3.7
Impact Factor
This article is part of the Research Topic The Staphylococci and staphylococcal pathogenesis

Original Research ARTICLE

Front. Cell. Infect. Microbiol., 21 February 2012 | http://dx.doi.org/10.3389/fcimb.2012.00018

Comparison of Staphylococcus aureus strains for ability to cause infective endocarditis and lethal sepsis in rabbits

Adam R. Spaulding1, Erin A. Satterwhite2, Ying-Chi Lin3, Olivia N. Chuang-Smith4, Kristi L. Frank4, Joseph A. Merriman1, Matthew M. Schaefers3, Jeremy M. Yarwood5, Marnie L. Peterson3 and Patrick M. Schlievert1*
  • 1Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
  • 23M Infection Prevention Division, 3M Company, St. Paul, Minneapolis, MN, USA
  • 3Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
  • 4Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN, USA
  • 53M Corporate Research Laboratory, 3M Company, St. Paul, Minneapolis, MN, USA

Staphylococcus aureus is a major cause of infective endocarditis (IE) and sepsis. Both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains cause these illnesses. Common S. aureus strains include pulsed-field gel electrophoresis (PFGE) types USA200, 300, and 400 types where we hypothesize that secreted virulence factors contribute to both IE and sepsis. Rabbit cardiac physiology is considered similar to humans, and rabbits exhibit susceptibility to S. aureus superantigens (SAgs) and cytolysins. As such, rabbits are an excellent model for studying IE and sepsis, which over the course of four days develop IE vegetations and/or fatal septicemia. We examined the ability of MRSA and MSSA strains (4 USA200, 2 USA300, 2 USA400, and three additional common strains, FRI1169, Newman, and COL) to cause vegetations and lethal sepsis in rabbits. USA200, TSST-1+ strains that produce only low amounts of α-toxin, exhibited modest LD50 in sepsis (1 × 108 – 5 × 108) colony-forming units (CFUs), and 3/4 caused significant IE. USA200 strain MNPE, which produces high-levels of α-toxin, was both highly lethal (LD50 5 × 106 CFUs) and effective in causing IE. In contrast, USA300 strains were highly effective in causing lethal sepsis (LD50s 1 × 106 and 5 × 107 CFUs) but were minimally capable of causing IE. Strain Newman, which is phylogenetically related to USA300 strains, was not highly lethal (LD50 of 2 × 109 CFUs) and was effective in causing IE. USA400 strains were both highly lethal (LD50s of 1 × 107 and 5 × 107 CFUs) and highly effective causes of IE. The menstrual TSS isolate FRI1169, that is TSST-1+, produces high-levels of α-toxin, but is not USA200, was both highly lethal and effective in causing IE. Additional studies showed that phenol soluble modulins (PSMs) produced by FRI1169 were important for sepsis but did not contribute to IE. Our studies show that these clonal groups of S. aureus differ in abilities to cause IE and lethal sepsis and suggest that secreted virulence factors, including SAgs and cytolysins, account for some of these differences.

Keywords: Staphylococcus aureus, exotoxins, infective endocarditis, sepsis

Citation: Spaulding AR, Satterwhite EA, Lin Y-C, Chuang-Smith ON, Frank KL, Merriman JA, Schaefers MM, Yarwood JM, Peterson ML and Schlievert PM (2012) Comparison of Staphylococcus aureus strains for ability to cause infective endocarditis and lethal sepsis in rabbits. Front. Cell. Inf. Microbio. 2:18. doi: 10.3389/fcimb.2012.00018

Received: 06 January 2012; Accepted: 07 February 2012;
Published online: 21 February 2012.

Edited by:

Martin J. McGavin, University of Western Ontario, Canada

Reviewed by:

Francois Vandenesch, Immunity Infection Vaccination, France
Vance Fowler, Duke University Medical Center, USA

Copyright: © 2012 Spaulding, Satterwhite, Lin, Chuang-Smith, Frank, Merriman, Schaefers, Yarwood, Peterson and Schlievert. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

*Correspondence: Patrick M. Schlievert, Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, 3–403 BSB, Iowa City, IA 52242, USA. e-mail: patrick-schlievert@uiowa.edu