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Visibility network Patterns and 
Methods for studying Visual 
relational Phenomena in archeology
Tom Brughmans* and Ulrik Brandes

Department of Computer and Information Science, University of Konstanz, Konstanz, Germany

A review of the archeological and non-archeological use of visibility networks reveals 
the use of a limited range of formal techniques, in particular for representing visibility 
theories. This paper aims to contribute to the study of complex visual relational phe-
nomena in landscape archeology by proposing a range of visibility network patterns and 
methods. We propose first- and second-order visibility graph representations of total 
and cumulative viewsheds, and two-mode representations of cumulative viewsheds. We 
present network patterns that can be used to represent aspects of visibility theories and 
that can be used in statistical simulation models to compare theorized networks with 
observed networks. We argue for the need to incorporate observed visibility network 
density in these simulation models, by illustrating strong differences in visibility network 
density in three example landscapes. The approach is illustrated through a brief case 
study of visibility networks of long barrows in Cranborne Chase.

Keywords: visibility networks, signaling networks, landscape archeology, viewsheds, Bernoulli random graphs, 
exponential random graph model

inTrODUcTiOn

A large diversity of visual relational phenomena is studied in landscape archeology using a wide 
range of methodological tools (Llobera, 2003). This diversity derives from the complexity of 
human behavior afforded by landscapes (Gillings, 2009). Visibility networks are one of many 
methodological tools that can help landscape archeologists to limit the complexity of the range 
of affordances of the landscape, when studying particular ways in which landscapes affect and 
structure human behavior. This paper aims to contribute to the study of complex visual relational 
phenomena in landscape archeology by proposing new visibility network patterns and methods.

The representation and study of visual properties as network patterns is largely restricted to stud-
ies in cognitive science, architecture, geography, and archeology. Different network science methods 
are used in these disciplines to study and represent a very diverse range of phenomena. In spatial 
cognition and artificial intelligence, networks are used as models of the mental representation of 
environments and applied, for example, in autonomous navigating robots (e.g., Mallot et al., 1997). 
Schölkopf and Mallot (1995) proposed the view graph as an approach to study visual navigation and 
path planning in cognitive science and artificial intelligence. In a view graph, nodes represent views 
(snapshots) and edges represent movements from one view to another. In architecture, they are used 
to study the visible area from observation points in a building or urban environment, to study the 
movement through and use of space (e.g., Turner et al., 2001). For example, an axial map created 
by drawing a set of axial lines through space on a two-dimensional plan of a built environment 
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TaBle 1 | Summary of multi-disciplinary overview of network data representation for visual relational phenomena.
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is a prominent tool in space syntax and is commonly used for 
the study of pedestrian movement patterns in architectural space 
(Hillier and Hanson, 1984; Turner et  al., 2005). In archeology 
visibility networks are used to represent the intervisibility of sites 
or features, most commonly for the study of past communica-
tion networks through visual signaling (e.g., Swanson, 2003). 
Visibility networks are also used to explore the properties of time 
series data (Lacasa et al., 2008), to study topics as diverse as hur-
ricanes (Elsner et al., 2009) and Alzheimer’s disease (Ahmadlou 
et al., 2010).

Despite this strong diversity of topics, only a very small 
range of network science techniques has been used to study the 
properties of visibility networks and scholars’ theories about 
how lines-of-sight affect human behavior. One area that has 
seen particularly little development is the study of landscape 
visibility analysis through visibility networks (O’Sullivan and 
Turner, 2001), although this field of study has great potential for 
landscape archeology.

In this paper, we argue that a number of the theories land-
scape archeologists formulate about how lines-of-sight could 
have affected past human behavior can be appropriately studied 
through visibility networks, and we present network science tech-
niques for representing aspects of such theories. After a discus-
sion of selected multi-disciplinary visibility network studies, we 
present new visibility network patterns, we explore the variability 
of visibility network density through a range of examples, as well 
as propose methods that can be used to formally represent and 
study aspects of theories proposed by landscape archeologists. 
A range of network science methods will be proposed to study 
the properties of these networks, to identify the frequency of 
network patterns in observed networks, and to compare observed 
networks with models representing different theories of visibility 

network creation. These methods will be illustrated using the 
locations of late pre-colonial sites on the island of La Désirade 
(Guadeloupe, French West Indies) and through a brief case study 
of intervisibility networks of long barrows in Cranborne Chase 
(Tilley, 1994).

VisiBiliTY neTWOrK sTUDies OUTsiDe 
archeOlOgY

Visibility networks are here defined as all uses of network data, 
consisting of a set of nodes and a set of edges, for the representa-
tion and/or analysis of visual properties (visual characteristics of 
entities within physical or abstract space). Different approaches 
to visibility network creation exist in a wide range of disciplines 
as mentioned above [see Franz et  al. (2005) for a review of 
graph-based spatial models in general]. We will discuss the use 
of visibility graphs in architecture and landscape studies in more 
detail because we believe they could inspire interesting new 
applications in archeology, as illustrated in the remainder of this 
paper (see Table 1 for an abstract summary).

Visibility graph (architecture)
In a visibility graph in the context of architecture, nodes rep-
resent isovists/viewsheds and edges represent intervisibility of 
isovists/viewsheds (Turner et al., 2001). A viewshed or “isovist 
is the set of all points visible from a given vantage point in space 
and with respect to an environment” (Benedikt, 1979, p. 47),  
and it can therefore be considered a visual property of the 
vantage point. The intervisibility of viewsheds can be defined 
in two ways: a first-order visibility relationship exists when 
the viewsheds of a pair of observation locations intersect and 
if these observation locations are themselves intervisible and a 
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second-order visibility relationship exists when the viewsheds 
of a pair of observation locations intersect but the locations 
are themselves not intervisible (Turner et al., 2001). Although 
it is argued such networks can subsequently be studied with a 
wide range of graph theoretical measures (Turner et al., 2001, 
p. 109), the published use of such measures is largely restricted 
to node clustering coefficient, node neighborhood size, and the 
mean shortest path length (Batty, 2001; Turner et al., 2001). The 
neighborhood size of a node is the set of nodes it is directly con-
nected to (its degree in network science terms) and in visibility 
graphs it represents the number of locations directly visible 
from an observation location. A node’s clustering coefficient 
is the number of edges between nodes in its neighborhood 
divided by the maximum number of edges in a neighborhood 
of this size and is interpreted as indicating “how much of an 
observer’s visual field will be retained or lost as he or she moves 
away from that point” (Turner et al., 2001, p. 110; this interpreta-
tion is contested by Llobera, 2003, pp. 27–28). A node’s mean 
shortest path length is defined as the mean of all shortest paths 
from this node to all other nodes (what Turner and colleagues 
refer to here is known in network science literature as a node’s 
closeness centrality, whereas the mean shortest path length is 
more commonly used to refer to the mean of all shortest paths 
between all nodes as a measure for the network as a whole). 
Batty (2001) further explores the distance attribute of lines-of-
sight in a visibility graph, by measuring the average, minimum 
and maximum distance of a location’s viewshed, as well as the 
compactness (average divided by maximum distance).

Visibility graph (landscape)
Crucial in the context of this paper is that first-order visibility 
graphs have been proposed for landscape visibility analysis  
(De Floriani et al., 1994; Nagy, 1994; Puppo and Marzano, 1997; 
O’Sullivan and Turner, 2001). An overview of the applications of 
landscape visibility analysis that can be represented by visibility 
graphs is offered by Nagy (1994), who distinguishes between: 
locating observation points and hiding places, determining line-
of-sight communication networks, scenic and hidden surface 
paths, identification of landforms like peaks and pits, and the 
use of visibility for navigation. De Floriani et  al. (1994) used 
visibility graphs to represent lines-of-sight between locations 
in a landscape, to study the line-of-sight network problem of 
finding the minimum number of nodes, which must be placed 
on a landscape to ensure communication through intervisibility 
between a set of nodes. O’Sullivan and Turner (2001) used 
the visibility graph as a network data representation of a total 
viewshed in a landscape (i.e., lines-of-sight from every location 
to every location in a landscape; Llobera, 2003), and measured 
the node degree, node clustering coefficient, and the network’s 
mean shortest path length. The authors suggested visibility 
graphs could be studied using a wider range of network science 
approaches, like centrality, cohesive subgroups, and structural 
equivalence. Such studies are still to appear to our knowledge, 
and the current paper significantly expands the network science 
arsenal for studying visibility networks with a different range of 
techniques closely tied to the theoretical motivations why one 
creates a visibility network.

VisiBiliTY neTWOrK sTUDies  
in archeOlOgY

Although formal visibility studies in archeology are well estab-
lished (Lake and Woodman, 2003; Llobera, 2003), visibility 
network studies in archeology are rare and employ a similarly 
limited range of network science techniques, often restricting 
the study to a network diagram representation that is explored 
visually. An early example is David Fraser’s (Fraser, 1980, 1983, 
pp. 379–387) study of past power relationships of dominance 
and subservience, which Fraser argues might be expressed in 
the dominant and intervisible positions of chambered cairns in 
Orkney (United Kingdom):

If one cairn can be seen from many other cairns then it 
is always present and can never be ignored by the users 
of those other cairns. If messages were passed between 
cairns by visual means (such as flags or beacons) then 
a highly intervisible cairn becomes an important link 
in the dissemination of information (Fraser, 1983, 380).

Intervisibility of cairns was determined through observation 
in the landscape, reciprocity (i.e., mutual visibility) between 
cairns was assumed, and a visibility network was created where 
nodes represent chambered cairns and undirected edges repre-
sent intervisibility. Three network measures were applied: the 
connectivity index refers to the proportion of observed edges over 
the number of potential edges (i.e., the network density), nodality 
refers to the degree of a node and degree distribution is explored, 
and a node’s cutpoint index refers to the number of components 
created by the removal of this node (Fraser, 1980). Although 
Fraser concluded the approach did not offer strong evidence for 
the existence of power relationships expressed through cairn 
location, it did suggest that certain groups of cairns may have 
been purposefully located in visually dominant places.

Another example of the creation of visibility networks through 
observation and visual assessment is provided by Christopher 
Tilley (1994) (pp. 156–166) in his book “A Phenomenology of 
Landscape”. An undirected visibility network is explored visually 
and using node degree, and a process is suggested to explain the 
patterns identified. This work will be discussed in more detail and 
expanded on in a brief case study below.

Ruestes Bitrià (2008) in her work on intervisibility of Iron Age 
hillforts in Catalunya derives a visibility network by representing 
hillforts as nodes and their intervisibility as edges. The resulting 
network was explored visually, and it was concluded that it could 
have supported a communication network. Through his study of 
hilltop features around the site of Paquimé (Mexico), Swanson 
(2003) also aimed to explore whether these locations could 
have functioned as a fire-signaling communication network.  
An undirected visibility network was created where nodes repre-
sent sites and edges their intervisibility. Swanson also compared 
the visibility network he observed with simulated visibility net-
works by sampling random points in the landscape, an approach 
also taken by Earley-Spadoni (2015) in her study of Early Iron 
age and Urartian fire beacon signaling network. A further study 
of visual signaling networks is provided in Shemming and 
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Briggs’ (Shemming and Briggs, 2014) analysis of Anglo-Saxon 
place names and communication networks in Southern England. 
Possible beacon locations were conjectured from Anglo-Saxon 
place names, and compared with patterns of intervisibility to 
explore whether they could indeed serve as a communication 
network, therefore adding credibility to their identification as 
beacon locations.

De Montis and Caschili (2012) perform a formal vis-
ibility network analysis in their study of intervisibility among 
Nuraghes (prehistoric towers) in Sardinia (Italy). The authors 
aim to “investigate the hypothesis that the spatial patterns of 
the Nuraghes obey rules of intervisibility control over the sur-
rounding territory” (De Montis and Caschili, 2012, 315), that 
they could have functioned as a communication network, and 
that they were not isolated entities but worked as a “networked 
settlement” linked together by lines of intervisibility. The 
intervisibility network was derived from binary viewsheds 
using single observer locations on the Nuraghes. Like Ruestes 
Bitrià and Swanson, the authors also only consider mutual vis-
ibility of importance and their network is therefore undirected, 
missing the opportunity to explore situations where a line of 
sight between Nuraghes is not reciprocated, which we believe 
should be included if one wishes to evaluate visual control (we 
conceptualize visual control as the ability to observe many loca-
tions from a vantage point whereas a node’s visual prominence 
is the ability to be seen from many locations; see Brughmans 
et al., 2014). Three local node-based measures are used: degree, 
betweenness centrality and clustering coefficient. The use of 
betweenness centrality (a measure that calculates paths between 
nodes which are considered media for the flow of material and 
immaterial resources) is appropriate in light of the authors’ 
assumption to treat this network as a communication network.

In her study of settlement patterns in the north-western 
Dominican Republic, Samantha de Ruiter (2012) aims to evaluate 
what role visibility could have played in the selection of site loca-
tions. De Ruiter emphasizes the need to experience visibility as 
well as calculate it. Through a survey of the study area the author 
became familiar with the physical landscape and was able to visu-
ally identify key landscape features, resource areas and other sites 
from site locations, information that was subsequently compared 
with the results of formal visibility analyses. She calculated the 
percentage of the study area that is visible from sites and the 
percentage of sites visible from other sites, which allowed her to 
create a network of intervisible sites that was explored visually.

Finally, exponential random graph modeling (ERGM) has 
recently been proposed as an approach to represent and explore 
the dependence assumptions motivating an archeological visibil-
ity study (Brughmans et al., 2014, 2015). The method compares 
the frequency of configurations (small network patterns repre-
senting the dependence assumption) in the observed visibility 
network with their frequency in stochastic models.

neTWOrK DaTa rePresenTaTiOn FOr 
VisiBiliTY neTWOrKs

This overview reveals that network data have been used very dif-
ferently in a diversity of disciplines to represent a wide range of 

phenomena. However, there is little cross-fertilization between 
disciplines in the use of visibility network data representation. 
A notable exception to this is the use of first-order visibility 
graphs in both architecture and archeology. We believe that 
exploring more diverse ways of using network data representa-
tions might well lead to useful new ways of studying visibility 
networks in these and other disciplines. In this section, we will 
develop this argument for landscape archeology in particular, 
by offering examples of alternative network data representa-
tions of visual properties. To illustrate these examples, we  
will use the locations of the late pre-colonial sites of Morne 
Cybèle, Morne Souffleur, and Anse Petite Rivière on the island 
of La Désirade (Guadeloupe, French West Indies) (we selected 
these three sites for their prominent locations only to best 
illustrate the concept of our proposed network methods, an 
actual visibility study of these sites is published as Brughmans 
et al., 2017).

In landscape archeology, visibility networks are most com-
monly created by representing archeological features or sites 
that are the focus of research interest as nodes, and lines-of-sight 
between them as undirected edges (Figures  1A,B). However, 
most sites and features are not single points in space but occupy 
areas. This can be incorporated in a visibility network in multiple 
ways:

 (a) Representing each point location within a site area as a node, 
and each line-of-sight from each point location as an arc  
(a directed edge) (Figures 1C,D).

 (b) Bundling all lines-of-sight of each point location and repre-
senting them as a weighted arc (where the weight attribute of 
the arc represents the number of lines-of-sight) emanating 
from a single node per site (Figure 1E).

 (c) Representing the area of a site as a node attribute that can be 
used in further network analysis (Figure 1F).

 (d) A combination of the above (Figure 1G).

Representing point locations in site areas as shown in 
Figures 1C,D offers the advantage of being able to address dif-
ferent questions: from what locations in a site area can locations 
in another site area be seen? From what locations can other sites 
not be seen? What locations have both incoming and outgoing 
lines-of-sight?

Lines-of-sight are commonly represented in landscape 
archeology as binary undirected edges without attribute infor-
mation (Figure 1B). However, lines-of-sight in this context are 
fundamentally directional phenomena, connecting the eyes of 
an observer with an observed feature. They could therefore be 
represented as directed arcs (Figures 1E,G), although in many 
research contexts it is desirable to assume intervisibility when 
an equal height is used for the observer and target, or due to 
the limitations of the input data (accuracy of site location, 
resolution of topography model; see Conolly and Lake, 2006, 
230, Figure 10.17). This presents an advantage of network data 
representations over raster representations of cumulative and 
total viewsheds in particular, which do not typically distinguish 
between incoming and outgoing lines-of-sight within a single 
raster. Instead of binary edges representing either the presence 
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or absence of a line-of-sight between two sites, weighted edges 
could be used to represent the number of lines-of-sight from 
all locations in a site area (Figures  1E,G). Finally, additional 
information about the lines-of-sight, like their length or experi-
mentation settings, could be represented as attribute informa-
tion of the edge or arc. In research contexts where probabilistic 
viewsheds are generated (Fisher, 1994), the probability of 
a line-of-sight could be included as attribute information 
(e.g., Brughmans et  al., 2015). This attribute information can 

subsequently be used to select and study subnetworks (e.g., all 
lines-of-sight with a probability over 50% and a length shorter 
than 3 km).

Network data can also be used to represent phenomena other 
than direct lines-of-sight between observers and sites, as we 
have learned from the multi-disciplinary overview in Section 
“Visibility Network Studies Outside Archeology.” We argue 
the use of second-order visibility graphs might prove a useful 
alternative representation of the results of a cumulative viewshed 
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analysis (the locations visible from a set of observation loca-
tions; Wheatley, 1995), where a pair of nodes representing sites 
is connected by an undirected edge if part of the surrounding 
landscape is visible from both sites (Figure 2). First- and second-
order visibility networks allow one to address different research 
questions. Direct lines-of-sight between sites hypothesized to 
have formed a signaling network can be explored using a first-
order visibility network representation (Figure 2A), whereas the 
ability to observe the same parts of the surrounding landscape 
from sites hypothesized to have been used for visually control-
ling the landscape can be explored using second-order visibility 
networks (Figure 2B).

Moreover, the use of second-order graphs and landscape 
visibility graphs can be combined in a two-mode network 
representation, where one mode represents the observation 
locations of the cumulative viewshed as nodes and the other 
mode represents each location in the landscape as nodes.  
An example of such a two-mode network is shown in Figure 3A, 
and a geographical representation of the same network in 
Figure 3B. We purposefully created a visibility network with 
a very coarse geographical resolution (landscape points are 
spaced at 200 m intervals), and we want to highlight that this 
example and the borders of the study area are entirely artificial. 
This visibility network merely serves to clearly illustrate the 
method we propose, whereas in real studies an appropriate 
geographical resolution will need to be selected and the issue of 
possible edge effects at the borders of the analysis area will need 
to be addressed. A one-mode projection of this two-mode net-
work on the observation locations results in the second-order 
graph of observation locations, where a pair of observation 
locations is connected by a weighted edge representing the 
number of locations in the landscape they can both observe 
(Figures  3C,D). A one-mode projection on the landscape 
locations represents pairs of landscape locations visible from 
the same observation location (Figure  3E). The two-mode 
network (Figures 3A,B) has the advantage of allowing one to 
explore what locations can be observed from what sets of sites, 
information that is lost in a raster representation of a cumu-
lative viewshed with more than a few observation locations.  

The one-mode network of observation locations (Figure  3E) 
offers the advantage of being able to explore clusters of locations 
that can be observed from the same or similar sets of sites, by 
using network community detection algorithms (see Fortunato, 
2010 for an overview of such methods). Moreover, note how 
the color coding does not necessarily reflect geographically 
proximate locations (Figures 3B,D), whereas clusters of nodes 
with the same color are more clearly visible in this one-mode 
network representation (Figure 3E).

Finally, we believe landscape visibility graphs could serve as 
a useful alternative representation of total viewsheds (Llobera, 
2003), where each location in a landscape is represented by 
a node and lines-of-sight connect all intervisible locations. 
Although much archeological visibility analysis is site-centric 
by focusing on the visual properties of a set of archeological 
features, recent studies emphasize the need to study how sites 
are embedded within the visual properties of landscapes as a 
whole through the use of total viewsheds: the sum of viewsheds 
from every single location in a landscape (e.g., Llobera, 2003; 
Eve and Crema, 2014; Gillings, 2015; Brughmans et al., 2017). 
In such studies, landscape graphs as introduced by O’Sullivan 
and Turner (2001) can be used as alternative representations 
of total viewshed results, in which nodes represent landscape 
locations and pairs of nodes are connected by an edge if a 
line-of-sight connects these locations. Figure 4 illustrates this 
through a purposely coarse resolution total viewshed, to better 
explain the approach. Both the geographical and network data 
representations of total viewsheds are useful for highlighting 
certain patterns, each has distinct advantages over the other. 
The network data representation does not aim to be as useful 
in communicating spatial patterns, for which a geographical 
representation would be more appropriate. We argue these 
alternative representations can be used alongside each other, 
applying the most appropriate representation for the data 
patterns one is interested in. The network data representation 
of a total viewshed has the advantage of being able to identify 
structural properties of research interest for a landscape as a 
whole rather than just for a set of site-based observation loca-
tions. Some network measures can be used as alternatives to 
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equivalent measures in a raster data representation of a total 
viewshed. For example, the degree of a node is equivalent to 
the number of locations visible from a given raster cell, and the 
degree distribution is therefore equivalent to the distribution 

of values in the total viewshed raster. The degree distribution 
in Figure 5 of the network shown in Figure 4 is skewed to the 
right, suggesting that most nodes have a limited degree whereas 
a few have a far higher degree. In this network, the site of Morne 
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FigUre 5 | Degree distribution of visibility network representing total viewshed results shown in Figure 4.

FigUre 4 | Geographical (a) and network (B) data representation of total viewshed results, where each node in the landscape is represented by a node and pairs 
of nodes are connected by an edge if this pair of locations is connected by a line-of-sight. This figure presents a purposely coarse resolution total viewshed 
experiment to better illustrate the approach.
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Cybèle has the highest degree: it is intervisible with 33 other 
locations. However, some network science measures have no 
equivalent in raster data representations and therefore offer new 
approaches to exploring total viewshed results. Examples include 
techniques based on the calculation of paths through a network 

like betweenness centrality, or the node clustering coefficient 
as proposed for landscape visibility graphs by O’Sullivan and 
Turner (2001). Of particular interest among these techniques is 
the ability to identify network data configurations representing 
theoretical dependence assumptions (see Table 3 for the count 
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TaBle 2 | Configurations for theories of visibility networks in landscape 
archeology.

configuration Description network pattern

Isolate Tendency for nodes to 
be invisible from other 
nodes

Edge Baseline tendency for 
pairs of nodes to be 
intervisible

Triangle Tendency for the 
visibility network to be 
clustered

3-path Tendency for paths of 
intervisible nodes. Can 
be used to represent 
visual signaling

Alternating-star Tendency for some 
nodes to have far 
more lines-of-sight 
than others, i.e., the 
degree distribution is 
spread or skewed. 
Can be used to 
represent visually 
prominent nodes 
or nodes visually 
controlling other nodes 
in the landscape
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of configurations in the network shown in Figure 4). In the next 
section, we will introduce a range of theoretical dependence 
assumptions and their associated network data representations 
that have particular potential for landscape archeology research.

VisiBiliTY TheOries anD neTWOrK 
PaTTerns

A particularly striking conclusion drawn from the literature 
above is the limited use, especially in landscape archeology, of 
network patterns to represent theories about the functioning, 
emergence, or evolution of visibility networks. Such theories 
are referred to in network science as dependence assumptions 
(Brandes et  al., 2013): theories about how edges are depend-
ent on each other’s existence. Network patterns can be used 
as representations of what one expects to see in light of such 
a theoretical assumption. Visibility theories are often implied 
in archeological studies of visibility networks and even com-
monly stated explicitly. For example, in their study of vis-
ibility networks among Nuraghes in Sardinia, De Montis and 
Caschili (2012) hypothesize the existence of a communication 
network and argue this is reflected through paths in the vis-
ibility network. This represents a visibility theory: Nuraghes are 
positioned in such a way that they are intervisible with other 
Nuraghes and together create paths, where information can be 
spread by visual signaling between a pair of not-intervisible 
Nuraghes through a third. Such theories can be represented by 
network patterns, commonly called configurations in network 
science. For example, De Montis and Caschili (2012) consider 
a path through their visibility network to represent the ability 
for information to be shared through visible signaling between 
the Nuraghes.

It is crucial to highlight that the approach we suggest is not 
concerned with evaluating the probability and reason of the 
observed network structure emerging in a particular physical 
landscape. While this would be the ultimate goal, its confound-
ing factors include the underlying social processes, topography, 
and human interference with it. Instead, we focus on one 
question only: how likely is it that this observed network is the 
result of hypothesized structural processes? This assumes that 
the landscape offers sufficiently many possibilities for the net-
work structure to form, so that it is not necessarily the case that 
configurations are under- or over-represented. Thus, the model 
is not restricted by topography and only the hypothesized struc-
tural processes are simulated. The abundance of patterns found 
in simulated networks is then used to assess the significance of 
those in the observed network.

In Table 2, we list a number of theories drawn from the study 
of visibility networks in landscape archeology, which could also 
possibly find useful application in other disciplines. We present 
undirected network data configurations for these theories, 
equivalents for directed visibility networks are published by 
Brughmans et al. (2014).

Isolates can be used in studies where the tendency for nodes 
to be invisible is explored (e.g., Gillings, 2015), while edges can 
be used to represent a tendency for nodes to be connected in the 

network. Triangles can be used to represent a tendency for the 
visibility network to be clustered. Paths can be used to represent 
communication through intermediary nodes, in studies where 
visual signaling networks are hypothesized (e.g., Fraser, 1983;  
De Montis and Caschili, 2012; Ruestes Bitrià, 2008; Swanson, 
2003; Shemming and Briggs, 2014): we expect a non-trivial 
signaling network to contain paths where information can be 
shared between a pair of non-intervisible locations via one or 
more intermediary locations. Alternating-stars can be used to 
represent visually prominent nodes, or nodes visually control-
ling surrounding nodes, in studies where the importance of 
hub nodes in the visibility network are hypothesized (e.g., 
Fraser, 1983; Tilley, 1994). A network with a high number of 
alternating-stars will have a highly skewed degree distribution, 
with very few nodes having a high number of links while most 
nodes have a very limited number of links (for technical details 
see Koskinen and Daraganova, 2013, 65–67). Moreover, where 
more geographical reality is desired and appropriate, the length 
of lines-of-sight can be incorporated in all these network data 
patterns as an edge attribute to explore correlations between 
changes in length and probabilities of the creation of network 
data patterns (for geospatial models including edge length, see 
Robins and Daraganova, 2013, 99–101).

These network data configurations can be used in a diversity 
of ways to express and explore theories about the structure and 
development of visibility networks, and how they affected past 
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TaBle 3 | Count of visibility network configurations in the total viewshed network shown in Figure 4 above, and in four different Bernoulli random graph models 
(10,000 randomly generated networks with 120 nodes).

configuration Observed network random network Fixed density structural zeroes Fixed density and structural zeroes

Nodes 120 120 120 120 120
Edges 460 3,581.422 460 3,568.37 460
Density 0.064 0.502 0.064 0.499 0.064
Isolates 4 0 0.0422 0 0.0415
Triangle 682 35,448.42 74.525 35,065.17 74.576
3-path 64,883 12,546,873 26,411.43 12,412,036 26,410.529
Alternating-star 1,416.301 13,845.688 1,369.571 13,793.479 1369.547

All counts are averages over all 10,000 samples. Note how comparison of counts of configurations between these networks with strongly different densities is problematic because 
higher configuration counts can be expected merely due to the higher network density.
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human behavior. In the first instance, one can identify those 
configurations that best express one’s theories. One would 
expect the configurations representing one’s theories to be par-
ticularly frequent in the observed visibility network, which can 
be evaluated by counting the frequency of all configurations in 
the network being studied. The first column of results in Table 3 
shows the count of configurations of the total viewshed network 
presented in the previous section (Figure  4): this network has 
a high number of star configurations, triangles and three-paths, 
and few isolated nodes.

However, a simple count of configurations does not reveal 
whether they are more frequent than would be expected 
by chance in a network of this size. To evaluate this, we can 
represent a random process where edges between each pair of 
nodes are created with equal probability, through a Bernoulli 
random graph model: each edge will have a probability of being 
created at the toss of a coin. The count of configurations of the 
graphs resulting from such a model can be compared with those 
of the observed network to evaluate whether a random graph 
model where edges emerge independent of each other is a good 
description of the observed visibility network. The result of a 
Bernoulli random graph model with 120 nodes are shown in the 
second column of Table 3 (the configuration counts are averages 
over 10,000 randomly generated networks), confirming that the 
observed network differs strongly from the randomly generated 
ones, which are far more dense (3,581.422 edges on average, 
compared to 460 edges for the observed network). Network 
density is defined as the fraction of the number of edges that 
are present to the maximum possible number of edges in the 
network. However, comparison with such randomly generated 
networks is problematic because they will always have about 
50% of all edges present, whereas this is rarely possible for vis-
ibility networks in physical landscapes. Comparison of configu-
ration counts between networks with different densities as in 
Table 3 is problematic, since a higher count can be expected for 
all configurations in networks with higher network density. We 
merely included this example of a random network model with 
network density 0.5 because we noticed this model is very com-
monly but inappropriately used in archeological and historical 
network research due to the misleading appearance of unbiased 
randomness, which is in reality a strong bias toward fixed 0.5 
network density. We strongly argue for random network models 
to assume the same network density as the observed networks 

they are compared with. In the next section, we will explain why 
it is more appropriate to compare with a model with network 
density equal to the observed network.

DensiTY OF VisiBiliTY neTWOrKs  
in PhYsical lanDscaPes

The main reason why randomly generated networks are far 
denser than the observed visibility network is simply that, com-
binatorially, there are many more dense networks. An instance 
sampled uniformly at random from the set of all networks is not 
subject to limitations imposed by physical realities. However, in 
real-world physical environments, visibility network density is 
affected by the maximum viewing distance, observer and target 
elevation, the spatial density of observation points (points-per-
area), the landscape topography, vegetation and atmospheric 
conditions: in actual landscapes some lines-of-sight between 
pairs of observation points can therefore never be created, while 
in randomly generated networks all edges between all pairs of 
nodes have a probability of being created. In this section, we give 
a few examples of how much visibility network density can vary 
in physical landscapes, to illustrate the importance of incorporat-
ing visibility network density into visibility network models. The 
examples are shown in Figures 6–10 and their network density 
scores are presented in Table 4.

The maximum viewing distance concerns both the effects 
of the curvature of the earth and the distance at which features 
of interest are visually distinguishable. In a landscape with flat 
topography, the higher the observation height and the higher 
the observed feature, the further this feature will remain visible 
above the horizon. But inevitably all features become invisible 
to a human observer as they disappear behind the curvature of 
the earth, which limits the network density of visibility networks 
spanning huge areas. Moreover, landscape archeologists are often 
particularly interested in the ability of human observers to see 
particular features such as archeological sites, smoke columns, 
or other humans. This can be affected by the distance at which 
the feature is physically visible to humans in general, the ability 
of a particular observer to distinguish the feature (i.e., cultural 
affinity with the feature, regular exposure to the feature, or the 
state of the observer’s eyesight), and how the feature contrasts 
against the background (Wheatley and Gillings, 2000). In such 
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FigUre 6 | Densities (D) of visibility networks between differently distributed observation locations in a completely flat square landscape of 9 km by 9 km. The 
following experiment settings were used for Figures 6–8: maximum viewing distance = 5 km; curvature of the earth taken into account; elevation observation 
points = 1.6 m; elevation observed point = 0 m.
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cases, a theoretical maximum distance can be determined up 
to which features of interest are distinguishable by the observer  
(e.g., Gillings, 2015). The effect maximum viewing distance has 
on the network density of visibility networks in a flat landscape 
is therefore to connect pairs of nodes spaced at distances shorter 
than the maximum viewing distance and not to connect pairs 
of nodes at longer distances. This is illustrated most clearly in 
the patterned distribution shown in Figure 6, where nodes posi-
tioned in the four corners of a flat landscape are not intervisible 
because they are too far away from each other.

However, the examples shown in Figures  7 and 8 caution 
against generalizing trends in visibility network density derived 
from unrealistically flat landscapes: visibility network density can 
be as variable as the landscapes and the observer distributions 

they are derived from. Figure  7 shows visibility networks in a 
hilly landscape in Grande-Terre and Figure  8 shows visibility 
networks in a particularly mountainous landscape in Basse-Terre 
(both in Guadeloupe, French West Indies). Most obvious is that 
visibility networks in flat landscapes (Figure 6) are far denser than 
those in hilly and mountainous landscapes (Figures  7 and 8).  
Moreover, a higher number and overall spatial density of obser-
vation locations (points-per-area) does not necessarily lead to a 
higher visibility network density, since network density is relative 
to the number of nodes in the network: the higher the number 
of nodes, the more edges that need to be created to get a certain 
network density score. High local spatial densities of observation 
locations often lead to clusters in the visibility network between 
closely spaced sets of nodes, but can also lead to lower visibility 
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FigUre 7 | Densities (D) of visibility networks between differently distributed observation locations in a hilly landscape (Grande-Terre in Guadeloupe, French West 
Indies) of 9 km by 9 km. In Figures 7–10, the topography is only illustrated once in the top left to more clearly show differences in network structures.
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network densities if these clusters are spaced at distances higher 
than the maximum viewing distance (see patterned distributions 
in Figures 6–8). A factor that does clearly lead to higher visibility 
network densities is higher elevations of observer and target loca-
tions (e.g., through the use of observation towers), as shown in 
Figures 9 and 10 where elevations of 10 m were assumed. We will 
not address the cases of vegetation and atmospheric conditions 
here, although they can be expected to further reduce visibility 
network density through obstruction and limiting maximum 
viewing distance.

We did not aim to provide a complete overview of visibility 
network density variability, but merely a range of examples that 
nevertheless allow for some summarizing remarks. Dense vis-
ibility networks can be expected in cases where most observation 
locations are positioned close to each other (within the maximum 
viewing distance), observer and target elevations are high, and 
there is little visual obstruction caused by topography. Sparse 
visibility networks can be expected in cases where observation 

locations are positioned far from each other, observer and target 
elevations are low, and there is much visual obstruction caused 
by topography.

In landscape archeology research contexts, there can be enor-
mous variety in the spatial density (points-per-area) and distri-
bution of observation points, the theorized maximum viewing 
distance, and the topography of the research area. However, the 
archeological literature review presented above revealed that, 
so far, visibility networks have been mainly used in research 
contexts where the intervisibility of large features is considered, 
like site areas, towns, long barrows, or hillforts, that are rather 
sparsely distributed over large and often hilly to mountainous 
landscapes and only a single observation point per feature is 
considered. In such cases, one can expect rather sparse visibility 
networks if past communities did not consider intervisibility 
between features in deciding on their locations, and slightly 
denser networks if features are positioned on great vantage 
points that offer lines-of-sight to other features. Higher densities 
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FigUre 8 | Densities (D) of visibility networks between differently distributed observation locations in a mountainous landscape (Basse-Terre in Guadeloupe, French 
West Indies) of 9 km by 9 km.
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can be expected in research contexts where high observation 
or observed elevations are assumed (e.g., Figures  9 and 10),  
such as lookout towers or smoke columns, where multiple 
observation locations would be used throughout site areas  
(e.g., Figures  1C,D), or where visibility over huge distances 
can be assumed, such as for the use of fire beacons in visual 
signaling networks.

The impact on visibility network density of a research con-
text’s particular landscape topography and assumed maximum 
viewing distance suggests to us that a convincing visibility 
network model should account for these elements. For example, 
we could modify the Bernoulli random graph model presented 
in the previous section in three ways. First, when randomly 
creating networks the network density can be fixed to that 
of the observed network. Second, when randomly creating 
networks we can prevent edges being created between node 
pairs that are spaced at distances higher than the maximum 
viewing distance. This can be done by marking these edges as 

“structural zeroes”: edges that we know cannot possibly exist. 
Third, the previous two techniques can be combined: a model 
where the simulated network density is equal to the observed 
network density, and no edges can be created between nodes 
farther removed from each other than the maximum viewing 
distance. Table 3 shows the results for these three techniques 
applied to the total viewshed visibility network introduced in 
the previous section: we notice that in this particular case fix-
ing, the network density has a much stronger effect on results 
since the research area is small and there are few node pairs 
spaced at distances larger than the maximum viewing distance 
(i.e., few structural zeroes). However, in all cases, the observed 
network configuration counts are still very different from those 
of randomly generated networks. Since this is merely an abstract 
example to illustrate these techniques, we will not interpret 
these results any further here but rather apply them in a more 
interesting archeological case study in Section “Intervisibility of 
Long Barrows in Cranborne Chase” below.
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FigUre 9 | Densities (D) of visibility networks between differently distributed observation locations, with 10 m observer and target elevations, in a hilly landscape 
(Grande-Terre in Guadeloupe, French West Indies) of 9 km by 9 km. The following experiment settings were used for Figures 9 and 10: maximum viewing 
distance = 5 km; curvature of the earth taken into account; elevation observation points = 10 m; elevation observed point = 10 m.
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ergMs FOr VisiBiliTY neTWOrKs

Counts of configurations provide formal descriptions of 
the visibility networks, but on their own they do not reveal 
much about the processes giving rise to this network. We can 
explore such processes by comparing the structural features 
of the observed network with those of models that represent 
our archeological theories about the processes governing the 
creation and evolution of this network. Does a model with a 
tendency to create paths to enable visual communication and 
visually prominent nodes but no isolated nodes offer a good 
description of the observed network? Such questions can be 
addressed with ERGM, an approach belonging to a family of 
statistical models originally developed for social networks 
(Wasserman and Pattison, 1996; Anderson et al., 1999). ERGMs 
aim to investigate the dependence assumptions underpinning 
hypotheses of network formation by comparing the frequency 

of particular configurations in observed networks with their 
frequency in stochastic models that include selected configura-
tions as effects. This approach applied to the study of visibility 
networks is described elsewhere (Brughmans et al., 2014), and 
detailed technical documentation of the ERGM method and 
all configurations is available (Lusher et  al., 2013, and see in 
particular for geospatial ERGMs including edge length, Robins 
and Daraganova, 2013, 99–101). We further illustrate the use of 
ERGMs in the brief case study below.

There are a number of advantages to exploring our theories 
surrounding visibility networks through stochastic statistical 
models. First, it provides a formal representation of our archeo-
logical theories that facilitate communication as well as formal 
comparison with visibility networks in other geographical or 
temporal contexts. Second, our theories are often rather com-
plex, involving multiple effects that can influence each other and 
cannot be easily derived from merely exploring the structural 
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TaBle 4 | Density of example visibility networks shown in Figures 6–10.

node distribution landscape topography

Flat hilly Mountainous

Observer elevation 1.6 m (Figure 6) 1.6 m (Figure 7) 10 m (Figure 9) 1.6 m (Figure 8) 10 m (Figure 10)
36 nodes Regular 0.378 0.002 0.035 0.011 0.030

Patterned 0.270 0.008 0.056 0.022 0.035
Random 0.416 0.016 0.078 0.016 0.033

100 nodes Regular 0.436 0.005 0.045 0.003 0.034
Patterned 0.244 0.012 0.070 0.020 0.036
Random 0.487 0.009 0.058 0.025 0.038

FigUre 10 | Densities (D) of visibility networks between differently distributed observation locations, with 10 m observer and target elevations, in a mountainous 
landscape (Basse-Terre in Guadeloupe, French West Indies) of 9 km by 9 km.
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features of the observed visibility network or even counting the 
frequency of configurations. Third, a stochastic model introduces 
a degree of uncertainty resulting in a distribution of possible 
visibility networks, which is appropriate given the uncertainty 
inevitably associated with most archeological theories about vis-
ibility networks. Fourth, the approach can allow archeologists 

to discard and refine the theories they formulate by evaluating 
whether they provide a plausible description of the observed net-
work which is more likely than that the network was merely the 
result of chance. In the remainder of this paper, we will illustrate 
this approach by applying it to an early and highly influential 
example of the archeological use of visibility networks.
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FigUre 11 | Subnetwork at the center of the Cranborne Chase study area 
of the visibility network of long barrows by Tilley (1994) (Fig. 5.5).
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inTerVisiBiliTY OF lOng BarrOWs  
in cranBOrne chase

Christopher Tilley (1994) studied the intervisibility of Neolithic 
long barrows at Cranborne Chase (United Kingdom) using a 
network representation in which nodes represent long barrows 
and edges represent their intervisibility. The network was deter-
mined from observations during multiple visits in clear weather 
conditions during a period of 5 weeks, and when a clear line-of-
sight was impossible due to obstructions like buildings or dense 
woodland. Tilley made observations from locations closeby or 
inferred them from a map of the landscape’s elevation. Through 
an evaluation of the presumed past land cover, it is argued that 
the observed lines-of-sight are similar to, or underestimate, the 
degree of visibility in the Neolithic, especially for the more prom-
inent barrows: “there is little evidence to suggest that barrows 
which are prominently sited and intervisible today might not also 
have been during the period of their initial construction and use” 
(Tilley, 1994, 157). The network is subsequently explored visually 
and by comparing node degree. Tilley argues that some barrows 
were purposefully positioned with reference to visibility and 
suggests a process as an explanation of the network patterns he 
identified through exploratory analysis of the observed visibility 
network. This presents a highly insightful study of a visibility net-
work in an archeological context, of how the network might have 
evolved and how visibility of long barrows might have structured 
past human behavior.

In this section, we will show how applying additional net-
work science techniques provide alternative descriptions of this 
network and the suggested process, which might lead to new 
insights. We will illustrate how structural features of particular 
interest can be identified, how we can formally represent the 
hypothesized process, and explore to what extent it is in fact 
an appropriate description of the observed visibility network. 
This case study merely aims to illustrate these methods and it is 
outside our scope to evaluate and replicate Tilley’s visibility data 
collection. We therefore use the visibility network from Figure 
5.5 in Tilley (1994, p. 156; verified through personal communica-
tion with the author) for a secondary analysis. We will discuss 
each structural feature of the network that was considered of 
interest by Tilley, and how they can be explored using network 
science methods.

A first structural feature is a tendency for long barrows 
on the periphery of the study area to be isolated: “Part of the 
process of siting barrows in the center of Cranborne Chase 
was their relationship to other barrows and the Cursus while, 
on the periphery, a relationship to topographic features of the 
landscape, rather than to other monuments, appears to have 
been of paramount significance” (Tilley, 1994, 158). This sug-
gests different processes are responsible for the creation of the 
network structure in the center and the periphery of the study 
area. We will therefore focus our study on understanding the 
structural properties of the center of the study area (for this 
reason, the isolated peripheral nodes 29, 30, 31, 32, 33, 34, and 
39 are excluded from our analyses presented here). This central 
subnetwork is shown in Figure 11, and the count of configura-
tions and summary statistics are presented in Table 5. We notice 

this network still has three isolated nodes 14, 38, and 27 at the 
center of the study area.

An important structural feature for the center of the study 
area is a difference in the degree of nodes and the components 
to which they belong: “In general, it is possible to distinguish 
between (i) those monuments in which visibility was a primary 
concern in their location, situated on local high points, false crests 
and skylines and (ii) those in which visibility was not a dominant 
concern, situated at lower points in the local terrain” … “It is 
of interest to note that those barrows with the highest degree of 
intervisibility with others form members of pairs of larger bar-
row groups” (Tilley, 1994, pp. 158–159). This structural feature 
is revealed by the degree and connected component measures 
shown in Table 5. The network consists of two large connected 
components, referred to by Tilley as the eastern and western 
groups. In addition to these two, there is a smaller component con-
sisting of four nodes, and three isolated nodes forming their own 
components. On average, long barrows are intervisible with about 
3 other long barrows (see average degree in Table 5). However, 
when we plot the distribution of the number of lines-of-sight per 
long barrow then we notice a strong difference between them 
(Figure 12): the majority have a low degree (the most frequently 
occurring degree is 1), and a few nodes have a particularly high 
degree (long barrow 15 is intervisible with 9 other long barrows, 
long barrow 10 is intervisible with 7 other long barrows).

A further structural feature for the center of the study area 
is a tendency for nodes to be connected and not be isolated: 
“Being able to see other barrows from each mound was clearly 
an important factor in the location of many of them” (Tilley, 
1994, p. 158). The network measures in Table 5 reveal that this 
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FigUre 12 | Degree distribution of subnetwork at the center of the Cranborne Chase study area shown in Figure 11 above.

TaBle 5 | Network measures and count of visibility network configurations in the subnetwork at the center of the Cranborne Chase study area shown in Figure 11 
above.

configurations Observed network random network Fixed density network patterns

Nodes 32 32 32
Edges 49 247.702 49
Density 0.099 0.499 0.099
Isolates 3 0 1.146

Triangle 22 617.907 4.504

3-path 628 55,607.46 407.347

Alternating-star 102.789 862.827 94.015
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network has 49 edges and 32 nodes of which 3 are isolated, with 
a network density of 0.099. This network density score means 
that about 10% of all possible edges in a network with 32 vertices 
are present, which is actually quite dense when compared to the 
densities of example physical landscapes in Table 4. We did after 
all purposefully focus on a smaller area at the center of Tilley’s 
study area where the network is particularly dense.

But what do these numbers mean: is this network density 
higher than expected by chance for a network of this many nodes? 
To evaluate this, we created a Bernoulli random graph model, 
simulating 10,000 randomly generated networks with 32 vertices, 

which provided the network measures shown in the second 
column of Table  5. By comparing the structural features of the 
observed network (first column) with those of the randomly cre-
ated networks (second column), we notice they are very different: 
the network density in the latter is much higher, triangles, 3-path, 
and alternating-star are all much more frequent, and there are no 
isolates. However, we argued above that this high network density 
is to be expected and that this is not an appropriate comparison. 
To represent a random network creation process more appropriate 
for this particular research context, we can fix the network density 
to that of the visibility network observed by Tilley (we will not use 
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TaBle 7 | Goodness-of-fit t-ratio results for models 1 and 2 presented in 
Table 6 above.

effects t-ratio MODel 1 t-ratio MODel 2

edge 0.016 −0.029
2-star 0.198 0.073
3-star 0.426 0.302
4-star 0.641 0.648
5-star 0.885 1.024
Triangles 0.107 0.013
4-clique −0.388 −0.514
5-clique −0.29 −0.367
6-clique −0.193 −0.214
7-clique −0.133 −0.136
isolates −0.405 −0.006
Triangle2 −0.215 −0.309
Bow_tie −0.068 −0.04
3-path 0.084 −0.003
4Cycle 0.317 0.336
alternating-star 0.038 −0.026
AT(2.00) 0.438 0.326
A2P(2.00) −0.1 −0.24
AC(2.00) −0.407 −0.537
AET(2.00) 0.065 −0.044
SD degree dist 0.694 0.505
Skew degree dist 1.033 0.79
Global clustering 0.181 0.093
Mean local clustering 0.433 0.464
Variance local clustering 0.06 0.054

Effects included in the model shown in bold.

TaBle 6 | Two estimated exponential random graph modeling models with a 
good fit to the observed visibility network shown in Figure 11 above.

effects estimates se significant? gOF t-ratios

MODel 1
Edge −3.761 0.960 * −0.056
Triangle 1.598 0.229 * −0.013
3-path −0.041 0.017 * −0.043
Alternating-star 0.607 0.415 −0.060

MODel 2
Edge −7.567 2.480 * 0.000
Triangle 1.610 0.227 * 0.065
Isolates −2.529 1.450 −0.063
3-path −0.059 0.023 * 0.000
Alternating-star 1.913 0.921 * −0.005

Results are significant if the absolute value of the estimate is at least two times 
the absolute value of the SE. Goodness-of-fit (GOF) t-ratios should be lower 
than 0.1 for the effects included in the model; this t-ratio is derived by comparing 
the observed count of a configuration with those sampled from simulations: 
t-ratio = (observation − sample mean)/SE.
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structural zeroes since no theoretical maximum viewing distance 
is used in Tilley’s original study). The results of this model are 
shown in the third column in Table 5, and they are much more 
similar to the observed network than those of the previous model. 
However, the number of triangles, 3-paths, and alternating-stars 
are now all quite a bit less frequent than in the observed network. 
These results suggest that a random network creation process does 
not describe the observed visibility network very well. Indeed, 
we do not expect this network to have been randomly created by 
individuals in the past, but it is crucial that we confirm this before 
testing more interesting archeological theories. It is important to 
show that a random network creation model does not offer a good 
description of the observed network, because this represents the 
simplest relational assumption: there is no assumption about the 
dependency between edges. Excluding a random process allows us 
to explore more interesting and more complex processes. However, 
if a random network creation process were to offer a good descrip-
tion of the observed network then we would have to conclude that 
our ability to attach any confidence to a more complex network 
creation model with dependency assumptions is very limited.

In addition to Tilley’s identification and interpretation of 
key structural features mentioned above, the author suggests a 
hypothetical process that could have led to the observed network 
structure: “One explanation for this pattern might be that sites 
that were particularly important in the prehistoric landscape and 
highly visible ‘attracted’ other barrows through time, and sites 
built later elsewhere were deliberately sited so as to be intervisible 
with one or more other barrows. In this manner the construction 
of barrows on Cranborne Chase gradually created a series of visual 
pathways and nodal points in the landscape” (Tilley, 1994, p. 159).

To represent this theory, we can create a network model where 
the creation of edges happens respective to the presence or absence 
of other edges, rather than generating edges independent of one 
another as we did with the Bernoulli random graph model. This 
model should include a tendency for edges to be created to nodes 
that already have a higher degree, which can be represented by 
the alternating-star configuration. We can add more dependence 
assumptions to the model to represent the other structural features 
that Tilley described as important: a tendency to create lines-of-
sight (represented by the edge configuration), visual pathways 
(represented by the 3-path configuration), and clusters or groups 
of intervisible barrows (represented by the triangle configuration). 
We estimated an ERGM with the effects shown in Table 6. The 
results of a goodness-of-fit test are shown in Table 7, suggesting 
that the model is a rather good fit but not perfect since the trian-
gle parameter has a t-ratio just higher than 0.1 (here we use the 
criteria by Harrigan (2007) to determine what makes a good fit: 
estimated parameters in the model should have a t-ratio below 0.1 
and all others below 2). With the aim of obtaining a model with 
an even better fit, we decided to add to the model the tendency for 
long barrows in this central part of the study area to be intervisible 
with at least one other long barrow and therefore not be isolated 
(represented by the isolates configuration). The estimates of this 
second model are also shown in Table 6 and the goodness-of-fit 
results in Table 7, this time the model is a perfect fit.

This second model suggests a tendency against long barrows 
being isolated as was argued by Tilley, although this result should 

not be over-interpreted since it is not significant. The negative 
significant edge parameter suggests intervisibility of long barrows 
occurs relatively rarely, especially if they are not part of triangles 
and stars. Such a low network density can be expected in geo-
graphical networks where nodes are spread over large landscapes 
with complex topographies: the distance and obstructions might 
make many lines-of-sight between pairs of long barrows physi-
cally impossible (see section 6 above). The positive significant 
triangle effect suggests a tendency toward clusters of intervisible 
long barrows, as was argued by Tilley. The positive significant 
alternating-star parameter suggests a tendency for some long 
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barrows to be intervisible with far more long barrows than others. 
This is in line with Tilley’s theory that some long barrows might 
have “attracted” others, that for some long barrows intervisibility 
was more important than for others, and that some might be 
located to ensure intervisibility with several existing long bar-
rows in the landscape. This model can therefore not disprove that 
this process might have been deliberate. However, the negative 
significant 3-path parameter suggests this process did not create 
“a series of visual pathways” as argued for by Tilley, although it 
definitely does create “nodal points” with a higher degree than 
other long barrows.

cOnclUsiOn

Visibility networks have been used to represent a wide range 
of relational phenomena in disciplines as diverse as archeol-
ogy, cognitive sciences, architecture, and urban planning. We 
have argued that there is room for cross-fertilization between 
archeology and architecture and landscape studies in the use of 
network data for representing visibility-related phenomena. We 
proposed a number of new visibility network data representa-
tions for landscape archeology: first- and second-order visibility 
graph representations of total and cumulative viewsheds and 
two-mode representations of cumulative viewsheds. Through 
a range of examples, we further explored the variability in 
visibility network density in physical landscapes, leading us to 
argue for the need to explicitly incorporate network density in 
stochastic models of visibility networks. But most importantly, 
we identified a very restricted use of formal network science 
measures for describing, exploring, and analyzing visibility 
networks, and in particular of the representation and study of 
theories about how lines-of-sight affect each other’s existence 
(i.e., dependence assumptions).

In this paper, we have focused on the archeological study of 
visibility networks to suggest methods for the formal study of 
archeological relational visibility theories. We suggested a range 
of configurations to represent and study such theories as network 
patterns, and statistical simulation methods for comparing these 
theories with the archeologically observed (or inferred) visibility 
network. Ultimately, these topological network methods shall 
incorporate geographical constraints, and possibly processes of 
topographical reshaping. These approaches should always go 
hand in hand with the critical formulation of relational visibility 
theories, and results of such formal methods should always be 
interpreted in light of these theoretical frameworks, addressing 
issues such the ability of observers to recognize observed features 
and the temporality of feature creation.

The brief study of Christopher Tilley’s (Tilley, 1994) visibility 
network of long barrows in Cranborne Chase illustrated many of 
these methods. Its contribution to Tilley’s study was twofold: (1) 
to provide a formal representation of the important structural fea-
tures and the hypothesis describing the evolution of the visibility 
network formulated by Tilley, which enables replication of results 
as well as formal comparisons with visibility networks in other 
research contexts and (2) to statistically evaluate the probability of 
Tilley’s theory of the visibility network’s creation and evolution. 
We argue that the methods illustrated here are particularly appro-
priate in research contexts where particular structural features are 
inherent to the formulation of theories about visibility networks 
(like Tilley’s visibility network of long barrows) and provide 
formal approaches to complement rich contextual studies of how 
lines-of-sight could have structured past human behavior.

sOFTWare

Viewsheds and visibility networks were created in QGISv2.12.1 
using the open source Viewshed Analysis plugin v0.5.1 by Zoran 
Čučković (2016a,b). Configuration counts, Bernoulli random 
graph models, and ERGMs were performed using PNet (Wang 
et al., 2009).
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