other programs run efficiently and generated results
as expected.

mRNA FREE ENERGY TEST
Four of the gene design tools are capable of optimizing the mRNA
folding energy of a given gene. Of these, Eugene, mRNA opti-
mizer, and D-Tailor provide the option to maximize or minimize
the MFE of the entire gene; the latter two tools also allow for the
specification of a region of the gene to perform that optimization.
Visual gene developer allows the user to specify target MFE for a
window of a given size, and attempts to optimize each window
along the sequence independently.

We used the UNAFold utility to compute the folding energy
of the wildtype GFP encoding, which was determined to have an
MFE of −133.80 kcal/mol. We then run mRNA MFE maximiza-
tion and minimization design experiments for the GFP protein,
with results summarized in Table 4.

All programs were configured to pursue a single objective.
The Eugene tool manages to produce the most extreme designs.
The mRNA optimizer performs equally well when maximizing
the MFE, but returns the mRNA sequence without modifications
when minimizing the MFE.

RESTRICTION SITE REMOVAL TESTS
As we discussed in Section“Restriction Sites, Hidden Stop Codons,
and Other Motif Avoidance,” incorporating and eliminating
restriction sites and other patterns can lead to hard computational
problems, even in the absence of other optimization objectives.
It is rare though for such cases to occur in practice. When the
patterns do not overlap and other optimization objectives do
not interfere, pattern incorporation and elimination are simple
optimization tasks that all gene design tools under consideration
perform with ease.

To provide a useful test of the tools’ flexibility, and to inform
the user of the potential behavior of the programs under compet-
ing optimization objectives, we devised a test case that leads to an

Table 4 | MFE optimization experiments of GFP mRNA.

Tool Minimized MFE Maximized MFE Running time (s)

(kcal/mol) (kcal/mol)

Maximization Minimization

Eugene −202.20 −74.40 8.4 8.4

mRNA Optimizer −133.80 −76.67 0.0 10.2

D-Tailor −190.40 −99.04 144.5 142.0
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unattainable design, where a compromise will have to be made in
order to generate a solution. This test case involves the design of a
GFP mRNA encoding that does not contain any NcoI (CCATGG)
and NdeI (CATATG) restriction sites, while encoding every occur-
rence of the amino acid Proline with codon CCA, and Histidine
with CAT. The CATATG pattern occurs at position 166 of wildtype
GFP, and CCATGG appears at position 230. Only a synonymous
substitution of CAT can eliminate the first site, and similarly a
synonymous substitution of CCA can eliminate the second. The
results from running this test case on each individual program are
presented below.

DNAWorks claims to eliminate the restriction sites, but the sites
were still present in the output.

JCat does not provide functionality to specify which codons
should code for which amino acid. Additionally, the user cannot
alter the codon usage of the reference set.

GeneDesign can be customized to encode any amino acid with a
single codon. The sequential optimization of the objectives results
in codons being synonymously substituted to avoid incorporation
of the restriction sites.

Synthetic Gene Designer becomes unresponsive when provided
these specifications.

OPTIMIZER overwrites the codons to avoid the restriction site.
Visual Gene Developer claims to eliminate the restriction site

but outputs a design that still contains the restriction sites.
Eugene does not offer the functionality to alter the codon usage

data that are used during optimization.
COOL uses restricted codons for Proline and Histidine to

eliminate the restriction sites.
D-Tailor required code modification to get the experiment

to work. Even so, once the codon table was modified to only
utilize CCA to code for Proline, the program would not accept
the input sequence, because GFP already contains the restriction
site. It appears that D-Tailor is not actively modifying optimized
sequences to remove restriction sites, but merely guarantees that
a restriction site will not be added to the existing sequence. The
program terminates if one forbidden site is already present.

DISCUSSION
Synthetically designed genes have historically been optimized for
host codon bias and mRNA secondary structure in order to max-
imize gene expression in the host. However, many studies show
that these are not necessarily the “main” forces acting on transla-
tion throughput. It is not imminently clear which forces of codon
selection are stronger than others and which are artifacts of others;
moreover, experiments relying on random mutation often do not
provide concrete answers to these questions. With the decrease in
price of de novo gene synthesis, hypothesis-driven studies using
reverse genetics are expected to rise as the preferred method to
design more controlled experiments. In addition to understanding
the forces behind natural gene design more thoroughly, rational
gene design may also improve heterologous gene expression and
metabolic pathway optimization.

Our study involved numerous tools that enable the rational
customization of protein-coding genes for experimentation con-
cerning expression. Each tool has its own strengths and limitations.
Newer tools such as Eugene, COOL, and D-Tailor now provide

most of the functionality of older ones, but often have steeper
learning curves and more complicated options and interfaces.
Web-based applications are the easiest to access and fastest to learn,
where multi-objective optimization tools often need to come as
stand-alone programs to make use of the computational power of
a local workstation. No tool is perfect or suited for every optimiza-
tion task and user experience level, but synthetic biologists today
have access to a considerable arsenal of flexible and capable design
tools, which can be effectively used to design the next generation
of synthetic constructs for hypothesis testing.

There exists much space for improvement in the gene design
software domain. With the exception of Eugene, most recent
tools sacrifice ease of use for multi-objective optimization. When
single optimization objectives lead to hard computational prob-
lems, or the tools are optimizing protein-coding regions toward
multiple objectives, current tools do not provide guarantees on
solution optimality, and most do not guarantee even solution
quality. No tool examined in this review provides any form of
quantifiable expression predictive power based on design deci-
sions such as codon and codon context choices, or mRNA struc-
ture manipulation (in contrast to RBS design tools briefly men-
tioned in Section “Ribosomal Binding Site”). This is a direct
consequence of the lack of extensive wet lab experimentation to
determine the contributions of individual codons, codon pairs,
etc. when expressing genes in different organisms. New gene
design tools or updated versions of existing tools would ben-
efit from implementation of additional features such as splice
site and other pattern incorporation/elimination as described
by position weight matrices and other probabilistically based
methods, dinucleotide distribution manipulation, and other fac-
tors posited to affect gene expression. In addition, current tools
have not explicitly addressed optimizations toward important
gene design objectives other than translation rates and restric-
tion site placement, such as mRNA stability. Toward these goals,
modular architectures adopted by tools such as D-Tailor, which
allow experienced Python programmers to incorporate additional
optimization objectives, may provide the necessary flexibility to
enable tool evolution and wide adoption by the gene design
community.
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