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In this study, we developed and evaluated a novel text-mining approach, using 
non-negative tensor factorization (NTF), to simultaneously extract and functionally 
annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), 
and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was 
constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts 
shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors 
using non-negative tensor factorization (NTF) across 16 different approximation ranks. 
Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF 
annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to 
be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs 
are functionally relevant. One advantage of this method is that it can discover potentially 
new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq 
datasets as gold standard, we show that the precision of our method for predicting 
gene–TF associations is significantly higher than chance. In addition, we demonstrate 
that the terms in each ATM can be used to suggest new GO classifications to genes and 
TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction 
and functional annotation of transcriptional regulatory networks from unstructured text, 
as well as for literature based discovery. A web tool called Transcriptional Regulatory 
Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/
tremel, was built to enable browsing and searching of ATMs.

Keywords: biomedical text mining, tensor factorization, tensor decomposition, multiway analysis, applied 
multilinear algebra, transcription factors

1. inTrODUcTiOn

The complexity of organisms is correlated with the number of mechanisms by which gene expres-
sion is regulated in response to environmental and developmental signals (Levine and Tjian, 2003; 
Chen and Rajewsky, 2007; Davidson, 2010). Transcriptional regulation involves complex gene 
regulatory networks (GRNs), consisting of structural proteins involved in chromatin remodeling 
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and transcription factors that regulate the core transcriptional 
machinery (Djebali et al., 2012). An active area of research is 
focused on integration of various high-throughput “omic” data 
in order to understand how genes are functionally regulated 
and involved in physiological and pathological processes 
(Gerstein et al., 2012). However, aggregation and annotation of 
gene regulatory networks (GRNs) from various sources remain 
challenging. Some GRN annotation is available in repositories 
such as KEGG (Kanehisa et al., 2004) and GO (Ashburner et al., 
2000). However, these knowledge bases are incomplete and too 
general to provide specific insights into GRNs. More recent 
efforts have focused on manually integrating GRN informa-
tion from various data sources (Liu et al., 2015). In addition, 
methods to automatically annotate GRNs based on semantic 
relationships in the biomedical literature are beginning to be 
developed (Chen et al., 2014). Currently, there are more than 
23 million citations in MEDLINE, many of which describe 
relationships between gene products and molecular and cel-
lular processes. There is, therefore, a growing need to develop 
automated text-mining techniques to utilize knowledge in the 
biomedical literature to interpret genome-wide experimental 
data as well as to aid in the manual curation processes (Rebholz-
Schuhmann et al., 2012).

In addition to knowledge extraction, literature mining 
methods provide a valuable resource for knowledge discovery 
based on implicit associations in the literature. The concept of 
literature-based discovery (LBD) was introduced by Swanson 
several decades ago and is increasingly being discussed in the 
scientific community (Swanson, 1986; Blagosklonny and Pardee, 
2002; Soldatova and Rzhetsky, 2011). Several co-occurrence 
based-LBD approaches, such as CoPub Mapper (Alako et  al., 
2005), PubGene (Jenssen et  al., 2001), Chilibot (Chen and 
Sharp, 2004), and GeneWays (Rzhetsky et al., 2004), have been 
developed. Other approaches have focused on capturing higher 
order implicit associations, i.e., associations between any pair of 
entities that do not directly share any abstracts but may share 
abstracts with other common entities (Burkart et  al., 2007).  
A few approaches have focused on mining TF specific regulatory 
associations from the literature. Dragon TF association miner 
(Pan et al., 2004) is a web-based tool that accepts as input a set of 
abstracts, and identifies and extracts TF associations with Gene 
Ontology terms found within the text. Natural language process-
ing (NLP) techniques have been used to identify sentences per-
taining to transcriptional regulation and to extract relationships 
from PubMed abstracts for reconstructing regulatory networks 
(Chen and Sharp, 2004; Šarić et  al., 2006; Rodríguez-Penagos 
et al., 2007; Chen et al., 2014). Vector space models have been 
investigated in annotation of regulatory networks by prioritiz-
ing MEDLINE abstracts likely to have high cis-regulatory 
content (Aerts et al., 2008). A bootstrapping method has been 
used to identify gene targets for input TFs (Wang et al., 2011). 
Additional efforts have concentrated on novel TF discovery by 
analyzing protein mentions and related contextual information 
in literature to determine whether a given protein might be a TF 
(Yang et al., 2009).

Matrix factorization based dimensionality reduction 
techniques such as singular value decomposition (SVD) and 

non-negative matrix factorization (NMF) have been used 
to extract latent functional relationships between genes and 
terms from the biomedical literature. We previously demon-
strated that SVD can extract both explicit (direct) and implicit 
(indirect) relationships between genes, from the biomedical 
literature with better accuracy than term co-occurrence 
methods (Homayouni et  al., 2005). Subsequently, we applied 
this approach to prioritize putative TFs for microarray-derived 
differentially expressed gene sets (Roy et  al., 2011) and to 
prioritize, cluster, and functionally annotate microRNAs (Roy 
et  al., 2016). The main drawback of SVD is that while it is 
robust in identifying similarities between entities, it is difficult 
to determine exactly why they are related. This is due to the fact 
that the columns of factor matrices can contain negative values, 
needed to accomplish the best fit numerically in a lower dimen-
sional subspace, which do not have a natural interpretation.  
As an alternative, non-negative matrix factorization (NMF) 
was developed to simplify the interpretation of factors by 
restricting the entries in factor matrices to have non-negative 
values (Lee and Seung, 1999; Berry et al., 2007). The columns 
can be interpreted as parts of the original data and the high 
magnitude entities in the like-numbered column pairs of the 
two factor matrices can be interpreted as a bicluster. NMF has 
been used successfully to simultaneously cluster genes along 
with their related terms (Chagoyen et al., 2006; Heinrich et al., 
2008; Tjioe et al., 2010).

Both NMF and SVD can only be applied to two mode data. 
However, biological networks may contain more than two 
types of entities whose interactions must be analyzed simul-
taneously. Tensor factorizations are multiway generalizations 
of matrix factorizations (De Lathauwer et  al., 2000; Kolda 
and Bader, 2009; Qiao et  al., 2017). They have been used in 
the bioinformatics domain (Luo et al., 2017) to integrate and 
analyze gene expression data from different sources simultane-
ously (Omberg et al., 2007; Du et al., 2009; Li and Ngom, 2010; 
Li et al., 2011; Acar et al., 2012). In the text mining domain, 
multiway decompositions have been used for clustering chat-
room data (Acar et al., 2005), scenario discovery (Bader et al., 
2008b), discussion tracking (Bader et al., 2008a), personalized 
web search (Sun et  al., 2005), and web link analysis (Kolda 
et al., 2005).

Previously, we presented a proof of concept method to 
simultaneously extract and functionally annotate putative 
transcriptional modules for a small set of interferon modulated 
genes (Roy et al., 2014). In this study, we aimed to simultane-
ously extract genes and their regulatory TFs along with the 
terms that functionally characterize their relationships on a 
genome-wide scale. We formulated a 3-mode term × gene × TF 
tensor containing log-scaled frequencies of terms in abstracts 
shared between genes and TFs. The tensor was decomposed 
using non-negative tensor factorization (NTF) into sub-tensors 
at different low rank approximations. The sub-tensors were 
interpreted as annotated transcriptional modules (ATMs) 
consisting of genes and TFs along with the terms that annotate 
the functional relationship between them. We assessed the 
validity of the ATMs using GO and KEGG annotations and the 
performance of the NTF method in literature-based discovery 
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using a set of microarray and ChIP-Seq datasets. We demon-
strate that the method can predict downstream target genes for 
TFs as well as GO classifications based on the knowledge in 
biomedical literature.

2. MaTerials anD MeThODs

2.1. gene–TF Document collection
For every mouse gene, PubMed citations were obtained from 
the gene2pubmed repository available at NCBI. These cita-
tions are assigned either by professional staff at the National 
Library of Medicine or by the scientific research community via 
Gene Reference into Function (Gene RIF) portal. Since these  
citations are manually curated, we expect to have a very high 
precision for tagging correct citations to genes. We further fil-
tered the non-specific citations by removing PMIDs that referred 
to more than 10 genes as these citations usually described 
high-throughput experiments mentioning a large number 
of genes with little to no significant functional information. 
After filtering, 21,022 mouse genes with at least one assigned 
citation remained in the collection. Among these, 1,111 genes 
were identified as TFs in the AnimalTFDB transcription factor 
database (Zhang et al., 2012). Out of the remaining 19,911 non 
TF genes, 7,695 genes were found to share at least one citation 
with at least one TF out of 994 TFs. A total of 45,229 gene–TF 
pairs with at least one shared citation were identified. For each 
such gene–TF pair, an abstract document was constructed by 
concatenation of titles and abstracts for each shared citation. 
A total of 26,781 unique citations were utilized in creating the 
abstract documents.

2.2. construction of Term × gene × TF 
Tensor
Text to Matrix Generator parser (Zeimpekis and Gallopoulos, 
2006) was used to parse terms from the collection of gene–TF 
documents. All punctuation (excluding hyphens and under-
scores) and capitalization were ignored. In addition, articles and 
other common, non-distinguishing words were discarded using 
a stop list. Terms less than three characters in length were filtered 
out. A total of 106,895 terms remained after all the filtering.  
A 3-mode term ×  gene × TF sparse tensor was created where 
the entries of the tensor were frequencies of terms in abstracts 
shared between genes and TFs. Tensor construction from 
gene–TF documents is depicted in Figure S1 in Supplementary 
Material using a toy example with a small number of genes, 
TFs, and terms. The sparse tensor had 5,451,735 non-zero ele-
ments out of possible 817,621,682,850 (106,895 × 7,695 × 994)  
elements resulting in density of 6.66779 × 10−06. In order to dis-
count the effect of high frequency common terms in favor of more 
specific terms that might be better delineators between gene– 
TF combinations, each tensor entry fijk was scaled and trans-
formed into lijk:

 l fijk ijk= ( + )log 1 ,2  (1)

where fijk is the frequency of the ith term in the document cor-
responding to the jth gene and the kth TF.

2.3. calculation of non-negative Tensor 
Factorization
Given a 3-mode data tensor X of size m × n × p, with m mode-1 
entities (terms), n mode-2 entities (genes), and p mode-3 enti-
ties (TFs), and a desired approximation rank k, the PARAFAC 
(Harshman, 1970) or CANDECOMP (Carroll and Chang, 
1970) model approximates X as a sum of k rank-1 sub-tensors, 
each formed by the scaled outer product of a set of three vectors 
of lengths m, n, and p. The set of k vectors for each mode are 
usually grouped together in factor matrices A, B, and C of sizes 
m × k, n × k, and p × k, respectively. The columns of the factor 
matrices are normalized to unit length and the accumulated 
weight stored in a scaling vector λ. In addition, a constraint is 
imposed on the solution such that λ1 ≥ λ2 ≥ … ≥ λk. The tensor 
is expressed as:

 
X a b c

i

k

i i i i= (  )
=1

 ,∑ λ  

 
(2)

where ai, bi, and ci represent the ith columns of the factor matrices 
A, B, and C, respectively; and ◦ denotes the outer product.

A common approach to fitting the PARAFAC model to 
data is an alternating least squares (ALS) algorithm (Tomasi 
and Bro, 2006), where one cycles over all factor matrices and 
performs a least-squares update for one factor matrix while 
holding all the others constant. We implemented a variant of 
the PARAFAC model called non-negative tensor factorization 
(NTF) that constrains the factor matrices to be non-negative. 
The goal of NTF is to find the best fitting non-negative matrices 
A m k∈ +

×
 , B n k∈ +

×   , and C p k∈ +
×

  in the PARAFAC model that 
fit the data in X, corresponding to the following minimization 
problem:

 
min
A B C i

k

i i i Fa b c
, ,

=

− ∑� � � �X
1  

(3)

where F is the Frobenius norm. The norm of a tensor is similar 
to that of a matrix:

 
 X x

i j k
ijk

2 2≡
, ,
∑ ( ) .

 
(4)

A tensor can be matricized or flattened by rearranging the 
elements in a matrix. X(m  ×  np) represents 1-mode matricization  
of X, which is a matrix of size m × np where the index n runs  
the fastest over the columns and p the slowest. The matricized 
tensor can be expressed as:

 X A Cm np× ≈ ( ) ,B ′  (5)

where  represents the Khatri–Rao product (Smilde et al., 2004) 
and ′ denotes the matrix transpose operator. The Kronecker 
product of matrices A and B is given by:

 

A B

a B a B a B
a B a B a B

a B a B a B

n

n

m m mn

⊗ =


















11 12 1

21 22 2

1 2

…
…

…
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(6)
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FigUre 1 | Overview of the NTF-based procedure. Gene–TF documents (a) are parsed to construct term × gene × TF tensor (B). The tensor is factorized via NTF 
to generate non-negative factor matrices for terms, genes, and TFs (c). For a given approximation rank k, the entities corresponding to the high magnitude entries 
in each triad of columns (one from each matrix) (D) can be interpreted as an annotated transcriptional module (ATM) comprising of genes and TFs functionally 
annotated by the corresponding terms (e).
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and the Khatri–Rao product is defined as column wise Kronecker 
product:

 

A B

a b a b a b
a b a b a b

a b a b a b

n n

n n

m m mn n

�
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=





11 1 12 2 1

21 1 22 2 2

1 1 2 2

…
…

…

























.

 

(7)

The 2-mode and 3-mode matricizations can be similarly 
expressed as:

 X B C An mp× ≈ ′( )  (8)

 X C B Ap mn× ≈ ′( ) .  (9)

To compute a k-factorization with NTF, we first initialized 
A, B, and C using the absolute values of k leading left singular 
vectors of the 1-mode, 2-mode, and 3-mode matricizations, 
respectively. This initialization was performed to make the 
subsequent NTF computation deterministic as well as to provide 
a potentially suboptimal starting point that may require less 
iterations to converge (Boutsidis and Gallopoulos, 2008). Each of 
the 3 matrices was treated as a non-negative matrix factorization 
(NMF) sub-problem:

 
min ( )( )

A

m np
F

m k
X A C B

∈

×

+
×

− ′
�
� � �

 
(10)

 
min ( )( )

B

n mp
F

n k
X B C A

∈

×

+
×

− ′
�
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(11)

 
min ( )( )

C

p mn
F

p k
X C B A

∈

×

+
×

− ′
�
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(12)

and solved in succession using the multiplicative update rule 
(Welling and Weber, 2001) modified to incorporate ∈ for stability. 
For example, to solve for A the update rule is:

 
A A X Z

AZ Z
Z C Bi i

m np
i

i
ρ ρ

ρ

ρ ∈
←

( )
( )

( ).
( )×

′ +
, = 

 
(13)

The ∈ is a small number 10−9 added to the denominator 
in order to add stability to the calculation and guard against 
introducing a negative number from numerical underflow.  
The approximation rank k > 0 of NTF corresponds to the number 
of 3-way associations (sub-tensors) whose additive contributions 
approximate the information in the data tensor. Each triad  
{ai, bi, ci}, for i = 1, …, k, defines scores for a set of terms, genes, 
and TFs for a particular 3-way association in the corpus. The 
scaling factor λi (after normalization) indicates the weight of the 
association for triad i. NTF was applied to the term × gene × TF log 
weighted frequency tensor using functions from MATAB tensor 
toolbox (Bader and Kolda, 2012). The procedure is described 
graphically in Figure 1.
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2.4. interpretation of sub-Tensors as 
annotated Transcriptional Modules (aTMs)
A k-factorization delivers k sub-tensors. A sub-tensor i can be 
reconstructed via the outer products of the ith columns of the 
three non-negative factor matrices corresponding to terms, 
genes and TFs, respectively. For each such triad, the entities 
corresponding to the high magnitude scores in each column 
contribute more to the information content in the sub-tensor 
than the low magnitude ones and are, therefore, deemed more 
significant. We construed the triplet of sets of such significant 
genes, TFs, and terms as an annotated transcriptional module 
(ATM). Each ATM contained genes and TFs representing domi-
nant elements of a putative transcriptional network, along with 
terms describing the functional interaction between these genes 
and TFs.

In order for the ATMs to be consistent with observed bio-
logical networks in terms of the number of entities, we estab-
lished upper bounds for the number of genes, TFs, and terms 
in the ATMs. We observed the distribution of numbers of genes 
and TFs in 249 KEGG pathways and found a maximum of 184 
genes and 21 TFs in a single pathway (after excluding the outli-
ers). For the terms, we chose the upper bound of 300 as this is 
usually the maximum number of words allowed for publication 
abstracts and may be adequate to describe a transcriptional 
network.

For a given column and an upper bound n, we first obtained 
a truncated list D containing n highest scoring entities. We then 
calculated the number of significant (high magnitude) entities 
required to approximate the information content in the list as 
described in Alter et  al. (2000). Briefly, contributions of each 
score gi were computed as pi

g
S

i= , where S g
j

n
j=

=1∑  (sum of all 
scores). Subsequently, we calculated the normalized entropy of 
the list as:

 
E

p log p

log n
i

n
i i

=
− ( )

( )
=1 ,

∑
 

(14)

which is the fraction of information content in the list relative 
to a completely random list of the same size. The number of 
significant entities s was calculated as:

 
s max p

n E
i= >

⋅
1 1
,









.

 
(15)

2.5. Performance evaluation of aTMs
Functional enrichment analysis was performed using two dif-
ferent human curated datasets. For the first set, we downloaded 
the list of 249 mouse related manually curated pathways and 
their associated genes present in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa et  al., 2004). For the 
second set, we downloaded the list of 12,418 mouse related 
Gene Ontology (GO) (Ashburner et  al., 2000) categories and 
their associated genes. The set of genes and TFs belonging 
to each ATM was evaluated for functional enrichment in the 
aforementioned KEGG pathways and GO categories using a 
hypergeometric test as described in Tavazoie et  al. (1999). As 

a control, we compared the enrichment frequencies of ATMs 
to a set of 1,000 randomly generated gene–TF sets containing 
8 genes and 2 TFs from the tensor. The numbers 8 and 2 depict 
the median number of genes and TFs across all 2,861 ATMs. 
To create each random gene–TF set, 8 genes out of 7,695 genes 
constituting the tensor were randomly picked. Similarly 2 TFs 
were randomly picked from 994 TFs in the tensor. This process 
was repeated 1,000 times.

The area under the curve (AUC) was used as a measure of 
quality of the terms associated with ATMs. The AUC will have 
the value of 1 for perfect ranking (all relevant terms at the top), 
0.5 for randomly generated ranking, and 0 for the worst pos-
sible ranking (all relevant terms at the bottom) (Hanley and 
McNeal, 1982). The terms in the descriptions of KEGG and GO 
categories served as the gold standards.

Precision was used as a measure of accuracy of the gene–TF 
associations in an ATM. It was calculated as the ratio of the 
number of common entities (genes and TFs) between an ATM 
and the gold standard set, to the number of entities in the  
ATM. Mathematically, the formula was defined as:

 

|{ }∩{ }|
|{

genes and TFs in ATM genes and TFs in gold standard set
genes aand TFs in ATM}|

.
 

(16)

In addition, a set of ATM precision values was tested for 
significance by computing a right-tailed two-sample Welch’s 
t-test (Press, 1992) between the precisions for the ATMs being 
evaluated, and the precisions for 200  ×  n randomly gener-
ated gene–TF sets from the tensor. For each of n ATMs being 
evaluated, 200 gene–TF sets were randomly generated containing  
the same distribution of genes and TFs as the ATM.

Redundancy between any two sets of entities of the ATMs 
was computed as the Jaccard coefficient between the sets, which 
is defined as the ratio of the number of elements in the inter-
section and the number of elements in the union. The Jaccard 
coefficient will have a value of 0 for disjoint sets and a value of 
1 for duplicate sets.

3. resUlTs

Unlike other matrix factorization approaches, it is computa-
tionally difficult to estimate the true rank of a tensor (Håstad, 
1990). Therefore, we computed NTF at 16 approximation ranks 
k  =  1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 100, 200, 300, 500, 700, 
and 900. For every k, NTF required less than 60 iterations to 
satisfy a tolerance of 10−4 in the relative change of fit. For a 
given approximation rank k, all genes, TFs, and terms in each 
of the k sub-tensors were ranked based on their scores as dem-
onstrated in Figure 1. We then used an entropy based method 
to determine the score threshold and to define relevant genes, 
TFs, and terms within an annotated transcriptional module 
(ATM) as described in Materials and Methods. Figure S2 in 
Supplementary Material shows the frequency distribution of 
genes, TFs, and terms computed for each of the 2,861 ATMs 
produced across all ks. The median number of TFs (~2) and 
terms (~60) was stable across all k factorizations. In contrast, 
the median number of genes in ATMs decreased with increasing 
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k. A total of 3,608 unique genes, 772 unique TFs, and 11,697 
unique terms occurred across all 2,861 ATMs.

3.1. Tensor landscape as a Function  
of approximation rank k
A k-factorization expresses the three-way gene regulatory inter-
action information in the tensor as additive superposition of 
latent information content in k sub-tensors. An approximation 
with k = 1 is expected to summarize the information content as 
the most dominant (or representative) transcriptional network 
gleaned from the literature, while k = 2 expresses the informa-
tion content as superposition of two most dominant transcrip-
tional networks. As k increases, the factorizations are expected 
to reveal more specific networks.

In order to quantitatively examine the information content 
across different k, we calculated a diversity coefficient d for each 
type of entity in the ATMs obtained at various k factorizations. 
For each entity type, we defined the diversity coefficient as 
the ratio of the number of unique entities in the union of all 
k  ≥  2 ATMs, and the total number of entities in the tensor. 
Figure  2 shows the diversity coefficients for genes, TFs, and 
terms. As expected, we found that the diversity of TFs, genes, 
and terms in the ATMs increased with increasing k. In addi-
tion, we computed the pairwise redundancy using the mean 
Jaccard coefficient between any two sets of entities in the ATMs 
for k  ≥  2 (Figure S3 in Supplementary Material). We found 
that while the overall diversity increases with increasing k, the 
pairwise redundancy between the entities remained constant, 
and that for any given k-factorization, the ATMs were disjoint. 
Taken together, these results indicate that at higher k, we were 
able to extract unique regulatory modules with more specific 
functional annotations.

3.2. Functional Validation of aTMs
To comprehensively evaluate the functional relevance of ATMs 
generated by our method, we examined if the genes and TFs in 

the ATM were significantly (p-value ≤ 0.05, hypergeometric test 
as described in Materials and Methods) enriched in KEGG or 
GO categories. We found that more than 94% of the 2,861 ATMs 
were enriched in at least one KEGG or GO category. This result 
indicates that tensor factorization across all ks produced biologi-
cally relevant ATMs. The median number of enriched categories 
in all ATMs at each k value was greater than chance (Figure 3). 
Also, the number of enriched KEGG and GO categories per ATM 
was higher at lower k. This result indicates that at lower k, ATM 
genes, and TFs have a broad range of functions, consistent with 
our earlier observation that the diversity and specificity of ATMs 
increased with higher k (Figure 2; Figure S3 in Supplementary 
Material). Consistent with these observations, we found that 
the diversity of enriched KEGG and GO categories in ATMs 
increased at higher k (Figure S4 in Supplementary Material), 
while the pairwise redundancy between categories remained 
low as k increased (Figure S5 in Supplementary Material). Taken 
together, these results suggest that the gene–TF ATMs are more 
functionally specific at higher k.

Interestingly, we found a higher diversity of KEGG pathways 
than GO categories at all k values (Figure S4 in Supplementary 
Material). This result suggests that KEGG pathways can be more 
specific than GO categories. Some KEGG and GO categories 
were very frequent among all ATMs. For instance, among the 
top ten overrepresented KEGG pathways, five were related to 
cancer, four related to infection, and one related to cytokine 
signaling (Table S1 in Supplementary Material). On the other 
hand, among the top ten overrepresented GO categories, four 
were related to development, three were related to regulation 
of gene expression, two related to cell proliferation, and one 
related to protein phosphorylation (Table S2 in Supplementary 
Material).

Finally, we evaluated the accuracy of the terms identified by 
NTF for each ATM by comparing them with KEGG and GO 
annotations. For each ATM enriched in at least one KEGG 
pathway or GO category, we created a gold standard using all of 
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FigUre 4 | Distribution of AUCs for the terms associated with each ATM 
across various k-factorizations against KEGG (a) and GO (B) category titles 
and descriptions.

TaBle 1 | Performance of NTF using ChIP-Seq data sets.

TF (geO accession iD) Tissue aTM count genes in all 
aTMs

TFs in all 
aTMs

genes in 
validation set

average 
precision

p-Value explicit% implicit%

Cebpa (GSM427088) Liver 13 48 11 8,411 0.49 7.26E−05 0.86 0.14
Cebpa (GSM427093) 3T3-L1 cells 13 48 11 2,836 0.34 9.39E−06 0.82 0.18
E2f4 (GSM427091) Liver 22 34 8 7,134 0.82 5.08E−16 0.69 0.31
E2f4 (GSM427094) 3T3-L1 cells 22 34 8 8,595 0.91 4.71E−17 0.61 0.39
Foxa1 (GSM427090) Liver 11 47 9 938 0.11 3.46E−02 0.71 0.29
Foxa2 (GSM427089) Liver 54 112 45 6,366 0.21 9.14E−01 0.74 0.26
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the terms in the titles and descriptions of the enriched pathways 
and categories. We compared the top ATM terms against these 
gold standards by examining the area under the curve (AUC) of 
receiver operating characteristics (ROC) curves. We found that 
more than 80% of the 2,861 ATMs produced AUCs above 0.6. 
There was no change in median AUC across k, albeit the range 
of AUCs increased with increasing k (Figure 4). The deviation 
of the median AUC from the lowest point increased faster with 
increasing k than the deviation from the highest point. This 
indicates that at higher k, some NTF-derived functional annota-
tions are much less consistent with the descriptors of KEGG and 
GO categories.

3.3. Prediction of gene–TF associations
A unique advantage of our approach is that it enables literature 
based discovery, i.e., new potential gene–TF interactions may 
be deduced from implied associations in the literature in the 
absence of direct (experimental) evidence. To evaluate the per-
formance of our method in predicting potentially new gene–TF 
relationships, we used two different types of experimental data 
as gold standards. Chromatin immunoprecipitation sequencing 
(ChIP-Seq) is a genome wide technology that identifies direct 
binding sites for specific transcription factors on gene promot-
ers. On the other hand, microarray expression analysis of tissues 
with a targeted deletion of specific transcription factor identifies 

downstream genes whose expression levels are either directly or 
indirectly altered by the transcription factor.

We used a set of previously published ChIP-Seq data for 
four transcription factors (Cebpα, E2f4, Foxa1, and Foxa2) 
in either liver or 3T3-L1 cells (MacIsaac et  al., 2010) as gold 
standard validation sets. To evaluate our method, we focused 
only on the ATMs which contained the gold-standard TF. The 
number of ATMs for the four gold-standard TFs ranged from 
11 to 54 and the number of genes and TFs in all the ATMs 
for the gold-standard TFs ranged from 34 to 112 and 8 to 45, 
respectively (Table 1). To calculate the average precision for each 
gold-standard TF, we compared the union of genes and TFs in 
all ATMs against the ChIP-seq validation set. The number of 
genes in the four validation sets ranged from 938 to 8,595 genes.  
As shown in Table 1, the average precision of our method ranged 
between 11% (Foxa1, liver) and 91% (E2f4, 3T3-L1). Except for 
Foxa2, all gene–TF associations extracted by our method were 
significantly (p  ≤  0.05, Welch’s t-test) higher than chance. The 
average precisions for a given TF in two different tissues varied, 
indicating that binding sites are tissue dependent. These results 
indicate that NTF is accurate for identifying TF target genes from 
the biomedical literature. Importantly, we found that 14–39% of 
the target genes predicted by our method were based on implied 
associations in the literature. An explicit association refers to the 
cases when a gene and a TF share an abstract, whereas an implicit 
association is inferred based on shared terms among genes or TFs 
in the same ATM. This result suggests that our method is useful 
for making literature based discoveries.

Our literature mining method identifies gene–TF asso-
ciations based on functional information in the biomedical 
abstracts. Thus, it is possible that some of the gene predictions 
by our method are not the primary gene targets of the TFs, but 
rather genes in similar functional pathways whose expression 
levels are affected indirectly via a downstream TF. To test this 
possibility, we evaluated our method using four microarray 
datasets as gold standards. These datasets include differentially 
expressed genes in different mouse tissues (cerebellum, retina, 
or choroid plexus) as a consequence of targeted deletions in 
specific TFs (Atoh1 (Ha et al., 2015), Pax6 (Ha et al., 2015), and 
Otx2 (Omori et al., 2011; Johansson et al., 2013)). The number 
of genes and TFs in all the ATMs for the gold-standard TFs 
ranged from 57 to 152 and 34 to 62, respectively (Table  2). 
The number of genes in the validation sets ranged from 2,137 
(Atoh1, cerebellum) to 11,689 (Otx2, choroid plexus). The aver-
age precision for all four validation sets ranged from 0.33 to 0.42 
and were all significantly (p ≤ 0.05, Welch’s t-test) higher than 
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FigUre 5 | Precision values for all 38 Atoh1 ATMs. ‡ denotes ATMs in which Atoh1 was ranked first; red bars denote ATMs that include the term “cerebellum”; 
green bars denote ATMs that include the term “rhombic”; brown bars denote ATMs which include both “cerebellum” and “rhombic” as terms; and blue bars denote 
ATMs that include neither “cerebellum” or “rhombic” as terms.

TaBle 2 | Performance of NTF using microarray data sets.

TF knockout 
(geO iD)

Tissue # of 
aTMs

Total # 
genes

Total # 
TFs

# genes in 
validation 

set

average precision Base aTM 
associations (%)

Base (p-value) Base + (keyword) Base + (keywords) explicit implicit

Atoh1 Cerebellum 38 73 36 2,137 0.33 (p < 9.07E−07) 0.50 (cerebellum) 0.71 (cerebellum, rhombic) 0.37 0.63

Pax6 Cerebellum 74 152 62 3,036 0.38 (p < 2.87E−18) 0.54 (cerebellum) 0.57 (cerebellum, rhombic) 0.73 0.27

Otx2 
(GSE21900)

Retina 41 57 34 6,181 0.36 (p < 5.31E−06) 0.523 (retina) – 0.51 0.49

Otx2 
(GSE27630)

Choroid 
plexus

41 57 34 11,689 0.42 (p < 3.1E−05) 0.28 (choroid) – 0.68 0.32

Average precision values were determined for all ATMs which included the target TF (base) or base modules that also included one or two keywords associated with the 
experimental tissue. An explicit association refers to the cases when a gene and a TF share an abstract, whereas an implicit association is inferred among genes or TFs in the  
same ATM.
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chance. Importantly, approximately 27–63% of the predictions 
from our method were based on implied associations extracted 
from the literature. Since transcriptional regulation by TFs are 
tissue specific, we narrowed the ATMs to those which explicitly 
mentioned the experimental tissue. We calculated average 
precision for ATMs that contained either one or two keywords 
associated with the tissue. In all but one case (Otx2, choroid), 
the average precision values improved when we considered only 
the tissue-relevant ATMs.

Next, we focused on one dataset (Atoh1) to carefully examine 
the characteristics of each ATM. As indicated above, the aver-
age precision across all 38 Atoh1 ATMs was 0.33. However, 
the precision of individual Atoh1 ATMs ranged between 0 and 
0.85 (Figure 5). In general, higher k produced higher precision, 
indicating that higher classification specificity is correlated 
with precision. Interestingly, precision was not correlated with 
whether Atoh1 was ranked first in the ATM. The average preci-
sion was 0.23 for the 17 ATMs in which Atoh1 was top ranked. 
In contrast, Atoh1 was first ranked in only one of the top three 
ATMs with the highest precision (Figure 5). Finally, six ATMs 
had a precision of 0. Upon examination, we found that these 
ATMs were significantly enirched (p  ≤  0.05) for “auditory 

receptor cell differentiation” and other GO categories related to 
ear development. Consistent with these GO classifications, the 
terms in the ATMs were related to hair cell differentiation and 
development. Thus, it is likely that the precision of these ATMs 
is low because the gold standard was derived from microarray 
experiments using cerebellar tissue rather than auditory tissue.

Finally, as a benchmark, we compared the predictions of our 
method with those obtained by RegNetwork (Liu et al., 2015) for 
the same experimental ChIP-Seq and TF knockout microarray 
datasets described above as gold standards. RegNetwork is a 
database containing target predictions for TFs, which have been 
sourced from more than 20 interaction databases. Tables S3 and 
S4 in Supplementary Material show the precisions obtained by 
NTF along with those obtained by RegNetwork predictions. 
With the ChIP-Seq gold standards, we found that the aver-
age precision of NTF method was 0.48 compared to 0.38 for 
RegNetwork. NTF outperformed in 4 out of 6 ChIP-Seq datasets. 
For the two other datasets, RegNetwork outperforms but only 
marginally. In contrast, with the TF knockout microarray gold 
standards, the average precision of NTF (0.37) was better than 
that of RegNetwork (0.16). NTF precision was higher for 3 out 
of the 4 microarray datasets. Importantly, RegNetwork predicted 
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TaBle 3 | Significantly enriched GO categories for Atoh1 modules for evaluating 
guilt-by-association (module membership).

gO category 
(# of enriched 
aTMs)

aTM 
genes #

gO curated Manual validation

assigned Unassigned assigned Unassigned

Axon  
guidance (24)

104 16 88 11 18

Neuron  
migration (15)

78 15 63 11 19

Neural crest cell 
migration (1)

35 4 31 0 5

TaBle 4 | Predicted GO categories for Atoh1 modules based on term mapping.

gO category  
(# of aTMs  
with high term 
overlap)

aTM 
genes #

gO curated Manual validation

assigned Unassigned assigned Unassigned

Spinal cord 
oligodendrocyte cell 
differentiation (3)

44 1 43 1 8

Central 
nervous system 
vasculogenesis (1)

35 1 34 0 2

Cajal–Retzius cell 
differentiation (2)

24 0 24 – 2

Roof plate  
formation (3) 

13 1 12 1 2

Schwann cell 
development (3)

15 0 15 – 2

Cerebellar  
granular layer 
development (6)

34 0 34 – 7

Cerebellar 
Purkinje cell layer 
development (7)

34 0 34 – 5
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targets for Foxa1 and Otx2 did not match any targets in the 
gold-standard datasets, whereas NTF identified target genes 
with 0.11 and 0.42 precision, respectively (Tables S3 and S4 in 
Supplementary Material).

3.4. Prediction of Functional 
classifications
Current methods for functional interpretation of high-throughput 
genomic data rely on manually curated knowledge bases, such 
as GO, KEGG, and a variety of other resources. It is generally 
accepted that the rate of manual curation is not sufficient for the 
amount of genomic data that is being generated in various spe-
cies (Baumgartner et al., 2007). Moreover, there is a quantifiable 
bias in manually curated knowledge bases toward more popular 
genes and a substantial drift in the annotation of genes over 
time (Gillis and Pavlidis, 2013). Previous work have focused on 
using text-mining approaches to enhance curation of GO and 
other knowledge bases (Chagoyen et al., 2006; Couto et al., 2006; 
Thomas et al., 2015; Peng et al., 2016).

Here, we examine the performance of our NTF approach 
in predicting (suggesting) GO classifications. GO predictions 
were based on two approaches: (1) Guilt-by-Association (GBA) 
or (2) term mapping. In the GBA approach, new genes or TFs 
were assigned to a GO category which is significantly enriched 
for one or more ATMs. These new genes or TFs are part of the 
ATMs but have not been explicitly assigned to the enriched GO 
category by the curators. In the term mapping approach, novel 
and more specific GO categories for a given ATM were predicted 
based on the number of terms from the ATM that overlapped 
with GO category descriptions. These new GO categories were 
not significantly enriched for the ATM under consideration. The 
results for both approaches were evaluated by manual examina-
tion of the biomedical literature.

In order to evaluate the GBA approach, for the 38 ATMs con-
taining Atoh1, we randomly chose 3 GO categories that were found 
to be significantly enriched in some of those ATMs (Table  3). 
For example, for category “Axon guidance” that was significantly 
enriched for 24 ATMs containing a total of 104 genes and TFs, 
only 16 genes and/or TFs were explicitly assigned to the category 
by the GO curators. Upon manual examination of sentences in 
Medline abstracts, we found that out of the 104 genes and TFs, 
29 were functionally related to axon guidance. Among the 29, 
11 were already assigned to the GO category but the rest (18) 
were not. The latter are candidates for assignment to the “axon 
guidance” category, potentially increasing the assignment of new 
genes and TFs to the category by 1.6-fold. Five of the existing GO 
assignments could not be validated through manual evaluation. 
Overall, for three randomly selected significantly enriched GO 
categories (Table 3), the GBA method increased the assignment 
of new genes by an average of 1.2-fold. The average precision for 
the GO assignment by this method was 0.27 (0.14–0.38 range). 
Notably, on average, 52% (26–100% range) of the existing GO 
annotations were not validated by our manual analysis, indicating 
that there is substantial error in GO curation (Table 3).

In order to evaluate the term mapping approach, for the 38 
ATMs containing Atoh1, we predicted 7 novel GO categories 
whose names and descriptions were found to have high overlap 

with the terms from some of those ATMs (Table 4) but were not 
significantly enriched for any ATM. For example, for category 
“Spinal cord oligodendrocyte cell differentiation” whose descrip-
tion had high overlap with the terms of 3 ATMs containing a total 
of 44 genes and TFs, only 1 gene or TF was explicitly assigned to 
the category by the GO curators. This low number contributes 
to the reason the category was not significantly enriched for 
any of the 3 ATMs. Upon manual examination of sentences in 
Medline abstracts, we found that out of the 44 genes and TFs, 
9 were functionally related to spinal cord oligodendrocyte cell 
differentiation. Among these, 1 was already assigned to the GO 
category but the rest (8) were not. The latter genes and TFs are 
candidates for assignment to the category, potentially increasing 
the assignment of new genes and TFs to the category by 8-fold, 
which make the category a plausible candidate for being signifi-
cantly enriched for the ATMs whose terms have high overlap with 
the category description. On average, 3.9-fold (1- to 8-fold range) 
more genes were assigned to novel predicted GO categories, but 
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with an average precision of 0.15 (0.06–0.23 range) (Table  4). 
Most of these categories were more specific than the currently 
enriched categories.

In general, the terms associated with ATMs provide a greater 
level of functional specificity than structured categories in 
ontologies. For example, Figure 6C shows the genes, TFs, and 
terms associated with one ATM in which Atoh1 is top ranked.  
As a comparison, the enriched GO and KEGG categories are also 
displayed. Whereas the GO categories indicate that this group 
of genes and TFs are associated with inner ear development 
and auditory receptor cell differentiation, the terms (shown in 
italics below) in the ATM suggest that they are involved in dif
ferentiation of the sensory hair cells in the cochlea located in the 
organ of Corti. Atoh1 is a basic helix loop helix (bhlh) domain 
transcription factor involved in early development. Targeted 
deletion of Atoh1 gene in mice results in loss of hair cells in 
the organ of Corti (Chonko et al., 2013). Several gene symbols 
also appear in the top ranked terms such as Sox2, Notch, Jag1, 
Prox1, and Math1. Interestingly, Math1 is the alias for Atoh1. 
Direct evidence suggests that Notch1 and Jag1 signaling pathway 
is required for activation of Sox2 and Atoh1 expression (Neves 
et al., 2011). Activation of Atoh1 by Sox2 transcription factor is 
required for hair cell development in cochlea with respect to both 
expansion of the progenitor cells in the cochlear epithelium and 
initation of hair cell differentiation (Kiernan et al., 2005; Kempfle 
et al., 2016). Conversely, Prox1 transcription factor directly sup-
presses Atoh1 expression. Sox2 is expressed in type 2 vestibular 
hair cells and in supporting cochlear and vestibular epithelium 
(Hume et al., 2007).

3.5. TreMel Web Tool
In order to facilitate manual examination of individual ATMs, 
e.g., the aforementioned Atoh1 ATMs, the publicly available 
web tool called Transcriptional Regulatory Modules Extracted 
from Literature (TREMEL) was developed. It is accessible at 
http://binf1.memphis.edu/tremel. TREMEL provides a search-
able interface for the genes, TFs, and terms for all 2,861 ATMs 
(Figure 6).

The user can query the tool with either genes, TFs or terms, 
or a combination of any of the 3 types of entities in additional 
query boxes. The entity type can be selected from the drop 
down list to the right of each search box. Clicking the “+” but-
ton to the left of the first search box opens an additional search 
box. A maximum of 3 search boxes are allowed. The gene and 
TF queries need to be the official symbols designated by the 
National Center for Biotechnology Information (NCBI). Only 
one symbol is allowed per search box. The term query can be any 
single keyword such as “cancer,” “neuron,” “transcription,” etc. 
All queries are case insensitive. The output of the tool consists 
of two panels.

The top panel is comprised of a 3-dimensional interactive 
plot that shows all ATMs containing the search box entities, as 
points. The axes of the plot correspond to the NTF approxima-
tion rank k, the ATM#, and the rank of the queried entity (first 
search box only) in the ATMs. An ATM can be selected in the 
panel by clicking on its corresponding point in the 3-D plot.  
The color of the selected point changes to red and the colors 

of the remaining points corresponding to all other ATMs are 
depicted in terms of similarity to the selected ATM. The most 
similar ATMs are colored in shades of red while the least similar 
ones are colored in shades of blue. The similarity between any 
two ATMs is calculated as the Jaccard coefficient between the 
sets of genes and TFs in the respective ATMs. Upon initial search 
completion, one ATM is preselected and colored in red. This 
initial selection is performed in a manner such that the ATM 
with the lowest queried entity rank is picked. Ties are resolved 
in favor of the ATM with the lowest NTF approximation rank.

The bottom panel contains several sub-panels, each corre-
sponding to an ATM point in the first panel. The top sub-panel 
corresponds to the selected ATM, and the remaining ATMs 
are ordered according to their similarity to the selected ATM. 
Each sub-panel displays the ranked genes, TFs and terms of the 
corresponding ATM, as well as the enriched GO categories and 
KEGG pathways. Clicking a sub-panel expands it to display its 
contents, and closes the previously open sub-panel. The contents 
of only one sub-panel are viewable at a time.

4. DiscUssiOn

We have shown for the first time that NTF can be used effectively to 
simultaneously extract and functionally annotate transcriptional 
networks from the biomedical literature on a genomic scale. 
NTF is able to generalize and overcome data sparsity to produce 
interpretable low rank approximations. The ATMs comprised 
of genes, TFs, and terms were evaluated by several approaches. 
More than 94% of the gene–TF ATMs were enriched in at least 
one KEGG or GO category. In addition, there were considerable 
overlap (AUC values above 0.6) between the NTF-derived terms 
and the descriptions of the enriched KEGG and GO categories. 
Importantly, NTF identified more specific terms related to 
genes and TFs than what is currently available in KEGG and 
GO databases (Table 4; Figure 6). Thus, our approach provides 
more flexibility for scientists to search with a broader range of 
terms to identify relevant transcriptional networks directly from 
the literature. To assist researchers in exploring and discovering 
functional insights about transcriptional networks, we developed 
the web tool TREMEL, which provides a searchable interface for 
the genes, TFs, and terms for all 2,861 ATMs (Figure 6).

We validated our NTF derived ATMs using a number of 
di fferent data sources, including GO (manually curated), 
KEGG (manually curated), ChIP-Seq (experimental), and TF 
knockout microarray (experimental). We also compared our  
gene–TF association predictions with those obtained by 
RegNetwork and found that overall, the NTF method produced 
comparable or better precision (specificity) compared to the 
RegNetwork. However, calculating recall (sensitivity) using 
these data sources may not be appropriate because none of the 
data sources are 100% accurate and complete. Manual curation 
is known to be incomplete (Baumgartner et  al., 2007) and 
high-throughput experimental datasets are highly variable for 
technical reasons. Indeed, in Table 4 we show a few examples 
where NTF term annotations were more specific and relevant 
than the enriched GO categories. In addition, we showed that 
NTF performed comparably to or better than human curated 
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FigUre 6 | Continued

FigUre 6 | Continued  
Screen shot of TREMEL (Transcription REgulatory Modules Extracted from 
Literature) tool. (a) Search feature allows the user to query genes, TFs, or 
terms across all 2,861 ATMs. In addition, complex queries involving a 
combination of any of the three entities can be performed by adding another 
query box. (B) Overview display shows all of the ATMs which relate to the 
query with respect to the rank of the query entity, k, and ATM number. 
(c) Displays the ranked genes, TFs, and terms for the selected ATM in panel 
(B). In addition, the enriched GO and KEGG categories are displayed in order 
for the user to quickly compare the NTF terms against human curation.
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RegNetwork, which is an aggregated database of TF–gene inter-
actions. However, unlike the NTF approach, predicted targets of 
RegNetwork for two out of ten transcription factors examined 
did not match any targets in the gold-standard datasets (Tables 
S3 and S4 in Supplementary Material). Finally, since the NTF 
literature mining approach extracts conceptual and functional 
associations between TFs and genes, we would not expect very 
high precision with any of the experimental benchmarks for 
several reasons. Genomic assays are highly tissue specific, 
whereas the functional associations in the literature may not 
necessarily be focused on a specific tissue. ChIP-seq assays 
detect only direct interaction between TFs with gene promot-
ers, whereas the microarray experiments identify both direct 
and indirect TF–gene associations. Finally, both ChIP-Seq and 
microarray experiments are prone to false-discovery due to 
multiple hypothesis testing.

As estimation of the true tensor rank is computationally 
difficult, we opted for a more exploratory approach where we 
evaluated factorization at several approximation ranks (k rang-
ing from 1 to 900). KEGG/GO pathway divergence analysis 
(Figure S3 in Supplementary Material), and experimental data 
validation (Figure 5) and manual evaluation indicated that more 
specific pathways are delineated at higher k. Consistent with this 
notion, we found that the median number of enriched KEGG/
GO categories were substantially lower at higher k (Figure 3). 
On the other hand, this seemingly low number of enrichment 
could be partially due to shortcomings of KEGG and GO 
annotations as we demonstrated after manual analysis (Tables 3  
and 4) and previously documented by Gillis and Pavlidis (2013).

The interpretation of sub-tensors in our method allows for 
redundancy in ATMs, where certain entities may occur in mul-
tiple ATMs from the same k-factorization. We believe that this 
makes biological sense as a TF might be involved in different 
functions or pathways depending on the set of genes with which 
it interacts. For instance, analysis of Atoh1 ATMs revealed that 
some of its ATMs were related to early cerebellar development, 
whereas other ATMs were related to hair cell development in the 
auditory system. This approach is an improvement over previ-
ous work by our group and others using NMF (Heinrich et al., 
2008; Tjioe et al., 2010), where the factors were interpreted to 
have only disjoint biclusters and a set of genes were associated 
with the best set of associated terms.

Taken together, our results demonstrate that NTF is a promis-
ing technique to simultaneously extract genes, TFs and related 
terms to identify and predict gene regulatory networks from the 
biomedical literature. The method and tool presented here are not 
intended to be comprehensive (high recall) nor a replacement of 
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high-throughput experiments. However, we have shown that it 
is a valuable exploratory tool which can help researchers make 
new mechanistic discoveries and help human curators to quickly 
annotate gene function based on the vast amount of knowledge 
in the biomedical literature. In addition, our work sets the stage 
to apply this technique to other areas in systems biology such as 
simultaneous extraction of terms with miRNAs and their target 
genes, small molecules and protein targets, as well as drugs and 
diseases.
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