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A genetic interaction (GI) is a type of interaction where the effect of one gene is mod-
ified by the effect of one or several other genes. These interactions are important for 
delineating functional relationships among genes and their corresponding proteins, as 
well as elucidating complex biological processes and diseases. An important type of 
GI – synthetic sickness or synthetic lethality –  involves two or more genes, where the 
loss of either gene alone has little impact on cell viability, but the combined loss of 
all genes leads to a severe decrease in fitness (sickness) or cell death (lethality). The 
identification of GIs is an important problem for it can help delineate pathways, protein 
complexes, and regulatory dependencies. Synthetic lethal interactions have important 
clinical and biological significance, such as providing therapeutically exploitable weak-
nesses in tumors. While near systematic high-content screening for GIs is possible in 
single cell organisms such as yeast, the systematic discovery of GIs is extremely difficult 
in mammalian cells. Therefore, there is a great need for computational approaches to 
reliably predict GIs, including synthetic lethal interactions, in these organisms. Here, we 
review the state-of-the-art approaches, strategies, and rigorous evaluation methods for 
learning and predicting GIs, both under general (healthy/standard laboratory) conditions 
and under specific contexts, such as diseases.

Keywords: genetic interactions, machine learning, prediction, cancer, drug discovery, network analysis

iNTRODUCTiON

Genetic interactions (GIs) occur when the combined phenotypic effect of mutations in two or more 
genes is significantly different from that expected if the effects of each individual mutation were 
independent of the others (Mani et al., 2008; Boucher and Jenna, 2013). They can be broadly clas-
sified as either positive or negative based on whether the double mutation leads to either a greater 
increase (positive) or decrease (negative) in fitness than what would be expected in the case of 
any individual mutation (Jasnos and Korona, 2007). These interactions are important for delineat-
ing functional relationships among genes and their corresponding proteins, as well as elucidating 
complex biological processes and diseases (Boucher and Jenna, 2013). A variety of GIs have been 
described (Mani et al., 2008), but one of the most well-studied types is synthetic lethality, which is the 
extreme case of negative GIs. First coined in Drosophila (Bridges, 1922), synthetic lethality describes 
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how combinations of mutations confer lethality while individual 
ones do not. Perhaps the simplest form of synthetic lethality lies 
in paralogous gene relationships. Paralogous genes, especially 
recently duplicated ones, are frequently functionally redundant; 
therefore, loss of all or several of them is often necessary to obtain 
a phenotype (VanderSluis et al., 2010).

One of the most exciting biomedical applications of GIs lies 
in how synthetic lethality can be used to selectively target cancer 
cells (Kaelin, 2005; McLornan et al., 2014). This is exemplified 
by the success of pharmacological PARP inhibition in BRCA-
mutated (and deficient) tumors (Weil and Chen, 2011; Food and 
Drug Administration, 2012). Therapeutic opportunities arising 
as a result of synthetic lethality may extend beyond BRCA-
mutated tumors. For example, many, if not most, inactivating 
somatic mutations in cancer genes cannot be targeted directly, 
but some of them may be actionable via their synthetic lethal 
interactions. This may be the case for TP53, a commonly lost 
tumor suppressor in cancer and for which actionable synthetic 
lethal interactions have been identified (Emerling et al., 2013). 
A recent paper identified a synthetic lethal interaction between 
EZH2 and ARID1A in ARID1A-mutated cancers, thus providing 
therapeutic opportunities since EZH2 can be pharmacologically 
targeted (Bitler et al., 2015). While a few synthetic lethal inter-
actions have been uncovered, the widespread loss of genomic 
material in most tumors likely creates even more, possibly many 
of which are tumor specific. This is an attractive opportunity, 
because targeting a gene that is synthetic lethal to a cancer-
associated mutation may preferentially kill cancer cells and 
spare normal cells. As a proof-of-principle, a search for passenger 
mutations uncovered an interaction between ENO1 (lost) and 
enolase 2 (ENO2), and targeting the remaining enolase led to cell 
death (Muller et al., 2012).

A distinct but related form of GI is synthetic dosage lethal-
ity (SDL). In SDL, over-expression of one gene combined with 
loss of the other gene leads to cell death. SDL interactions are 
important in cancer because many oncogenic events are due to 
gene over-expression or mutations that constitutively activate a 
pathway in a way that mimics over-expression. This is not only 
the case for oncogenes such as MYC (frequently over-expressed) 
but also mutations such as KRAS, neither of which can be directly 
targeted pharmacologically. Several studies have described how 
SDL interactions involving these genes can be therapeutically 
exploited (Chan and Giaccia, 2011). For example, MYC-driven 
tumors are dependent on 4EBP1 [eukaryotic translation initia-
tion factor 4E (eIF4E) binding protein 1], a mammalian target of 
rapamycin (mTOR) substrate. Thus, pharmacologic targeting of 
mTOR in MYC-driven tumors may represent a promising direc-
tion (Pourdehnad et al., 2013).

In organisms such as yeast, systematic GIs screens have been 
performed and have revealed hundreds of thousands of interac-
tions (Dixon et  al., 2009a,b). Such screens have also been per-
formed in higher eukaryotes and human cell lines (Barbie et al., 
2009; Luo et al., 2009; Scholl et al., 2009; Hajeri and Amatruda, 
2012; Kranz and Boutros, 2014; Maia et  al., 2015), albeit on a 
more limited scale. As described in the next section, screening 
techniques, such as E-MAP and SGA, are not easily applicable 

to higher eukaryotes. Moreover, the latter have more genes 
(humans have four to six times more genes than yeast) and a cor-
respondingly larger number of gene pairs (and potentially higher 
combinations) to assay. As a result, relatively few GIs are known 
in human, murine, and other higher eukaryotic cells.

Owing to the general lack of experimentally verified GIs despite 
their biomedical utility, several computational approaches have 
been developed to identify/predict them. Some approaches have 
been developed for general, context-independent applications, 
whereas others are more directly related to specific contexts/dis-
eases, most commonly cancer. These approaches adopt concepts 
from diverse areas such as machine learning, evolutionary genom-
ics, feature engineering, and network analysis to achieve their 
goals. In this review, we describe these GI prediction approaches 
in detail, as well as their critical associated aspects, especially the 
reliable assessment of their predictive abilities. However, we begin 
with describing experimental techniques for identifying GIs, as 
they form the conceptual foundation and sources of data for most 
of the approaches described subsequently.

eXPeRiMeNTAL TeCHNiQUeS FOR 
iDeNTiFYiNG GeNeTiC iNTeRACTiONS

In simple haploid organisms that can be easily manipulated via 
genetic engineering, such as yeast or E. coli, the detection of GIs 
can be performed by manipulating two genes at the same time, 
e.g., knocking them out, assessing a given phenotype, and com-
paring it to the result of the manipulation of single genes. Larger 
unbiased GI networks can be obtained using high-throughput 
screens. Three main high-throughput platforms exist for discov-
ering these networks: synthetic gene array (SGA) (Tong et  al., 
2001), epistatic miniarray profiles (E-MAP) (Collins et al., 2010), 
and diploid based synthetic lethality analysis on microarrays 
(dSLAM) (Pan et al., 2004). In SGA, a yeast strain carrying a query 
mutation is crossed with an ordered array of approximately 5000 
viable yeast gene deletion mutants (representing approximately 
80% of all yeast genes (Baryshnikova et al., 2010)) and the meiotic 
progeny harboring both mutations is scored for fitness (Tong 
et  al., 2001, 2004; Tong and Boone, 2006). To measure fitness, 
sizes of colonies of double and single mutants grown are meas-
ured in a high-throughput manner and single vs. double mutant 
fitness measurements are compared to identify GIs. In the related 
E-MAP approach, a rationally chosen subset of genes is studied, 
e.g., genes belonging to a given pathway or process, and all GIs 
between pairs of genes in this subset are analyzed using the SGA 
technique (Collins et al., 2010). In dSLAM, deletion strains con-
taining molecular barcodes and a microarray detection technique 
are used to measure relative growth rates of mutant yeast strains 
in competition (Pan et al., 2004). Using these three approaches 
and other related ones, millions of gene–gene combinations have 
been tested in yeast, and hundreds of thousands of interactions 
have been discovered (Boone et al., 2007; Costanzo et al., 2010).

In human and other higher eukaryotic cells, high-throughput 
analysis of GIs is more difficult due to a larger number of genes and 
even larger number of gene pairs and higher combinations, lower 
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efficiency of genetic engineering, and absence of resources like 
the yeast knockout collection, among others. Current approaches 
usually focus on identifying GIs involving a gene of interest, such 
as the p53 tumor suppressor. In such studies, isogenic wild-type 
(WT) cell lines and those mutant for the gene of interest are used, 
e.g., p53 WT vs. p53 mutant. Then, shRNA or CRISPR screens 
are performed to identify differentially lethal genes (Berns et al., 
2004; Barbie et  al., 2009; Luo et  al., 2009; Scholl et  al., 2009). 
Such screens can also be performed using small molecules that 
target specific proteins (Turner et al., 2008; Roller et al., 2012). A 
few studies have used pooled shRNA and shRNA pairs to query 
specific pathways for GIs in human cells (Bassik et  al., 2013; 
Vizeacoumar et al., 2013). Because of the difficulty in accurately 
measuring colony size and fitness in higher order organisms, 
a recent set of studies have instead used a cell’s phenotype to 
measure the effect after siRNA-mediated knockdown (Laufer 
et al., 2013, 2014). After staining treated cells with markers for 
DNA and cell morphology, they ran automated image analysis 
to extract over 100 distinct descriptors. These descriptors were 
then combined into a single score in order to estimate the level 
of GI for each gene pair. These experiments have generated the 
largest known set of cancer-specific GIs that are expected to yield 
novel knowledge about cancer biology and possibly many more 
GIs using the methods discussed in this review.

CHARACTeRiZiNG AND PReDiCTiNG 
GeNeTiC iNTeRACTiONS

The first high-throughput genetic interaction (GI) data sets 
in yeast allowed researchers to analyze the biological and 
topological properties of these interactions and their networks 
(Boucher and Jenna, 2013). Among the first of these efforts, 
Kelley and Ideker (2005) analyzed the correspondence between 
GIs and the protein interaction network in yeast and found that 
a substantial fraction of GIs corresponded to either within- or 
between-pathway interactions. Of these, they found that negative 
GIs (interactions that negatively impact and diminish a given 
phenotype), especially synthetic lethals, correspond more signifi-
cantly to between-pathway interactions, as they represent cases of 
pathways and genes/proteins within them compensating for each 
others’ functions (Hartman et al., 2001). A more recent analysis 
of a much larger GI dataset, Bellay et al. (2011) confirmed this 
interpretation of negative GIs, while also indicating that positive 
GIs (interactions that positively impact and augment a given 
phenotype) are harder to interpret and may indicate both within- 
and between-pathway/complex interactions. Other studies have 
related GIs to evolutionary and functional relationships between 
genes (Ma et al., 2008; VanderSluis et al., 2010; Koch et al., 2012; 
Michaut and Bader, 2012), and we refer the reader to Boucher 
and Jenna (2013) for a detailed review of these results. Similar 
analyses have been conducted for explaining the mechanistic 
relevance of synthetic lethal interactions to metabolic networks 
(Palumbo et  al., 2007). These studies established the relevance 
and utility of GIs for studying the functional landscape of the cell 
in terms of its various components, such as genes, pathways, and 
complexes.

Broad Feature engineering and 
Classification-Based Approaches
Based on biological inferences such as those mentioned earlier, 
most of the early approaches to this problem followed the 
hypothesis that GIs and functional relationships correspond to 
each other well and adopted the methodology shown in Figure 1 
(Tong et al., 2004; Onami and Kitano, 2006; Zhong and Sternberg, 
2006; Paladugu et al., 2008; Chipman and Singh, 2009; Ulitsky 
et al., 2009; Pandey et al., 2010). Predictive features regarding GIs 
are quantified from genomic data sources, such as gene expres-
sion, protein–protein interactions (PPI), functional/pathway 
annotations, and evolutionary patterns. These quantifications, 
often a large number of them, are collected as features or attributes 
describing the gene pairs, and a training set is constructed using 
the available GI dataset, which is most often obtained from a 
public data source, such as BioGRID (Chatr-Aryamontri et al., 
2015) or IntAct (Orchard et al., 2014). Finally, predictive models 
(Kuhn and Johnson, 2013) are learnt from this training set. To 
ensure that the models are actually predictive, they are rigorously 
evaluated using methodologies like cross-validation and metrics 
like precision-recall and area under the ROC curve (AUC) (Davis 
and Goadrich, 2006; Fawcett, 2006; Kuhn and Johnson, 2013). 
Finally, these models can be applied to previously unseen gene 
pairs to predict whether they may represent novel GIs or not.

Wong et al. (2004) presented the first successful application 
of this approach for Saccharomyces cerevisiae GIs, specifically 
synthetic sick and lethal (SSL) interactions. Using 123 features 
derived from a variety of genomic datasets and a decision tree 
predictor, they were able to achieve accurate predictions at a 
rate of 31%, two orders of magnitude higher than 0.56% success 
rate expected of unguided experimental screening. Zhong and 
Sternberg (2006) adopted a similar approach to infer GIs in 
Caenorhabditis elegans (worm). To supplement the much smaller 
amount of genomic data available for worm, they used orthology 
to transfer relevant and reliable data from fly and yeast and derive 
features. They used a logistic regression model to generate a pre-
dicted GI network of 18,183 interactions covering 2254 genes. 
Several other efforts have taken a similar feature extraction and 
predictive modeling approach (Paladugu et al., 2008; Chipman 
and Singh, 2009).

In previous work (Pandey et al., 2010), some of us developed 
a more comprehensive approach to GI prediction by addressing 
some important limitations of Wong et al. (2004)’s work. Most 
importantly, Wong et  al. included some two-hop or transitive 
features for gene pairs A–B that were defined by searching if 
there exists a functional relationship between genes A and C 
and a known GI (specifically, SSL) between genes B and C. In 
this way, they incorporated known GI data into the features 
constituting the training set. While these features turned out to 
be substantially predictive in the cross-validation experiments on 
the training set, the applicability of this approach to organisms 
with no or very little GI data available is questionable. Thus, we 
designed a completely GI-independent set of 152 features derived 
from orthogonal genomic data sources like gene expression, 
PPI, functional/pathway annotations and evolutionary patterns. 
Table 1 lists some of the most predictive of these features, grouped 
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by the data source they were derived from, and ranked in terms 
of their discriminative power. Data sources with high functional 
relevance, such as functional annotations, gene expression, and 
PPI, yielded the most discriminative features for this problem. 
Along with features like these, we extended the single decision 
tree predictor used by Wong et al. (2004) to a collection of six 
different predictors (ensemble) and employed balancing of the 
GI and non-GI examples in the training set to address the class 
imbalance issue, both of which are useful practices for biomedical 
prediction problems (Haibo and Garcia, 2009; Yang et al., 2010). 
Owing to these innovations, our system produced state of the art 
performance for S. cerevisae GI prediction (Lu et al., 2013), and 
was considered a major advance in computational biology (Mak, 
2011).

Subsequently, several studies have sought to improve this 
performance by enhancing the prediction algorithm used in 
this system, rather than focusing on adding in new features. Wu 
et al. (2014) converted the ensemble into a supervised approach 
by weighing the contributions of the individual classifiers by 

their respective performance (AUC score), and consequently 
obtained an improvement in performance. In parallel, some of us 
presented a systematic and rigorously evaluated framework for 
learning supervised ensembles from a large set of heterogeneous 
predictors (Whalen et al., 2015), such as those used in the above 
studies. Indeed, the application of this framework to GI predic-
tion using our previously prepared dataset (Pandey et al., 2010) 
boosted the performance (AUC score) from 0.734 to 0.812, thus 
establishing a new benchmark for GI prediction. These results 
indicate that paying close attention to machine learning aspects, 
such as the use of supervised heterogeneous ensemble methods, 
can lead to significant improvements in our ability to address 
difficult biomedical prediction problems.

Approaches Based on evolutionary 
Patterns and Phenotype Data
More recently, the rapid generation and annotation of biomedical 
data have motivated researchers to investigate novel features for 

FiGURe 1 | Overview of the most commonly used approach to predicting genetic interactions (Gis). Here, a generally large number and variety of features 
are extracted from diverse data sources, examples of both of which are shown in the top panel. The feature data are combined with known GI data from public 
databases like BioGRID, leading to a feature + label table/matrix. Some of the gene pairs in this table, whose GI status is known, are used as training examples, 
from which a GI prediction model is learnt using an appropriate algorithm. Finally, the model is applied to test gene pairs to make predictions of their GI status, which 
can be used for downstream evaluations and/or applications.
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TABLe 1 | examples of features derived from a variety of data sources that were found to be discriminative between Gi and non-Gi gene pairs in our 
previous work on Gi prediction (Pandey et al., 2010).

Category/data source Feature description KS statistic KS p value

Functional information Co-membership in the same KEGG pathway 0.4388 0
Similarity of two genes using their annotations to GO BP terms and semantic 
similarity between the terms (Tao et al., 2007)

0.2306 0

Number of functions shared by two genes [calculated here using the 138 most 
populated GO BP terms recommended by Myers et al. (2006)]

0.1861 0

Similarity of two genes using their annotations to GO CC terms and semantic 
similarity between the terms (Tao et al., 2007)

0.1826 0

Similarity of two genes using their annotations to GO MF terms and semantic 
similarity between the terms (Tao et al., 2007)

0.0763 0

Protein–protein interaction  
(PPI) network

Number of communities derived from PPI network that two proteins are 
co-members of

0.2257 0

Length of shortest path between two 0.14 0
Common neighborhood similarity [topological overlap (Zhang and Horvath, 
2005)] between two proteins

0.0991 0

Number of cliques in the PPI network (Zhu et al., 2008) two proteins are 
co-members of

0.0839 0

Co-membership in modules discovered from PPI network (Zhang and Horvath, 
2005)

0.0456 3.33E-15

Degree of vertex corresponding to an edge in the PPI network in its edge graph 
version (edge degree)

0.0444 2.08E-14

Betweenness of the edge between two proteins in the PPI network 0.0444 2.13E-14
Presence (1)/absence (0) of an interaction between two proteins 0.0443 2.20E-14

Gene expression data (pairwise 
correlation of expression profiles)

From Brem et al. (2002)’s data set 0.0904 0
From Spellman et al. (1998)’s data set 0.0594 0
From Mnaimneh et al. (2004)’s data set 0.0471 0
From Hughes et al. (2000)’s data set 0.0219 2.76E-04

Sequence similarity (pairwise 
BLAST comparison of protein 
sequences)

Length of alignment 0.0272 2.25E-06
E-value of alignment 0.0271 2.30E-06
Bit score of alignment 0.0271 2.38E-06
Percentage identity in alignment 0.0271 2.38E-06
Number of mismatches in alignment 0.0268 3.21E-06
Number of gaps included in alignment 0.0235 7.00E-05

Others Mutual information between the phylogenetic profiles of two proteins 0.0673 0
Number of mutant phenotypes shared by two genes 0.0268 3.41E-06

Also shown are the Kolmogorov–Smirnov test statistic scores and p-values indicating the relative discriminative power of these features.
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synthetic lethal GIs, of which 22 were novel and potentially valid. 
These studies indicate the utility of a detailed study of evolution-
ary patterns for discovering novel GIs, and this utility will only 
grow with the increase in rapid sequencing and characterization 
of genomes and their constituent genes, proteins, and other ele-
ments (Morozova and Marra, 2008).

Another data source that has emerged recently and has been 
utilized in innovative approaches for GI prediction is high-
throughput phenotyping (Houle et  al., 2010). Using data from 
various phenotype ontologies (Robinson and Webber, 2014); 
Hoehndorf et al. (2013) assigned genes to their functions (GO 
terms) if a mutation in that gene is marked as causing a phenotype 
related to a given GO term. They were then able to predict GIs 
using the semantic similarity (Pesquita et  al., 2009) between 
the GO annotations of genes. Thus, although GI prediction was 
only an indirect goal of this study, it laid down a path to utilize 
phenotype data, which are intimately connected to the definition 
of GIs. Calzone et al. (2015) formalized this relationship between 
phenotypes, loss or gain of function mutations, and GIs by sta-
tistically projecting the available data about these characteristics 

GI prediction. Lu et al. (2013) proposed an innovative approach 
of identifying synthetic lethal gene pairs based on evolutionary 
patterns. Using features derived from a phylogenetic tree, their 
approach identifies cases of “functionally asymmetrical” pairs of 
proteins A → B in a complex such that A’s function is dependent 
on B, but not vice versa. If they find pairs of the kind A → B and 
C → B in this search, but no such relationship between A and C, 
they hypothesize that A and C have a negative GI as A is probably 
compensating for C and vice versa. Due to its focus on pairs within 
individual protein complexes, this approach was able to achieve 
higher specificity but lower sensitivity in their predictions as 
compared to the broader feature-based studies like ours (Pandey 
et  al., 2010). In a related study, Li et  al. (2011) considered the 
relationship between protein domains and synthetic lethal GIs 
between their corresponding genes. By applying a maximum like-
lihood estimation approach to the currently available set of GIs 
in S. cerevisiae and the known domain structure of its proteins, 
they identified 3848 confident domain GIs among 1027 unique 
domains. Next, by matching these domains to the structures of 
S. cerevisiae proteins, they were able to confidently identify 133 
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onto established Boolean network models of specific biological 
processes like the MAPK pathway. After this projection, it is 
possible to infer novel GIs by identifying pairs of genes involved 
in these processes whose combined mutational phenotypes are 
significantly different from their individual mutational pheno-
types. To the best of our knowledge, this study represents the first 
instance of combining first principles-based regulatory networks 
with GI information to gain further knowledge about biological 
processes. We expect substantial progress in this direction as 
more -omics data are generated, and more accurate and finer 
granularity first principles-based models are developed using the 
rich biological knowledge extracted from them (Huang, 2004).

Approaches Based (Almost) exclusively  
on existing Gi Data
Finally, the availability of increasing amounts of experimental 
GI data, such as from SGA (Costanzo et al., 2010) and E-MAP 
(Collins et  al., 2010) technologies, has opened several novel 
GI prediction avenues based on data imputation and matrix 
completion techniques. Qi et al. (2008) presented the first such 
approach, where they defined a graph diffusion kernel based 
on the observation that paths of odd lengths are expected to 
connect genes in synthetic lethal interactions in the current GI 
network. Cross-validation experiments on a GI network obtained 
from BioGRID (Chatr-Aryamontri et  al., 2015) validated the 
predictive potential of this approach. Ryan et al. (2010) evaluated 
several data imputation techniques used for gene expression data 
(Liew et  al., 2011), such as (weighted) KNNImpute and Local 
Least Squares (LLSImpute), for the imputation of missing, i.e., 
currently undiscovered, GIs in the E-MAP dataset. This evalua-
tion showed that weighted KNNImpute and LLSImpute are the 
most effective for this task. Jarvinen et  al. (2008) attempted to 
improve on these results by using the more systematic matrix 
approximation method for data imputation, but evaluated it on a 
relatively small (26 × 26) GI matrix. Importantly, these methods 
do not take the network structure of GI datasets into account, 
a limitation that was addressed in other studies. For instance, 
Alanis-Lobato et  al. (2013) utilized several measures for the 
proximity of genes based on the common neighborhood structure 
of a GI network. These measures quantify the proximity between 
two genes/proteins using some variant of the number of common 
neighbors shared by them, and have been shown to be very useful 
for protein interaction network analysis (Pandey et al., 2014). The 
proximity matrix covering all the genes in the original network 
is then processed in a network-embedding framework (Boguna 
et al., 2009) to prioritize the most likely candidate GIs. Finally, 
Zitnik and Zupan (2015) recently developed a network guided-
matrix completion (NG-MC) approach, where prior information 
in the form of orthogonal networks, like protein interaction 
networks, is used to guide the imputation process. The essence of 
NG-MC lies in the transfer of “information” in the form of latent 
features between neighboring genes/protein in the orthogonal 
networks to the probability of a GI between the corresponding 
genes. Evaluation on four different E-MAP datasets showed 
that NG-MC significantly outperformed other data imputation 
methods due to its incorporation of the orthogonal networks and 
their structure as prior information.

In summary, the pressing need to develop computational pre-
diction methods for GIs and the growing availability of a variety 
of -omics datasets has led to the successful pursuit of a variety 
of innovative ideas and computational models. Using these rich 
data and the valuable biology learnt from them (Huang, 2004), we 
expect this field to grow substantially as progress is made in all 
these directions. With this progress, we also expect a rising ability 
to tackle the harder problem of discovering context-specific GIs, 
which we discuss in the next section.

DiSCOveRY OF CONTeXT-SPeCiFiC 
GeNeTiC iNTeRACTiONS

Genetic interactions are likely to vary significantly between 
different contexts. For instance, a context where a single amino 
acid is missing from growth media may induce fewer GIs than 
broadly acting perturbations such as heat-shock. Additionally, 
the relevant GIs will change whether one is examining a cell 
with a disease phenotype as opposed to a “normal” cell  –  this 
is especially the case in tumor cells. Thus, to truly understand 
the genetic landscape of an organism we must understand the 
context specificity of its GIs. In fact, a recent study in Drosophila 
showed that the majority of GIs might be context-dependent 
(Chari and Dworkin, 2013), but most of these contexts remain 
poorly studied.

As a result of this scarcity in our knowledge of context-depend-
ent GIs, the prediction of these interactions is more difficult than 
normal GI prediction. To predict GIs for a specific context, such 
as a disease, we need a thorough understanding of the pheno-
types, underlying biological networks, and genomic alterations 
representative of the disease  –  data that are often unavailable. 
Despite these challenges, a select number of computational 
methods have been successful in predicting context-specific GIs. 
By focusing on a specific disease, phenotype, or genes, models 
can be improved by incorporating mechanistic information and 
known interaction networks.

For instance, in the prototypical case of BRCA1 and PARP1, 
it is accepted that BRCA1 is involved in the repair of double-
stranded DNA breaks (Roy et al., 2012), while PARP1 is involved 
in the repair of single-strand DNA breaks (Okano et al., 2003). 
Knowing that DNA replication can convert single-strand breaks 
to double-strand breaks, it was hypothesized that PARP1 inhibi-
tion would cause the accumulation of double-strand breaks, and 
thus would be particularly lethal to BRCA-deficient cells (Bryant 
et  al., 2005; Farmer et  al., 2005). van Pel et  al. (2013) further 
exploited the genomic instability of cancer to locate relevant 
genetically interacting gene pairs. Since chromosome replica-
tion, maintenance, and segregation are conserved processes, they 
could be modeled in S. cerevisiae. Using experimentally validated 
interaction networks of genes involved in chromosomal instabil-
ity, they focused on two dominating common processes – DNA 
replication/repair and the mitotic machinery  –  and identified 
new hub genes that were involved in these processes. Looking for 
GIs between cancer gene orthologs and predicted “hub” genes in 
these pathways, they experimentally validated GIs between can-
cer genes and CTF4-related proteins. Deshpande et al. (2013) pre-
sented a similar comparative genomics approach for transferring 
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SL interactions from yeast to human, and experimentally verified 
the top predictions. Their results indicated that such interactions 
could offer therapeutic targets for cancers harboring mutations in 
SMARCB1 or ASPSCR1.

This knowledge-based approach has been more broadly 
applied to locate potential synthetic lethal pairs involved in 
cancer metabolism. Often, one form of an enzyme (an isozyme) 
is lost due to a large-scale deletion at a specific locus, but the cell is 
able to survive due to other isozymes of the lost enzyme acting to 
relieve the metabolic burden. Inhibiting the function of the other 
isozymes in these scenarios would lead to the complete ablation 
of that enzymatic process and thus would lead to cell death. This 
was demonstrated in glioblastoma when it was observed that 
inhibition of ENO2 was selectively toxic to ENO1 deficient glio-
blastoma cells (Muller et al., 2012). Due to the a priori knowledge 
of ENO1’s metabolic function, the authors of this study were able 
to prune their search of potential SL partners to isozymes catalyz-
ing the same metabolic step. This approach was later expanded by 
Aksoy et al. (2014) to use TCGA (Cancer Genome Atlas Research 
et al., 2013) genotyping data along with curated metabolic path-
ways to predict SL isozyme partners across all metabolic genes 
and across all cancer types. They identified over 4104 candidate 
metabolic vulnerabilities present in 1019 tumor samples and 482 
cell lines and found that up to 44% of these vulnerabilities could 
be targeted by at least one FDA approved drug, further emphasiz-
ing the therapeutic potential for such methods.

Other cancer-specific SL detection approaches rely on a priori 
hypotheses about the effect of SL interaction on cancer-related 
processes, which have been recently characterized by extensive 
genomic data (Zhang et al., 2011; Cancer Genome Atlas Research 
et  al., 2013). The DAISY approach (Jerby-Arnon et  al., 2014) 
uses three distinct inferences to detect novel SL pairs in cancer 
genome data:

• SL genes will have significantly lower rates of co-mutation or 
co-loss than non-SL gene pairs.

• The SL partners of gene A can be detected by searching for 
other genes whose under expression or loss induces the 
essentiality of A in shRNA screens.

• SL genes are involved in similar pathways and thus will be 
coexpressed.

The respective inverses of these inference theories were applied 
to also detect Synthetic Dosage Lethal (SDL) pairs. DAISY was 
tested against known cancer SL and SDL pairs, achieving an AUC 
value of 0.779, was used to predict and validate novel SL partners 
of the VHL tumor suppressor gene, and was then used to create 
genome-wide cancer-specific SL (2816 interactions covering 2077 
genes) and SDL (3635 interactions covering 3158 genes) networks. 
Additionally, using TCGA data from specific cancer types, Jerby-
Arnon et al. (2014) used DAISY to create cancer-specific SL and 
SDL networks populated with SL and SDL interactions that they 
predict to be specific for a given cancer type. Their results further 
show how much methods and networks can be used in the preci-
sion medicine setting for determining successful drug treatments 
or prognosis. Lu et al. (2015) used a similar hypothesis – when 
one member of an SL partner is lost, the other tends not to be 
lost – to examine cancer genome and gene expression patterns to 

predict genetically interacting gene pairs. Their model achieved 
an AUC of 0.75 when tested against empirically measured cancer 
GIs and created a genome-wide list of SL interactions covering 
up to 591,000 gene pairs. Though they pooled data from a variety 
of different cancer types, such an approach could be adapted to 
use genome evolution data from a specific cancer or disease type 
to predict context-specific SL pairs. Thus, in a manner similar to 
the analysis/prediction of other interactions networks (Huang, 
2004), approaches such as these reveal how the consideration of 
network or mechanistic information can allow for the prediction 
of specific GIs that might be overlooked by more general methods.

evALUATiON OF Gi PReDiCTiONS

The evaluation of predictions made by the approaches discussed 
in this article, i.e., how many of them are (in)correct, is perhaps 
the most complicated aspect of GI prediction. Since this aspect 
has not been studied systematically for this problem, we discuss 
below its critical components as analyzed in the prediction of 
other interactions/networks, such as PPI (Skrabanek et al., 2008), 
genetic regulatory networks (De Smet and Marchal, 2010), and 
drug–target interaction networks (Kuhn et  al., 2008). We will 
emphasize the critical basics of these components as they apply 
to GI prediction. For in-depth details of these basics, we refer the 
reader to other excellent reviews (Schrynemackers et al., 2013) 
and data mining texts (Tan et al., 2005).

Benchmark Datasets Representing 
“Ground Truth”
The first requirement for evaluating any kind of prediction (GIs 
in our case) is a collection of examples with true labels (here, 
whether it represents a GI or not). The predictions made for the 
examples in this collection, commonly known as a benchmark 
dataset, can be matched against their true labels to assess the 
predictive ability of the algorithm being evaluated. However, 
since no such sizeable benchmarks have been curated for GIs, 
the studies discussed above have curated their own datasets to 
evaluate their algorithms. Although several studies have made 
their best efforts to evaluate and compare performance across 
multiple datasets, these results still may not be comprehensive 
due to incompleteness and biases within these datasets. Thus, 
representative benchmark datasets, such as those that have been 
created (simulated) for genetic regulatory networks (Cantone 
et al., 2009; Pinna et al., 2011; Schaffter et al., 2011), are a press-
ing necessity for the field of GI prediction. We are confident that 
as more large-scale GI datasets, such as Costanzo et al. (2010)’s, 
are generated and the need for (standardizing) GI prediction is 
established, such benchmarks will become more readily available.

Another exciting opportunity for benchmarking has been 
offered by the rapid growth of crowdsourcing-based efforts, 
such as DREAM challenges (Stolovitzky et  al., 2007; Jarchum 
and Jones, 2015), to solve biomedical problems such as network 
inference (Marbach et al., 2012; Meyer et al., 2014) and protein 
function prediction (Pena-Castillo et al., 2008; Radivojac et al., 
2013). Here, appropriate datasets pertinent to the target problem 
are released to the community, with an aim to develop effective 
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TABLe 2 | visual depiction of the k-fold cross-validation approach, where 
k = n (leave one out) cross-validation (LOOCv) procedure applied to a 
data set with n examples.

Cv round Training examples Test example

1 2, 3, 4, 5, 6, …, n 1

2 1, 3, 4, 5, 6, …, n 2

3 1, 2, 4, 5, 6, …, n 3

. . .

. . .

. . .

n 1, 2, 3, 4, 5, …, n − 1 n

In each round, one of the examples is reserved for testing the predictive model learnt 
over the remaining training examples. Other forms of k-fold CV (k < n) also operate 
similarly, with the difference that the training and test example splits are generated 
randomly from the original data set.
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solutions by leveraging the “wisdom of crowds.” Most importantly, 
the evaluation of the solutions submitted to these challenges is 
carried out in a comprehensive completely transparent manner 
on an independent test set. Thus, for GI prediction, such chal-
lenges can offer a reliable evaluation mechanism. Again, with the 
generation of large-scale GI datasets, we are ever closer to the 
organization of such challenges.

evaluation Methodology
Despite the benefits, an independent dataset is often not available 
for evaluation in biomedical settings. In such settings, simulating 
a test set from the available training set itself is the best option 
for reliable evaluation, and cross-validation (Schrynemackers 
et al., 2013) (CV) is the most commonly used methodology for 
performing this simulation. In k-fold CV, the training dataset is 
randomly split into k equally sized subsets, referred to as folds. In 
each CV round (split), k − 1 of these subsets are used for training, 
and the resultant model is applied to generate predictions for the 
remaining subset. Table 2 enumerates this process for k = n, the 
number of examples in the training set [known as leave-one-out 
cross-validation (LOOCV)]. Repeating this process over all k 
folds generates predictions for the whole training set, which can 
then be matched against the true labels of the examples to quan-
tify the performance of the algorithm being evaluated. For GI 
prediction, the predominantly assumed form of examples used 
for training or prediction here is gene pairs.

While standard CV has often been effectively used in GI predic-
tion, some serious problems arise due to the nature of GIs and the 
structure of the networks (Barabasi and Oltvai, 2004). Most nota-
bly, biological networks follow a skewed degree distribution, with 
very few of the nodes (hubs) having much higher degrees (more 
connections) than a vast majority of the nodes. Schrynemackers 
et al. (2013) showed that it is possible in such a network to obtain 
better than random interaction prediction by simply connecting 
any node in the test split with the more connected nodes in the 
training split. This result, which does not even involve the node 
or interaction features, emphasizes the importance of taking the 
network structure into account for evaluation, and presented this 
result as a baseline for every dataset and algorithm. Petri et al. 
(2015) studied this problem in the context of genetic regulatory 

networks, and proposed a randomized permutation-based evalu-
ation measure to help standardize evaluation results.

Park and Marcotte (2012) investigated a different but related 
complexity that arises due to the (partial) mismatch between 
training and test splits when using CV for evaluating PPI predic-
tions. As detailed by Figure 1 in their article, the following three 
categories of examples arise in a training-test split in CV:

• C1: both proteins in the test pair are covered in the training 
set.

• C2: one of the proteins in the test pair is covered in the 
training set.

• C3: none of the proteins in the test pair are covered in the 
training set.

Now, by evaluating seven representative algorithms in a CV 
setting on a standard PPI dataset, the author showed that the 
performance of these algorithms was significantly different for 
these categories. As would be intuitively expected, the perfor-
mance over C1 examples was vastly better than over C2 and C3 
ones, with the latter being the hardest to predict accurately. The 
overall performance is dominated by C1, which provides an inac-
curate estimate of how the prediction algorithm will perform for 
examples not covered well by the training set. This is an important 
concern for GI prediction, as the known GIs for most organisms 
and conditions/contexts form a small set of the possible interac-
tions, thus making the ability to predict such “unseen” examples 
accurately critical. Hamp and Rost (2015) highlighted a further 
complexity of this issue by demonstrating that the disparity of 
performance persists if the definition of “overlap” for determining 
C1–C3 is based on (sequence) “similarity” of proteins instead of 
an exact match. These results highlight the importance of report-
ing results individually for these categories in addition to the 
overall performance.

In summary, issues, such as the effect of skewed degree distri-
bution and varying overlaps between training and test examples, 
should be carefully considered when evaluating GI prediction 
results, especially in a cross-validation setting.

evaluation Measures
The final component of the evaluation task is the identification 
of appropriate evaluation measures or metrics that can quantify 
how correct are the test set predictions made by an algorithm. 
Accuracy, the most straightforward measure, can be defined 
simply as the ratio of the number of correct predictions to the size 
of the test set (original set in the case of CV). However, this meas-
ure is misleading in cases like GI prediction, where the positive 
examples (true GIs) are a very small minority of the full dataset. 
As a result, a naïve algorithm that predicts every example as 
negative can achieve a very high accuracy, an obviously unreliable 
result. Measures like the ROC curve and the area under it (AUC 
or AUROC score) (Fawcett, 2006), as well as the precision-recall-
F-measure trio and the associated area under the precision-recall 
curve (AUPRC score) (Davis and Goadrich, 2006) are much more 
reliable in such scenarios, and thus are more commonly used in 
GI and other interaction prediction tasks. Both these measures 
allow the examination of the relationship between correct and 
incorrect predictions, measured as the true and false positive rates 
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in the ROC curve and precision and recall in the P–R curve, over a 
range of thresholds that can be applied to the scores/probabilities 
output by a prediction algorithm. However, precision and recall, 
and hence, F-measure, are calculated for the negative and positive 
classes individually, while the ROC curve and its AUC score are 
the same regardless of which of the classes is named positive and 
which negative. Due to this, the precision-recall-F-measure trio 
and the precision-recall curve are more suited for evaluating the 
prediction ability of the generally significantly smaller positive 
class of GIs, as compared to non-GIs. This class-specific charac-
teristic also enables easy assessment over multiple classes, such as 
positive, negative and non-GIs.

In summary, reliable assessment of a GI prediction algorithm 
can be done effectively by make appropriate choices of the bench-
mark dataset(s), evaluation methodology and evaluation metrics. 
However, we would like to point out some GI-specific aspects of 
evaluation that should also be considered:

Multi-Class Nature of Gis
Genetic interactions, by their definition, can be both positive 
and negative. Thus, ideal GI prediction systems should be able 
to predict both these classes of GIs, in addition to identifying 
which gene pairs represent non-GIs. Most of the GI prediction 
approaches so far have been restricted to predicting only syn-
thetic (sick and) lethal [S(S)L] GIs, primarily due to the lack of 
sufficient data on other types of GIs. Now, with the generation of 
large datasets, we expect that more comprehensive GI prediction 
algorithms will be developed, and they will be robustly evaluated 
using class-specific measures such as precision recall F- measure.

Network-Based and Orthogonal 
evaluation
We discussed earlier that GI networks, such as other biomedical 
networks, have well-defined structural properties (Barabasi and 
Oltvai, 2004). One such biologically important property is modu-
larity (Kaltenbach and Stelling, 2012). This property indicates 
that nodes and interactions in these networks are organized into 
functionally coherent modules, which interact through linker 
biomolecules to collectively perform higher cellular functions. 
Thus, in addition to evaluating individual interaction predictions, 
one should also consider evaluating the modularity of the network 
resulting from the predicted GIs (Costanzo et al., 2010; Bellay et al., 
2011) and how it compares with the training/original GI network. 
This evaluation can also be strengthened by assessing the functional 
enrichment of the modules in terms of functional annotations like 
those provided by Gene Ontology and canonical pathways (Huang 
da et al., 2009), and comparing with the enrichment of the original/
training network. Note that in such enrichment comparisons, it is 
not only necessary to assess if one is better than the other but also 
if the predictions uncover reliable biomedical knowledge. This is 
one of the end goals of effective GI prediction.

Need for More Rigorous evaluation 
Methodologies
Some complications when using standard methodologies like 
cross-validation (CV) for GI prediction evaluation were discussed 

above. Now, with the generation of larger GI datasets, and the 
rapid development and application of more sophisticated predic-
tion methodologies, like ensemble learning (Yang et  al., 2010) 
and deep learning (LeCun et al., 2015), new complications might 
arise. One of these is the possibility of data leakage and overfitting 
(Tarca et al., 2007; Kaufman et al., 2011) between training and test 
splits, during which the selection/evaluation of the most predic-
tive model might be biased due to an inappropriate consideration 
of the test set labels. This problem usually arises due to multiple 
rounds of learning from the given training set/split, such as the 
selection of the most predictive features, and subsequent learning 
of a predictive model based on those features. Indeed this prob-
lem has been witnessed in early work on identifying predictive 
biomarkers of disease from (generally small) gene expression 
datasets (Ambroise and McLachlan, 2002; Saeys et al., 2007). One 
of the ways to address this problem is to separate the training set 
into many parts, one each for each operation that involves the use 
of the training labels. This can be further systematized by using a 
nested cross-validation procedure to make more comprehensive 
use of the training set. This approach was used in our previous 
work on GI prediction with much success (Whalen et al., 2015).

To conclude, the rigorous evaluation of GI prediction algo-
rithms is a critical but complicated task. However, we believe that 
this task can be reliably accomplished based on the findings and 
guidelines laid out in this section.

DiSCUSSiON

Our understanding of the network of GIs is likely in its infancy, 
especially in complex, multi-cellular organisms. However, as has 
been witnessed for other types of interactions (Huang, 2004), we 
are at the cusp of inferring useful and actionable biology from the 
existing and soon-to-come GI networks. A subset of these inter-
actions, synthetic lethal interactions, is poised to provide a rich 
source of therapeutically exploitable vulnerabilities for precision 
medicine. Since it is unlikely that the space of possible interac-
tions, especially context-dependent ones, can ever be explored 
systematically using experimental approaches, there is a great 
need for computational methods that predict GIs. In the future, 
we expect that machine learning approaches trained on gold 
standard GIs sets will be combined with patient-acquired data, 
e.g., RNA-seq and whole-exome/genome, to predict candidate 
interactions. These interactions may then be tested using induced 
pluripotent stem cells (iPSC), organoids or patient-derived xeno-
grafts (PDX). In this regard, it will be important to perform more 
systematic exploration of GIs in selected contexts to create gold 
standards for computational methods to be trained. The increas-
ing applicability of CRISPR technology may make synthetic 
lethality screening broadly possible, using not just a single guide 
but combinations of two or more RNA guides. Extending these 
methods to more than pairs of genes (triplets etc.) represents a 
major computational and statistical challenge and will likely 
require even more sophisticated computational methodologies.
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