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Crystal nucleation and growth are first order processes captured in volcanic rocks and

record important information about the rates of magmatic processes and chemical

evolution of magmas during their ascent and eruption. We have studied glass-rich

andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by

electron- and ion-microbeam imaging techniques to investigate down to sub-micrometer

scale the potential effects of compositional boundary layers (CBLs) of melt around

crystals on the nucleation and growth of mineral phases and the chemistry of crystal

growth zones. We find that CBLs may influence the types of mineral phases nucleating

and growing, and growth textures such as the development of swallowtails. The

chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of

nanometer-scale bands of different phases in rapidly growing crystals, resulting in

what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has

implications for the interpretation of microprobe compositional data, and the resulting

inferences made on the conditions of magmatic evolution. Identification of cryptic phase

zoningmay improve thermobarometric estimates and thus geospeedometric constraints.

In future, a more quantitative characterization of CBL formation and its effects on crystal

nucleation and growth may contribute to a better understanding of melt rheology and

magma ascent processes at the onset of explosive volcanic eruptions, and will likely be

of benefit to hazard mitigation efforts.

Keywords: crystal nucleation, crystal growth, swallow tail textures, cryptic phase zoning, Ngauruhoe volcano,
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INTRODUCTION

Crystal nucleation and growth are first-order processes in
the evolution of silicate melts during cooling or degassing
(e.g., Cashman and Marsh, 1988; Marsh, 1988; Fokin et al.,
2006; Toramaru et al., 2008; Hammer, 2009; Hammer et al.,
2010; Melnik et al., 2011) and determine mineral and melt
chemistry and their evolution, which form the foundation of
thermobarometric and hygrometric constraints (e.g., Putirka,
2008; Lange et al., 2009; Waters and Lange, 2015). Minerals
may also provide critical insights into the rates of magmatic
processes occurring during magma evolution and ascent at the
onset of volcanic eruptions, with analytical methods ranging
from crystal size distribution studies (e.g., Cashman and Marsh,
1988; Marsh, 1988, 1998; Hammer et al., 1999; Piochi et al.,
2005; Noguchi et al., 2006, 2008; Clarke et al., 2007; Toramaru
et al., 2008; Melnik et al., 2011) to diffusion geospeedometry
(e.g., Zellmer et al., 1999, 2003, 2011, 2016; Morgan et al., 2004;
Costa and Dungan, 2005; Martin et al., 2008; Druitt et al., 2012;
Ruprecht and Plank, 2013). Thus, understanding the processes
that govern crystal nucleation and growth, as well as crystal
morphology, structure, and composition, are key to unlocking
volcanic hazards and many other compelling questions. Small
scale variations in crystal chemistry have become apparent in the
last few decades through advances in microanalytical techniques
(Anderson, 1983; Wallace and Bergantz, 2002; Davidson et al.,
2007; Jerram and Martin, 2008, and references therein). At
present, the most advanced instruments provide submicroscopic
resolution (down to nanometer scale) of crystal chemistry and

crystal structure (Zellmer et al., 2015, 2016). With increasing
magnification, the small-scale complexity of compositional and
structural variations has become apparent, elucidating magmatic
processes that were previously not resolvable. In natural tephras,
the latest small-scale variations are likely acquired at the onset
or during eruption of the samples, and understanding such
variations may thus be crucial in the characterization and
mitigation of volcanic hazards (Zellmer et al., 2016).

In this perspective article, we focus on the narrow
compositional boundary layers (CBLs) of melt around growing
crystals (Zhang, 2009) and their potential effects on crystal
nucleation, growth, and compositional as well as phase zoning,
using as examples some tephras from New Zealand’s recent
Central Plateau eruptions in the Southern Taupo Volcanic Zone
(Moebis, 2010; Moebis et al., 2011). CBLs are the interface-melt
layers around growing or dissolving crystals with composition
different to that of the bulk melt. CBLs develop when crystal
growth or dissolution rates exceed the rate of diffusion of the
crystal-forming ions within the melt. Their thicknesses therefore
depend on growth/dissolution rate of the crystal, diffusion rate of
the ions, and on the relative motion of crystal and melt (Levich,
1962). We demonstrate here through semiquantitative imaging
techniques that there are complex interdependencies between
CBLs and crystal nucleation, growth, and zoning. A detailed
quantification of these interdependencies is beyond the scope of
this contribution, but we argue that their study is important and
may ultimately improve volcanic hazard characterization and
mitigation strategies.

METHODS

Sampling Details and Sample Preparation
Tephra samples from the Central Plateau were collected by one
of us (AM) for tephrochronological work. In the present study,
we report data from Mangatawai tephra 407-28 and Papakai
tephra 606-30 sourced from Ngauruhoe volcano, with ages of
c. 2800 and c. 3980 cal. years B.P., respectively (Moebis, 2010),
and from Tufa Trig tephra 108-137 (TF13 of Donoghue et al.,
1997) sourced from Ruapehu volcano, with an age of c. 540 cal.
years B.P. Volcanic glass shards from individual tephra units were
handpicked at Massey University. The particles were embedded
in an epoxy plug (EPOTEK 301), then cut and polished with
diamond pastes of successively finer grades. The final polish
was made at the Institute of Earth Sciences (IES), Academia
Sinica, using a vibration polisher (Buhler: Vibromet-2) with
0.3 µm alumina compounds for several hours. For electron
microbeam work, the polished specimens were then coated by a
layer of carbon (Q150TE, Quorum Technologies Ltd., UK). For
subsequent analysis by secondary ion mass spectrometry (SIMS),
the carbon coat was removed with ethanol, and samples were
coated with a thin film (c. 70 nm) of gold (SC-701MC, Sanyu
Electron Co., Ltd.) at the Isotope Imaging Laboratory (IIL) of
Hokkaido University.

Electron Probe Microanalysis
Crystals within tephra shards were analyzed at IES using a JEOL
JXA-8900R electron microprobe equipped with four wavelength-
dispersive spectrometers. A 2 µm defocused beam was operated
for analysis at an acceleration voltage of 15 kV with a beam
current of 12 nA.Measured X-ray intensities were ZAF-corrected
using the standard calibration of synthetic (s) and natural
(n) chemical-known standard minerals with various diffracting
crystals, as follows: diopside (s) or wollastonite (s) for Si with TAP
crystal, rutile (s) for Ti with PET crystal, corundum (s) for Al
(TAP), chromium oxide (s) for Cr (PET), fayalite (s), or hematite
(n) for Fe with LiF crystal, tephroite (s) for Mn (PET), periclase
(s) for Mg (TAP), wollastonite (s) for Ca (PET), albite (n) for Na
(TAP), and adularia (n) for K (PET). Peak and both upper and
lower baseline X-rays were counted for 10 s for each element,
respectively. Standards run as unknowns yielded major oxide
relative standard deviations for Si, Na, and K of less than 1%, and
less than 0.5% for other elements. Detection limits, based on 3σ
of standard calibration, were less than 600 ppm for all elements.

Electron Microscopy and Isotopography
Backscattered electron (BSE) images were obtained using a
field emission scanning electron microscope (FE-SEM; JEOL
JSM-7000F) at the Isotope Imaging Laboratory (IIL), Hokkaido
University, equipped with a high sensitivity energy dispersive
X-ray spectrometer (EDS; Oxford X-Max 150). However, high-
magnification work on crystal rims could not be conducted
with this technique due to edge effects. Therefore, the IIL
isotopemicroscope system, a Cameca ims-1270 SIMS instrument
equipped with a stacked CMOS-type active pixel sensor (SCAPS)
for ion imaging, was applied to visualize at highmagnification the
elemental distribution on the sample surface (“isotopography,”
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for details see Yurimoto et al., 2003). An O- primary beam of 23
keV was irradiated on the sample surface of approximately 60 ×
60 µm2 with beam currents ranging from c. 1.5 to 20 nA. The
exit slit was narrowed enough to eliminate the contribution of
interference ions to the isotopic images. The positive secondary
ion images of 23Na, 24Mg, 27Al, 28Si, 40Ca, and 56Fe on the
sample surface were collected in a SCAPS detector, with exposure
times ranging between 200 and 750 s. A spatial resolution of
about 300 nm was achieved for our samples. Ablation rates
of only about 1 µm/h allowed the successful acquisition of
images at 5 s per frame of essentially the identical sample surface
across all elements. Secondary ion intensity varied with primary
beam intensity. Image gray scales were adjusted to balance these
variations.

Transmission Electron Microscopy (TEM)
For TEM analyses, several samples of c. 50 nm thickness
were prepared from the corona pyroxene overgrowing an
olivine crystal of a selected Ruapehu tephra by applying the
focused ion beam technique (FIB; SMI-3050). Selective area
electron diffraction patterns and images were obtained using a
transmission electron microscope (JEOL JEM-3010) operated at
300 kV. The instrument was equipped with an energy dispersive
X-ray (EDX) spectrometer (Oxford EDS-6636) featuring an
ultrathin window and a Si(Li) detector, capable of detection of
elements from boron to uranium. EDX spectra were collected for
200 s. Semi-quantitative analysis was based on the Cliff-Lorimer
thin film approximation with experimental k-factors obtained
from natural minerals (Loretto, 1994).

RESULTS

Electron probe mineral chemical data are given in
Supplementary Table 1. In summary, besides minor
oxide phases that have not been analyzed but are
present in all studied samples, Mangatawai tephra
407-28 contains crystals of plagioclase (An57−85) and
orthopyroxene (En63−72Fs23−27Wo3−5); Papakai tephra
606-30 contains crystals of plagioclase (An45−85) and
orthopyroxene (En67−73Fs24−29Wo3−5); and Tufa Trig
tephra 108-137 contains crystals of plagioclase (An51−66),
orthopyroxene (En63−84Fs12−33Wo3−5), clinopyroxene
(En44−55Fs10−17Wo35−43), and olivine (Fo71−75).

The present study focusses on results from semi-quantitative
high-resolution imaging. Figures 1A–C show SCAPS elemental
maps of a large zoned plagioclase crystal, set in a glassy
groundmass with microlites of plagioclase and pyroxene. A
complexly zoned large plagioclase crystal experiencing synneusis
(Vance, 1969; Dowty, 1980) with a microphenocryst (bottom
right) is seen, with zoning particularly evident in the Na-image.
Microlites show swallow-tail textures indicating rapid crystal
growth. There is striking evidence of distinct CBLs of melt
present around all crystals, about 1 micron in width. CBLs are
enriched in Mg and depleted in Al and Na around plagioclase
crystals, and vice versa around pyroxene microlites (cf. small
pyroxene microlite in center right of image). Complex zoning
of Na in plagioclase is evident even in the microlites, with

a wavelength of similar width to the CBL. The black arrow
in c indicates plagioclase nanolites forming just outside the
CBL of the large plagioclase crystal, the white arrow points
to a magnesian nanolite forming in the CBL. Figure 1D

is a BSE image of groundmass microlites and nanolites of
another sample. Pyroxene microlites have a Fe-rich rim and are
surrounded by Fe-poor CBLs, similar in grayscale as plagioclase
microlites. Magnetite nanolites are seen distributed throughout
the groundmass, but the largest are surrounding the plagioclase
microlites.

Figure 2 provides an analysis of an olivine crystal with
pyroxene corona texture. Panel (a) shows the BSE image of part
of this crystal set in a glassy groundmass. SCAPS elemental maps
of the corona texture are provided forMg (panel b) and Ca (panel
c). Variations in Ca concentration within the overgrowth are
evident, as observed previously in other corona orthopyroxenes
(Zellmer et al., 2016), with a very strong enrichment in the rim of
the overgrowth, and concomitant depletion in the CBL. Weaker
Ca-enrichment zones are evident within the overgrowth. Such
calcic lamellae are ubiquitous in overgrowth orthopyroxenes
from the southern Taupo Volcanic Zone, and also occur in
some orthopyroxene microphenocrysts (cf. Zellmer et al., 2016).
Panels (d) and (e) are TEM bright field images of FIB sections,
the location of which are indicated in panel (b). The images
show clear phase boundaries of nm-thin layers of Ca-rich
clinopyroxenes within Ca-poor orthopyroxene overgrowth. Two
clinopyroxene domains can be identified by semiquantitative
EDX spectrometry: domain A adjacent to the glass, with Al-
enrichment (panel f), and domain B, inside the overgrowth, low
in Al. Neither domain is in Fe/Mg exchange equilibrium with
their orthopyroxene host, the EDX spectrum of which is provided
in Supplementary Image 1. In equilibrium, KD(Fe-Mg) should
be 1.09 ± 0.14 (Putirka, 2008). Domain A yields a KD(Fe-
Mg) of >2.00, while domain B yields a KD(Fe-Mg) of <0.80.
Two-pyroxene thermobarometry therefore cannot be conducted.

DISCUSSION

Crystal nucleation may initially be randomly distributed within
the glass, i.e., may be homogeneous (Fokin et al., 2006). However,
crystal growth and associated CBL development appears to
result in a more favorable nucleation environment of magnesian
phases (such as pyroxene) in magnesian CBLs, which are less
favorable for nucleation of Mg-poor phases (such as plagioclase)
that will nucleate away from these CBLs (Figure 1C). Mg-poor
phases will preferentially nucleate in Mg-poor CBLs. For
example, preferential plagioclase nucleation would be expected
in the CBLs developing around growing orthopyroxene crystals
(further discussed below, cf. Figure 1D). Inhomogeneous crystal
nucleation has previously been described (e.g., Hammer et al.,
2010), and has recently been associated with CBLs that developed
during dissolution of natural olivine in SiO2-rich melts (Zellmer
et al., 2016).

CBLs will be less depleted in crystal-forming elements at
crystal corners, and this may be the reason for the development
of swallow-tail textures (Vernon, 2004), which form by more
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FIGURE 1 | (A–C) SCAPS elemental images of part of a complexly zoned plagioclase phenocryst in a glass shard with plagioclase and pyroxene microlites from

Mangatawai tephra 407-28. Melt boundary layers around plagioclase, with their width indicated at one point in the image by square brackets, are depleted in Al and

Na and enriched in Mg. Several microlites show swallowtail textures (cf. arrows in A). Two small cracks indicated in (A) result in localized imaging artifacts. Plagioclase

and pyroxene nanolites discussed in the text are indicated by black and white arrows, respectively, in (C). (D) SEM-image of swallow-tail textured pyroxene and

plagioclase microlites, as well as magnetite nanolites, in a glass shard from Papakai tephra 606-30. Melt boundary layers around pyroxenes (px) are depleted in Fe.

Plagioclase (plag) microlites nucleate in these boundary layers and grow outwards. Magnetite (mt) nanolites are preferentially found within melt boundary layers around

plagioclase. Numbers indicate possible nucleation and growth sequence.

rapid crystal growth out from those corners in response to
greater availability of crystal-forming elements within these
local environments (Figures 1A–C). Crystal chemical zonation
at circa 1 micron wavelength (Figure 1B) may be the response
of CBL development at the same length scale, and subsequent
CBL destruction, e.g., by movement of the crystal through
the melt and concomitant erosion of the CBL, resulting in a
regular local variations of ions available to the growing crystals.
Such variations are even seen in microlites. Repetitive CBL
development and destruction may thus represent an alternative
way to form the fine-scale outer zoning in crystal composition
observed in many volcanic phenocrysts, as opposed to being
due to growth during magmatic rejuvenation and convection in
subvolcanic reservoirs (cf. Shelley, 1993). Timescales predicted by

modeling diffusion at intracrystalline boundaries of incompatible
element enriched zones may thus not always be associated
with magmatic intrusion events, for example, but instead might
be recording timescales of crystallization during cooling or
decompression-induced degassing.

As a result of these complex interactions of crystal nucleation
and CBL formation by crystal growth, small scale heterogeneities
in the mineral distribution of the groundmass may result.
Figure 1D provides an example where orthopyroxene microlite
growth has apparently resulted in Ca and Al enrichment of
developing CBLs, which served as nucleation environments for
plagioclase microlites. These, in turn, generated Fe-rich CBLs
that represented favorable environments for nucleation of growth
of magnetite nanolites.
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FIGURE 2 | Pyroxene corona textures on olivine displaying cryptic phase zoning in a glass shard from Tufa Trig tephra 108-137. (A) Backscattered

electron image of part of the grain, indicating the area investigated by SCAPS imaging. (B) SCAPS Mg-image, showing the Mg-rich olivine (bright), the pyroxenes

(gray), and the Mg-poor glass (dark). Position of focussed ion beam (FIB) sections for TEM work is indicated. (C) SCAPS Ca-image showing the Ca-poor olivine (dark),

the dark-gray low-Ca pyroxene with some bright high-Ca bands, and the glass with variable Ca-content: low in the boundary layer (indicated by square brackets) right

next to the outermost high-Ca growth zone, high in between the two pyroxene crystals, and highly variable away from the crystals. (D,E) TEM bright field images of

FIB sections showing nm-scale bands of the high Ca-phase at the pyroxene rims (domain A), as well as inside the pyroxene crystal (domain B). Semi-quantitative

analytical electron microscopy energy-dispersive X-ray spectra of high-Ca domains A and B are provided in (F,G), respectively, yielding a higher-Ca, low Mg/Fe

aluminous pyroxene in domain A and a lower-Ca, high Mg/Fe pyroxene in domain B. See Supplementary Image 1 for the EDX spectrum of the orthopyroxene host

crystal, provided for comparison.
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The effect of CBLs may not only be restricted to variations
in major (and presumably trace) element zonation in phases
displaying solid solution, but may extend to triggering phase
changes on microscopic to submicroscopic scales: Figure 2

illustrates the submicroscopic phase changes within rapidly
growing pyroxene crystals, which is what one may refer to as
cryptic phase zoning. These lamellae are suggestive of exsolution
textures, with clinopyroxene exsolving from orthopyroxene (e.g.,
Vernon, 2004). However, if this was the case, one would
expect Fe/Mg exchange equilibrium between the host and
exsolution zones. Although the EDX chemical analysis is only
semiquantitative, given the narrow width of the clinopyroxene
bands, the magnitude of the measured disequilibria of both
clinopyroxene domains with their orthopyroxene host is likely
too great to be attributable to analytical uncertainties. Thus, we
prefer a scenario where rapid orthopyroxene growth results in
a calcic CBL, which intermittently triggers brief precipitation
intervals of clinopyroxene (domain B) instead of orthopyroxene.
These intermittent intervals of clinopyroxene precipitation
would then rapidly deplete the CBL in Ca, such that the system
switches back to orthopyroxene as the preferred phase. Finally,
domain A at the edge of the crystal likely represents growth
related to quenching. In this scenario, cryptic phase zoning is
related to crystal growth and associated chemical variations of the
evolving CBL over time.

The presence of cryptic phase zoning in pyroxenes represents
a challenge for two-pyroxene thermobarometry as well as
pyroxene-melt thermobarometry (e.g., Putirka, 2008). Electron
microprobe analysis (EMPA) is unable to resolve such sub-
micron features and will yield average compositions with
somewhat elevated amounts of calcium. Detailed imaging
of submicron phase zonation may in future allow more
successful targeting of crystal growth zones (cf. Zellmer
et al., 2015) and thus may improve thermobarometric
constraints. Temperature uncertainties still represent one
of the principle limiting factors in diffusion geospeedometry
(Costa and Morgan, 2010; Petrone et al., 2016), and tighter
temperature constraints would be a significant advance in this
respect.

Nucleation and growth of microlites are processes occurring
during the last stage of magma ascent at the onset and during
eruption of volcanic tephras (Hammer et al., 1999; Piochi
et al., 2005; Noguchi et al., 2006, 2008; Clarke et al., 2007).
Understanding these processes down to submicrometer scale is
important to better characterize the crystallization of microlites
in volcanic conduits, which have been used to estimate the
timescales of magma ascent in order to characterize and mitigate

the hazards of explosive volcanic eruptions (Zellmer et al., 2016).
Our study shows that CBLs in natural magmas may significantly
influence crystal nucleation and crystal growth, as well as
the resulting crystal morphologies, crystal chemical zonation,
and the distribution of small scale heterogeneities within the

crystallizing groundmass. We have outlined some of the complex
interplays of crystal nucleation, growth, CBL formation, and
crystal chemical as well as phase zonation. Additional work will
be required to properly quantify these processes, including the
characterization of potential variations in the width of CBLs
between different samples, and what this might reveal in terms of
relative movement of crystals and melt, and thus about potential
variations in melt rheology and melt ascent processes. Given
the growing importance of the role of igneous petrology in
informing volcanic hazards and their mitigation (Saunders et al.,
2012), we anticipate significant advances in this field in the near
future.
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Supplementary Table 1 | Electron microprobe data of plagioclase,

orthopyroxene, clinopyroxene, and olivine crystals from the studied

tephras.

Supplementary Image 1 | EDX spectrum of the orthopyroxene host of the

cryptic phase zonation (see text for details).
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