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Chlamydiae may exist at the site of infection in an alternative replicative form, called the
aberrant body (AB). ABs are produced during a viable but non-infectious developmental
state termed “persistence” or “chlamydial stress.” As persistent/stressed chlamydiae:
(i) may contribute to chronic inflammation observed in diseases like trachoma; and (ii) are
more resistant to current anti-chlamydial drugs of choice, it is critical to better understand
this developmental stage. We previously demonstrated that porcine epidemic diarrhea
virus (PEDV) co-infection induced Chlamydia pecorum persistence/stress in culture. One
critical characteristic of persistence/stress is that the chlamydiae remain viable and
can reenter the normal developmental cycle when the stressor is removed. Thus, we
hypothesized that PEDV-induced persistence would be reversible if viral replication was
inhibited. Therefore, we performed time course experiments in which Vero cells were
C. pecorum/PEDV infected in the presence of cycloheximide (CHX), which inhibits viral
but not chlamydial protein synthesis. CHX-exposure inhibited PEDV replication, but did not
inhibit induction of C. pecorum persistence at 24 h post-PEDV infection, as indicated by AB
formation and reduced production of infectious EBs. Interestingly, production of infectious
EBs resumed when CHX-exposed, co-infected cells were incubated 48–72 h post-
PEDV co-infection. These data demonstrate that PEDV co-infection-induced chlamydial
persistence/stress is reversible and suggest that this induction (i) does not require viral
replication in host cells; and (ii) does not require de novo host or viral protein synthesis.
These data also suggest that viral binding and/or entry may be required for this effect.
Because the PEDV host cell receptor (CD13 or aminopeptidase N) stimulates cellular
signaling pathways in the absence of PEDV infection, we suspect that PEDV co-infection
might alter CD13 function and induce the chlamydiae to enter the persistent state.
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INTRODUCTION
The Chlamydiaceae are Gram-negative, obligate intracellular bac-
teria that cause a large spectrum of diseases in both humans and
agriculturally important animals. For example, Chlamydia suis,
C. abortus, C. pecorum and C. psittaci cause syndromes in swine
ranging from conjunctivitis to abortion (Pospischil et al., 2010).
Asymptomatic chlamydial infections are also common in pigs and
can render them more susceptible to other infections (reviewed
in Schautteet and Vanrompay, 2011). Related chlamydial species,
such as C. trachomatis, also cause medically important condi-
tions, like trachoma, in humans. Though chlamydial infections
can cause acute symptoms, they are most associated with chronic
inflammation and scarring, which can result in significant host
tissue damage (Schachter, 1999). However, to play a causative
role in chronic diseases, chlamydiae would need to persist within
infected cells/tissues for extended periods of time. How the organ-
isms maintain long-term host infection is a central question in
chamydial biology.

Chlamydiae are characterized by a complex developmental
cycle, in which they alternate between a metabolically less-
active, infectious form (the elementary body or EB), and a
more metabolically active, replicative form (the reticulate body
or RB). Upon host cell infection, the EB converts into an
RB, which grow and divide within a cytoplasmic, membrane-
bound inclusion. After several rounds of division, RBs then
convert back into infectious EBs, which are released from
the host cell (reviewed in Wyrick, 2000). The third develop-
mental stage, variously termed persistence or the chlamydial
stress response, is defined as a viable but non-cultivable state.
Persistent/stressed RBs are enlarged, irregularly shaped and non-
dividing; these altered developmental forms are called aberrant
bodies (ABs). A variety of stressors induce chlamydial persis-
tence/stress: these include IFN-γ exposure; glucose, iron, and
amino acid depravation; penicillin G exposure; and heat shock
(reviewed in Hogan et al., 2004; Wyrick, 2010; Schoborg, 2011).
Interestingly, chlamydiae can remain in the persistent/stressed
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state in culture for up to 9 months (Galasso and Manire,
1961). Once the stressor is removed, persistent/stressed chlamy-
diae can reenter normal development and produce infectious
EBs, which suggests that persistent/stressed chlamydiae may
serve as a long-term reservoir for pro-inflammatory chlamy-
dial antigens and/or infectious organisms (reviewed in Hogan
et al., 2004; Wyrick, 2010). Although this hypothesis has not
yet been directly tested, there is significant evidence that the
persistent/stressed state can occur during in vivo infection. For
example, ABs have been observed in tissues isolated from C.
suis-infected swine (Pospischil et al., 2009), C. muridarum-
infected mice (Rank et al., 2011; Phillips-Campbell et al.,
2012) and C. trachomatis-infected humans (Nanagara et al.,
1995).

Mixed infections are prevalent in both humans and other ani-
mals and may alter pathogenesis of one, or more, of the agents
involved (recently reviewed in Debiaggi et al., 2012; Stelekati
and Wherry, 2012; Alizon et al., 2013). Unfortunately, typi-
cal experimental systems exploring the interaction between a
single pathogen and cell type do not accurately reflect host-
multiple pathogen interplay observed in vivo. Therefore, it seems
worthwhile to test interactions between multiple pathogenic
microorganisms in simplified cell culture systems. In one such
system, chlamydiae within Herpes Simplex Virus (HSV) super-
infected genital epithelial cells entered the persistent/stressed state
(Deka et al., 2006, 2007) via a mechanism distinct from previ-
ously characterized models of chlamydial persistence (Vanover
et al., 2008). More recent data indicate that HSV glycopro-
tein D/host nectin-1 interaction restricts C. trachomatis devel-
opment (Vanover et al., 2010) by an as yet incompletely char-
acterized mechanism involving increased host cellular oxida-
tive stress (Prusty et al., 2012). Both HSV (Deka et al., 2006,
2007; Vanover et al., 2010) and Human Herpes Virus 6 (Prusty
et al., 2012) induce persistence by mechanisms that are inde-
pendent of productive virus infection, but require host cell
attachment and/or uptake of the virus by the host cell. As we
are interested in chlamydial and viral swine pathogens, our
group established a culture model of porcine epidemic diar-
rhea virus (PEDV)/C. pecorum co-infection (Stuedli et al., 2005).
Both C. pecorum and PEDV (a coronavirus) cause economically-
important gastrointestinal infections in swine (Pensaert and de
Bouck, 1978; Pospischil et al., 2010). PEDV super-infection of
C. pecorum-infected Vero cells: (i) induced AB formation; and
(ii) reduced chlamydial infectivity, both of which are consis-
tent with induction of the persistence/stress response (Borel
et al., 2010). Notably, herpesviruses (which are double-stranded
DNA viruses) and coronaviruses (which are single-stranded RNA
viruses) use different attachment/entry mechanisms, replicate in
different cellular compartments, replicate their genomes via dif-
ferent mechanisms, and infect different host cell types. Thus, it
seems unlikely that HSV and PEDV induce chlamydial persis-
tence/stress by the same mechanism. As a first step in dissecting
the mechanism by which PEDV super-infection alters chlamy-
dial development, we tested the hypothesis that viral replication
is required for the PEDV-mediated C. pecorum persistence/stress
response.

MATERIALS AND METHODS
HOST CELLS, CHLAMYDIAE, AND VIRUSES
Vero 76 cells (African green monkey kidney cells, CRL 1587,
American Type Culture Collection) were propagated in growth
medium: Minimal Essential Medium (MEM) with Earle’s
salts, 25 mM HEPES, without L-glutamine (GIBCO, Invitrogen,
Carlsbad, CA) but with 10% fetal calf serum (FCS) (BioConcept,
Allschwil, Switzerland), 4 mM GlutaMAX-I (200 mM, GIBCO)
and 0.2 mg/ml gentamycin (50 mg/ml, GIBCO). For infection
experiments, Vero cells were seeded on round glass coverslips
(13 mm diameter, Thermo Fisher Scientific, Cambridge, UK) at
2 × 105/well in growth medium without gentamycin. Chlamydia
pecorum 1710S (an intestinal swine isolate kindly provided by J.
Storz, Baton Rouge, Louisiana, LA, USA) was used in this study.
Stocks of C. pecorum were propagated in HEp-2 cell monolayers,
purified and stored at −80◦C in sucrose-phosphate-glutamate
(SPG) medium as described (Borel et al., 2010). An MOI of 1 of
C. pecorum was used for all mono-infection and mixed-infection
experiments. Both C. pecorum and C. abortus development is
altered by PEDV co-infection (Stuedli et al., 2005; Borel et al.,
2010), but C. pecorum was chosen for this study because it is
more sensitive to PEDV co-infection than is C. abortus (Borel
et al., 2010). Ca-PEDV strain CV777 (kindly provided by M.
Ackermann, Institute of Virology, University of Zurich) was prop-
agated as previously described (Hofmann and Wyler, 1988), but
without antibiotics for culturing the cells and for viral stock
preparation. The virus stock (1 × 105.5 TCID50/ml) was used
undiluted for mixed-infections.

MIXED-INFECTION PROTOCOL
Mixed-infections were performed essentially as described (Borel
et al., 2010). Briefly, replicate Vero cells on coverslips were divided
into four groups: mock-infected, C. pecorum-infected, PEDV-
infected, and C. pecorum/PEDV co-infected. For co-infections,
cell monolayers were first infected with C. pecorum at 1 MOI.
After centrifugation for 1 h at 1000 × g and 25◦C, the infected
monolayers were subsequently incubated for 14 h at 37◦C in
growth medium without gentamycin. At time 0 (T0), all cell
monolayers used for either mixed-infection or PEDV mono-
infection were PEDV-infected (1 × 105.5 TCID50), whereas for
chlamydial mono-infections and mock-infections, only growth
medium was applied. In some experiments, an equal volume
of UV-inactivated PEDV (PEDVUV) was used. After viral infec-
tion, all cells were centrifuged again, after which the inoculum
was removed, the cells refed with growth medium without gen-
tamycin, and incubated for an additional 24, 48, 72, or 96 h,
depending upon the experiment (Figure 1A). Replicate sam-
ples were then subjected to immunofluorescence (IF), transmis-
sion electron microscopy (TEM), or infectious titer analysis, as
appropriate. In some experiments, cycloheximide (CHX), which
inhibits host cellular (Obrig et al., 1971), coronaviral (van den
Worm et al., 2011) but not chlamydial (Ripa and Mårdh, 1977)
protein synthesis, was added to the culture medium 1 h before
PEDV infection. In these experiments, all cultures were incu-
bated in growth medium plus either 1 or 5 ug/ml CHX from
the addition time until the end of the experiment. Since both 1
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and 5 μg/ml CHX inhibit PEDV replication (Figure 1) but not C.
pecorum development (Figure 2), 5 μg/ml CHX was used in time
course/recovery experiments to suppress PEDV replication.

UV INACTIVATION OF PEDV
Five hundred microliter aliquots of PEDV stock were
UV-inactivated using a UV 500 crosslinker (Amersham
Biosciences, Little Chalfont, UK), as described (Deka et al.,
2007), using a total UV dose of 4 J/cm2. Similar UV doses have
been used to inactivate other coronaviruses (Darnell et al., 2004).
UV-inactivated PEDV stocks were unable to induce PEDV M
protein positive staining syncytium formation when inoculated
into Vero cell monolayers, even after a 48 h incubation period
(data not shown). In contrast, control cultures infected with
replication competent PEDV showed PEDV positively staining
single cells and syncytia in this same time period. These data
indicate that the PEDV stocks were successfully UV-inactivated.

IMMUNOFLUORESCENCE ASSAYS (IFA)
Infected monolayers on coverslips were methanol fixed and IFA
stained immediately post-fixation as described (Borel et al.,
2010). PEDV-infected single cells (and syncytia) were detected
using a mouse monoclonal antibody against the viral 27 kD inte-
gral membrane M protein (mcAb 204, kindly provided by M.
Ackermann, Institute of Virology, University of Zurich), diluted
1:4 in PBS plus 1% BSA, and a 1:500 diluted Alexa Fluor
594-conjugated goat anti-mouse secondary antibody (Molecular
Probes, Eugene, USA). Chlamydial inclusions were labeled with
a Chlamydiaceae family-specific mouse monoclonal antibody
directed against lipopolysaccharide (LPS, Clone ACI-P, Progen,
Heidelberg, Germany), and a 1:500 diluted Alexa Fluor 488-
conjugated secondary goat anti-mouse antibody (Molecular
Probes). Host and chlamydial DNA were labeled using 1 μg/ml
4′,6-Diamidin-2′-phenylindoldihydrochlorid (DAPI, Molecular
Probes). As both primary antibodies were of mouse origin,
PEDV and chlamydia-specific labeling were performed on sep-
arate, duplicate coverslips. Coverslips were mounted inverted
on glass slides using Immumount (Shandon, Pittsburgh, USA).
Samples were examined under oil immersion at 1000× mag-
nification using a Leica DMLB fluorescence microscope (Leica
Microsystems, Wetzlar, Germany). Fluorescence photomicro-
graphs were captured with the BonTec measuring and archiving
software (BonTec, Bonn, Germany).

TRANSMISSION ELECTRON MICROSCOPY (TEM)
Coverslips were fixed in 2.5% glutaraldehyde (Electron
Microscopy Sciences, Ft. Washington, USA) for 1 h, and
processed for embedding in epoxy resin (Borel et al., 2010).
Ultrathin sections (80 nm) were mounted on gold grids (Merck
Eurolab AG, Dietlikon, Switzerland), contrasted with uranyl
acetate dihydrate (Fluka), and lead citrate (lead nitrate and
tri-natrium dihydrate; Merck Eurolab AG). Fixed and counter-
stained gold thin sections were examined at 7000× magnification
with a Tecnai 10 (FEI) transmission electron microscope
at 60–80 kV in the Quillen College of Medicine TEM Core
Facility.

FIGURE 1 | Exposure to cycloheximide (CHX) and UV inactivation

inhibits PEDV replication in Vero cells. (A) Simplified diagram of the
co-infection procedure. At the start of each experiment, replicate Vero cell
cultures on coverslips were either mock- or C. pecorum-infected. Fourteen
hours later, they were mock-, PEDV- or PEDVUV-infected, as appropriate. In
some experiments, cells were CHX-exposed from 1 h prior to viral infection
to the end of the experiment. Regardless, all cells were refed with fresh
growth medium (+ or − CHX as appropriate) after PEDV infection (T0).
Samples were harvested for various analyses at 24 (T24), 48 (T48), 72 (T72)
or 96 (T96) hpvi. (B–E) Vero cells were pre-exposed to either 1 μg/ml CHX
or 5 μg/ml CHX, as indicated. One hour later, cultures were either
PEDV-infected (PEDV) or mock-infected (Mock). Cultures were incubated for
48 hpvi, fixed, and immunolabeled with anti-PEDV M (red) and DAPI (blue).
Representative fields at 1000× magnification are shown with 15 μm scale
bars. White arrows indicate anti-PEDV M punctate staining, as discussed in
the text. (F) Vero cells were mock-infected (Mock), mono-infected with
PEDV (PEDV + cont.), infected with C. pecorum and PEDV (Cp + PEDV), or
infected with C. pecorum and PEDVUV (Cp + PEDVUV) as in (A). In some
cases, the cells were pre-exposed to 1 μg/ml CHX or 5 μg/ml CHX, as
indicated. At 24 hpvi, cells were fixed, and labeled with anti-PEDV M (red)
and DAPI (blue). Twenty random 200× magnification fields were examined
on each coverslip; PEDV M protein positive single cells and syncytia were
counted for each field, added together, and the average total number/field
calculated. The PEDV positive control was set at 100% and the average
counts obtained for the other samples were used to calculate % of the
positive control. The % positive control values obtained were then plotted
on the Y-axis; sample identity is shown below the X-axis.
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FIGURE 2 | PEDV viral replication is not required for PEDV interference

with C. pecorum development. (A–F) Vero cells were mock-infected
(Mock), mono-infected with C. pecorum (Cp), infected with C. pecorum and
PEDV (Cp + PEDV), or infected with C. pecorum and PEDVUV (Cp +
PEDVUV) as diagrammed in Figure 1A. In some cases, the cells were
pre-exposed to either 1 or 5 μg/ml CHX to prevent PEDV replication, as
indicated. At 24 hpvi, replicate coverslips were fixed, and labeled with
anti-chlamydial LPS (green) and DAPI (blue) or anti-PDV M protein and DAPI.
Quantification of PEDV positive cells and syncytia from this experiment is
shown in Figure 1F. Representative fields at 1000× magnification are
shown with 15 μm scale bars. White arrows indicate anti-LPS-staining AB.
(G) Replicate cultures from the co-infections in (A–F) were subjected to
sub-passage titer analysis. Some monolayers were pre-exposed to 5 μg/ml
CHX (+ CHX samples) as previously described. Inclusion counts were used
to calculate inclusion forming units (IFU)/mL (Y-axis). The average from
three biologic replicates ± s.e.m. is shown and the data are representative
of three independent experiments. Statistical comparisons are indicated by
brackets and were all significant to p ≤ 0.005.

CHLAMYDIAL TITRATION BY SUBPASSAGE
Depending upon the experiment, monolayers were scraped into
1 ml of cold growth medium at 24, 48, or 72 h post viral infection
(hpvi). Infected host cell lysates were harvested and sub-passaged
on fresh Vero cell monolayers in triplicate as described (Borel
et al., 2010). Fixation and staining with DAPI and anti-chlamydial
LPS was performed as described above. The number of inclu-
sions in 20 random microscopic fields per sample was determined
using a Leica fluorescence microscope at 200× magnification.
Triplicate coverslips were counted and the counts averaged for
each coverslip. The number of inclusion-forming units (IFU) in
the undiluted inoculum was then calculated and expressed as IFU
per ml inoculum as described (Deka et al., 2006).

STATISTICAL ANALYSES
With the exception of the TEM experiments, all experiments were
repeated three times independently. TEM experiments were per-
formed twice. Statistical analyses for chlamydial titrations were
performed using Microsoft Excel. The IFU/ml value for each bio-
logic replicate is the mean of three determinations (3 replicate
titer coverslips). All plotted IFU/ml values are averages of three
biologic replicates ± standard error of the mean (SEM). These
were compared using a 2-sample t-test for independent samples
and p values of ≤ 0.05 were considered significant.

RESULTS
PEDV REPLICATION IN VERO CELLS IS INHIBITED BY
UV-INACTIVATION AND CHX EXPOSURE
Although there is a newly developed system for PEDV RNA
recombination and gene replacement (Li et al., 2013a), there
is currently no available system for complementing/propagating
PEDV replication-deficient mutants. As a result, we could not use
such mutants to address our hypothesis. Therefore, we used UV
inactivation and host cell CHX pre-treatment to inhibit PEDV
replication in co-infected cells. A similar approach was used
to determine that HSV replication was required for chlamydial
persistence/stress induction (Deka et al., 2007). CTX was cho-
sen because it inhibits host mammalian cell (Obrig et al., 1971)
and coronaviral (van den Worm et al., 2011) protein synthe-
sis, but not that of chlamydiae (Ripa and Mårdh, 1977). UV
light has been used to inactivate other coronaviruses (Darnell
et al., 2004) and is widely used to inactivate virions without
altering their ability to bind and enter host cells. To test the effi-
cacy of these inactivation methods for PEDV, Vero monolayers
were pre-exposed for 1 h to growth medium plus: (i) 1 μg/ml
CHX; or (ii) 5 μg/ml CHX. CHX was also added to the PEDV
inoculum and to the culture medium after infection. Cultures
were incubated 48 h post-infection (hpi) and then fixed, IFA
stained to detect PEDV antigens and examined microscopically
for PEDV-positive cells and syncytia (Figures 1B–E). During viral
replication, PEDV antigen-positive cells and syncytia with up to
50–100 nuclei are observed (Hofmann and Wyler, 1988; Borel
et al., 2010) and, because coronaviruses replicate in the host
cell cytoplasm, anti-M protein staining is primarily cytoplas-
mic (Figure 1C; Borel et al., 2010). Thus, these characteristics
can be used to determine whether PEDV productive replica-
tion has occurred during an experiment. As expected, positively
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staining single infected cells and syncytia were readily detectable
in PEDV-infected cultures (Figure 1C). Addition of either 1 or
5 μg/ml CHX prior to PEDV infection eliminated PEDV antigen-
positive single cells and syncytium formation (Figures 1D,E).
Likewise, Vero monolayers infected with UV-inactivated PEDV
(PEDVUV) contained neither M protein cytoplasmically-positive
cells nor syncytia (data not shown). These data indicate that host
cell pre-exposure to CHX and UV-inactivation both inhibit PEDV
replication. Though strong cytoplasmic anti-M protein staining is
not observed in PEDVUV-infected or CHX-pre-exposed cultures,
small dots of anti-M protein immunostaining are observed in
these cultures (Figures 1D,E, white arrows). These anti-M foci are
not observed in uninfected cultures (Figure 1B) and are unlikely
to be background staining. As the M protein is an abundant struc-
tural component of coronavirus particles, these foci are most
likely immunolabeled PEDV virions that have bound to and/or
entered into host cells. These data suggest that CHX and UV inac-
tivation inhibit PEDV replication but not viral attachment/entry.

PEDV REPLICATION IS NOT REQUIRED TO ALTER C. pecorum
DEVELOPMENT
To determine whether PEDV replication is required to alter
C. pecorum development, Vero monolayers were infected first
with C. pecorum and later with PEDV, or mock-infected, as
described above. In some replicates (Figures 2A–D), cells were
pre-exposed to 1 or 5 μg/ml CHX before viral infection. In
others, cells were co-infected with PEDVUV in the absence of
CHX (Figure 2F). As expected, neither mock- nor PEDV singly-
infected cells stained with anti-LPS (Figures S1A,D). IFA staining
with anti-LPS revealed normal inclusions in C. pecorum-infected
control cells (Figure 2E, Figures S1B,C). In contrast, inclusions
within C. pecorum/PEDV co-infected cells contained anti-LPS
tagged, greatly enlarged AB (Figures S1E,F, white arrows), as pre-
viously reported (Borel et al., 2010). Exposure to either 1 μg/ml
(Figure 2A) or 5 μg/ml CHX (Figure 2C) had no effect on inclu-
sion size, morphology or anti-LPS staining intensity compared to
a C. pecorum-infected control in the absence of CHX (Figure 2E).
Notably, AB were readily apparent in C. pecorum/PEDV co-
infected cultures in the presence of CHX (Figures 2B,D, white
arrows). Co-infection with PEDVUV similarly induced AB forma-
tion in the absence of CHX (Figure 2F, white arrow). Infectious
titer analysis on replicate cultures indicated that co-infection with
PEDV, PEDVUV or PEDV in the presence of CHX significantly
decreased infectious titer compared to either the C. pecorum
alone or C. pecorum + CHX controls, as appropriate (Figure 2G).
Finally, anti-PEDV IFA of replicate coverslips indicated that the
UV inactivation and CHX-exposure completely eliminated PEDV
(+) single cells and syncytia (Figure 1F), as previously observed
(Figures 1D,E). These data indicate that PEDV replication is
not required for co-infection induced persistence/stress induction
and suggest that PEDV binding/entry may be sufficient to induce
this effect.

THE PEDV-INDUCED C. pecorum DEVELOPMENTAL CYCLE ALTERATION
IS REVERSIBLE
One hallmark of the non-infectious but viable state is that it is
reversible—if the stressor is removed, the chlamydiae re-enter

normal development and infectious progeny are produced
(reviewed in Hogan et al., 2004; Wyrick, 2010; Schoborg,
2011). Since CHX prevented PEDV replication in host cells
but did not interfere with persistence/stress induction, we rea-
soned that any PEDV particle components responsible for this
effect might eventually be degraded (and persistence/stress sub-
sequently “reversed”) if co-infected cells were kept under con-
tinuous CHX exposure to prevent viral replication. A similar
approach demonstrated that HSV-induced persistence was also
reversible (Vanover et al., 2010). Therefore, we co-infected and
CHX-exposed replicate Vero cultures as previously described,
except that coverslips were collected at 24, 48, 72, and 96
hpvi (Figures 3A–F). IFA revealed anti-LPS staining ABs in
CHX-exposed, PEDV co-infected cultures out to 96 hpvi
(Figures 3C–F). In contrast, inclusions in C. pecorum + CHX
cultures did not contain visible ABs (Figure 3B). Notably, at
72 and 96 hpvi (Figures 3E,F), co-infected cultures contained
fewer host cell nuclei (and inclusions) than did cultures har-
vested at earlier times (Figures 3A–D). Because reentry into
normal development and production of infectious EBs is one
possible explanation for the observed host cell and inclusion
loss, we performed infectious titer assays on replicate sam-
ples (Figure 4A). As previously observed, PEDV co-infection
significantly reduces infectivity at 24 hpvi, compared to that
in C. pecorum control cultures at the same time. Importantly,
production of infectious EBs from PEDV co-infected, CHX-
exposed cultures is significantly increased at 48 and 72 hpvi,
compared to co-infected samples collected at 24 hpvi. These
data indicate that the PEDV-induced loss of chlamydial infectiv-
ity is reversible within 48 hpvi if continued viral replication is
inhibited.

PEDV CO-INFECTION INDUCES C. pecorum AB MORPHOLOGICALLY
INDISTINGUISHABLE FROM PERSISTENT/STRESSED ORGANISMS
Persistent/stressed chlamydiae have a striking ultrastructural
appearance (reviewed in Hogan et al., 2004; Wyrick, 2010;
Schoborg, 2011). The enlarged organisms observed by IFA in
co-infected cells resemble ABs, but the AB morphology is best
observed by TEM. Therefore, we performed electron microscopy
on replicate samples from the time course infection/CHX-
exposure experiment described above. Unsurprisingly, inclusions
in C. pecorum-infected cells exposed to CHX contained nor-
mal RBs and EBs (Figure 4B, black arrows). Greatly enlarged,
misshapen RBs (i.e., ABs similar to those observed in other
persistence/stress tissue culture models) were present in co-
infected cells (Figure 4C) at 24 hpvi as previously observed
(Borel et al., 2010). Co-infected, CHX-exposed samples at
both 24 and 72 hpvi (Figures 4D,E) and in cells co-infected
with PEDVUV at 24 hpvi (Figure 4F) also contain primarily
ABs. Interestingly, smaller ABs with condensed, darkly stain-
ing nucleoids, were observed at later times post-PEDV infec-
tion (Figure 4E, white asterisk), some of which appeared to
be in the process of “budding” from larger ABs (Figure 4E,
white arrows). Thus, chlamydiae within PEDV co-infected cells
have the typical persistent/stressed AB ultrastructure regard-
less of whether or not viral replication is prevented by CHX-
exposure.
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FIGURE 3 | ABs are present in co-infected cells for up to 96 hpvi when

PEDV replication is blocked. (A–F) Vero cells were mock-infected (Mock),
mono-infected with C. pecorum (Cp), or co-infected with C. pecorum and
PEDV (Cp + PEDV) as diagrammed in Figure 1A. All cultures were
pre-exposed to 5 μg/ml CHX starting at 1 h before viral infection to prevent
PEDV replication, as indicated. At 24 hpvi (T24), 48 hpvi (T48), 72 hpvi (T72),
and 96 hpvi (T96), replicate coverslips were fixed and labeled with

anti-chlamydial LPS (green) and DAPI (blue). Replicate coverslips were also
stained for PEDV M protein to confirm suppression of viral replication; results
similar to those in Figure 1F were obtained (data not shown). Representative
fields from anti-LPS/DAPI stained coverslips are shown at 1000×
magnification with 15 μm scale bars. White arrows indicate anti-LPS-stained
AB. In (F), the inset shows a higher magnification view of an inclusion at 96
hpvi (white box).

DISCUSSION
Taken together, these and previously published (Borel et al., 2010)
data definitively demonstrate that PEDV co-infection induces
the C. pecorum persistence/stress response. Both anti-LPS IFA
and electron microscopic examination indicates the presence of
grossly enlarged, electronlucent ABs (Figure S1, Figure 4 and
Borel et al., 2010), which is consistent with the interrupted RB
cytokinesis observed during persistence/stress (Matsumoto and
Manire, 1970). Chlamydiae within co-infected cells are viable (as
shown by the ability to recover infectivity by 48 hpvi if viral
replication is inhibited by CHX-exposure; Figure 4A), but non-
infectious (as shown by reduced chlamydial titer immediately
post-co-infection; Figure 2G and Borel et al., 2010). Published
data indicate that: (i) recovery from penicillin-exposure takes
10–20 h after drug removal; and (ii) replicative RBs may “bud”
from ABs to reenter the productive developmental cycle (Skilton
et al., 2009). We observe similar recovery timing, in that infectious
EBs are not observed until 48 h after PEDV infection and CHX
addition (Figure 4A). Interestingly, at late times post-PEDV/CHX
addition, we detect smaller ABs with condensed nucleoids, some
of which appear to be budding from larger ABs (Figure 4E).
However, the presence (or absence) of replicative RBs “budding”
from ABs in co-infected cells can only be confirmed by time lapse
photography, similar to that published by Skilton et al. Though
we do not currently have access to the necessary equipment, it
might prove interesting to perform such analyses in the future to
determine whether AB to RB “budding” is a general characteris-
tic of the transition from persistent/stress to normal development
regardless of the stressor used.

Chlamydiae in co-infected cells enter the persistent/stressed
state regardless of whether PEDV replication is inhibited by CHX-
exposure or UV-inactivated virions are used for co-infection
(Figures 2, 4D–F). Control experiments show that PEDV repli-
cation ceases under these conditions (Figures 1B–F), demon-
strating that PEDV replication is not required to induce the
persistence/stress response. These data have several important
implications. First, PEDV-induced C. pecorum persistence is
unlikely to be a byproduct of host resource consumption by
the replicating virus. This is an important issue because host
cellular nutrient deprivation can cause developing chlamydiae
to enter the persistent/stressed state (reviewed in Hogan et al.,
2004; Wyrick, 2010; Schoborg, 2011). Second, UV light inac-
tivates RNA viruses by damaging the genome, which prevents
genomic replication and subsequent events (like viral gene
expression and assembly). As a result, it seems more likely
that an early event in the PEDV replication cycle, such as
host cell attachment or entry, triggers this response. If so,
the initiating molecule is most likely to be a physical compo-
nent of the PEDV particle. Third, these data also suggest that
host proteins synthesized in response to PEDV co-infection,
like cytokines or type 1 interferons, are also unlikely to be
involved. Notably, Luminex bead-based ELISA experiments indi-
cate that neither TNF-α, nor IFN-γ are detected in co-infected
culture supernatants, though IL-6 is observed (data not shown).
Thus, PEDV-induced C. pecorum persistence/stress is unlikely to
be mediated by the cytokines currently known to induce this
response (reviewed in Hogan et al., 2004; Wyrick, 2010; Schoborg,
2011).
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FIGURE 4 | The PEDV-induced developmental cycle disruption is

reversible. (A) Vero cells were mock-infected (Mock; data not shown),
mono-infected with C. pecorum (Cp), or co-infected with C. pecorum and
PEDV (Cp + PEDV) as diagrammed in Figure 1A. Cultures (+CHX) were
pre-exposed to 5 μg/ml CHX starting at 1 h before viral infection to prevent
PEDV replication, as described in Figure 1A. At 24 hpvi (T24), 48 hpvi (T48),
and 72 hpvi (T72), replicate coverslips were used for sub-passage titer
analysis. Inclusion counts were used to calculate inclusion forming units
(IFU)/mL (Y-axis). The time hpvi and sample are shown below the X-axis. The
average from three biologic replicates ± s.e.m. is shown; these data are
representative of three independent experiments. Statistical comparisons are

indicated by brackets and all were significant to p < 0.005. (B–F) Vero cells
were mock-infected (Mock; not shown), infected with C. pecorum (Cp),
infected with C. pecorum and PEDV (Cp + PEDV), or infected with C.
pecorum and PEDVUV (Cp + PEDVUV), as shown in Figure 1A. Some cultures
(+CHX) were pre-exposed to 5 μg/ml CHX starting at 1 h before viral
infection. At 24 hpvi (T24) and 72 hpvi (T72), replicate coverslips were fixed
and processed for transmission electron microscopy. Representative
photomicrographs at 7000× magnification are shown, scale bars are 2 μm.
RB (RB-black arrow), EB (EB-black arrow), and AB are indicated. A white
asterisk and double white arrows indicate a small AB with a condensed
nucleoid that may be “budding” from an adjacent AB (E).

If a PEDV virion component does, indeed, influence the C.
pecorum developmental cycle, which is the most likely component
involved? The coronavirus literature suggests several likely candi-
dates, one of which is the viral envelope S glycoprotein. PEDV
attachment and entry are initiated when the S protein binds
to aminopeptidase N (APN or CD13) on the host cell sur-
face (Li et al., 2007; Nam and Lee, 2010). CD13 is a 150- to
160-kDa type II glycoprotein that has peptidase activity and is
expressed by epithelial cells in the kidney, intestine and respi-
ratory tract (Wentworth and Holmes, 2001). CD13 is a known
modulator of signal transduction and cell motility (Petrovic et al.,
2007), and regulates TNF-α-induced apoptosis in neutrophils by
inhibiting TNFRI shedding (Cowburn et al., 2006). CD13 also
co-localizes with FcγRI (a receptor for immunoglobulin Fc) on
the monocytic cell membrane, suggesting it may act as a regu-
lator of FcγRI signaling (Mina-Osorio and Ortega, 2005). The
SARS coronavirus (SARS CoV) S protein is also a pathogen

associated molecular pattern (PAMP) that signals through the
host Toll-like receptor 2 (TLR-2) to stimulate IL-8 production
from human macrophages (Dosch et al., 2009). Finally, mouse
hepatitis virus (MHV) and SARS-CoV S proteins increase endo-
plasmic reticulum (ER) stress in murine L fibroblasts (Versteeg
et al., 2007).

Another known “bio-active” coronavirus virion component
is the single-stranded RNA (ssRNA) genome, which like S pro-
tein, would be present in cells that are either infected with
PEDVUV or infected with replication-competent PEDV but pre-
exposed to CHX. Single-stranded viral genomic RNAs (ssRNAs)
are strong activators of TLR7 and TLR8, which subsequently acti-
vate diverse cellular processes, including pro-inflammatory and
regulatory cytokine production (reviewed in Cervantes et al.,
2012). Recently, GU-rich RNA fragments derived from the SARS-
CoV ssRNA genome were shown to activate TNF-α, IL-6, and
IL-12 release from murine RAW264.7 cells in culture via TLR7
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and TLR8 activation. These RNAs can also cause fatal acute lung
injury in mice in the absence of infectious virions (Li et al.,
2013b). Thus, contact with PEDV S protein and/or genomic RNA
from incoming virions can profoundly alter host cell physio-
logic processes. Whether or not such perturbations subsequently
influence chlamydial development is currently unknown, but is a
question we are very interested in answering.

As mentioned above, CHX-exposure and PEDVUV infection
experiments both suggest that neither de novo synthesized host
proteins nor de novo produced viral components are required for
PEDV-induced C. pecorum persistence/stress induction. However,
a recent study suggests that low amounts of SARS-CoV and
murine hepatitis virus (MHV) RNA synthesis can occur even
when viral protein synthesis is inhibited with CHX (van den
Worm et al., 2011). It is also possible that low level viral RNA
expression and/or synthesis of PEDV proteins occurs in our sys-
tem even when replication is inhibited by CHX or by virion
UV inactivation. Though unlikely, we also have to consider
the possibility that a PEDV product produced during repli-
cation (rather than a viral particle component) might initiate
the observed effects on chlamydial development. The PEDV
ORF3 protein is one candidate with the potential to profoundly
influence the host cellular internal environment. PEDV ORF3
is a member of an increasingly large group of viral proteins
called “viroporins” and has potassium channel activity when
etopically expressed in either Xenopus oocytes or Sacchromyces
cerevisiae (Wang et al., 2012). Another coronaviral replication
product with significant host cell effects is double-stranded RNA
(dsRNA), which is produced during viral genome replication
(reviewed in Hagemeijer et al., 2012). Double-stranded RNA is
a potent activator of both TLR3 and cytoplasmic Rig-like recep-
tors (RLRs), which can activate IFN-β production and anti-viral
host cellular responses (reviewed in Kawai and Akira, 2008).
It is, therefore, possible that low-levels of dsRNA could alter
chlamydial development by activating other host anti-pathogen
responses. Alternatively, toxic effects of a PEDV protein, like
ORF3, on the host cell could produce a similar result. Because
our data indicate that PEDV replication proteins/RNA are less
likely candidates, we will first examine the possible contribu-
tion of PEDV virion components, like S protein and genomic
ssRNA.

While the CHX-exposure data suggest that de novo syn-
thesis of host proteins in response to PEDV infection is not
required to induce C. pecorum persistence/stress, host cells
can also release preformed mediators in response to damage
or infection. These molecules are called DAMPs (damage or
danger associated molecular patterns) and include host pro-
teins (like heat shock protein 60) and non-proteins [like uric
acid and extracellular ATP (ATPe)] (reviewed in Piccinini and
Midwood, 2010; Miyake and Yamasaki, 2012). Exposure of
chlamydia-infected host cells to ATPe or adenosine (Ado) arrests
the developmental cycle and reduces C. trachomatis infectivity,
as observed during persistence/stress. However, AB formation
is not observed in response to Ado (Pettengill et al., 2009).
Since PEDV co-infection is a strong inducer of AB forma-
tion (Figures 2, 4, Figure S1), it is unlikely to be mediated
by Ado release from co-infected cells. However, other DAMPs

released from PEDV-infected cells could abort normal chlamy-
dial development—a possibility that should be examined in the
future.

Since the specific viral and/or host inducer(s) molecule
is unknown, it is difficult to speculate on the mechanism
by which PEDV co-infection induces C. pecorum persis-
tence/stress. Prusty et al. suggest that HHV-6-induced host
cellular oxidative stress activates C. trachomatis persistence in
co-infected cells. However, antioxidant-exposure only partially
reverses the observed effect, indicating that other mechanisms
may also be involved (Prusty et al., 2012). Notably, SARS
CoV infection increases transcription of host oxygen stress-
related genes, suggesting that coronaviral infection may increase
host cell oxidative stress (Hu et al., 2012). Thus, compari-
son of oxidative stress markers in C. pecorum mono-infected
and co-infected cultures may also be warranted. Although
we do not yet know the inducers involved or the molec-
ular mechanism, our current data are essential to guide
future studies. Regardless of the mediator involved (host or
viral), its identification is likely to reveal interesting new
facets of the host/chlamydial interaction and the means by
which chlamydial entry into and exit from persistence/stress is
regulated.
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Figure S1 | PEDV co-infection induces C. pecorum AB formation at 24 hpvi.

(A–F) Vero cells were mock-infected (Mock), mono-infected with PEDV

(PEDV), mono-infected with C. pecorum (C. pecorum), or co-infected with

C. pecorum and PEDV (Cp + PEDV) as diagrammed in Figure 1A. At 24

hpvi, replicate coverslips were fixed and labeled with anti-chlamydial LPS

(green) and DAPI (blue). Representative fields at 1000× magnification are

shown with 15 μm scale bars in (A,B,D,E). (C,F) are higher magnification

photos of the boxed areas in (B,E). The scale bars in (A,B,D,E) are 15 μm;

those in (C) and (F) are 5 μm. White arrows indicate anti-LPS-staining AB.
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