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A 1D Canopy Interface Model (CIM) is developed to act as an interface between a

meso-scale and a micro-scale atmospheric model and to better resolve the surface

turbulent fluxes in the urban canopy layer. A new discretisation is proposed to solve the

TKE equation finding solutions that remain fully concordant with the surface layer theories

developed for neutral flows over flat surfaces. A correction is added in the buoyancy term

of the TKE equation to improve consistency with theMonin-Obukhov surface layer theory.

Obstacles of varying heights and dimensions are taken into account by introducing

specific terms in the equations and by modifying the mixing length formulation in the

canopy layer. The results produced by CIM are then compared with wind and TKE profiles

simulated with a LES experiment and results obtained during the BUBBLEmeteorological

intensive observation campaign. It is shown that the CIM computations are in good

agreement with the results simulated by the LES as well as the measurements from

BUBBLE. The applicability of the correction term in an urban canopy layer and to further

validate CIM in multiple stability conditions and various urban configurations is discussed.

Keywords: atmospheric boundary layer, canopy model, similarity theory, turbulent kinetic energy, turbulence

parameterization, urban parametrization, urban climate, urban meteorology

INTRODUCTION

Boundary layer laws have been developed since a very long time. Important characteristics of
the surface layer were first described by Prandtl (1925) and these were then recognized as the
Prandtl or constant flux layer theories. Subsequently, several studies were conducted to improve the
mathematical representation of the different processes taking place in this surface layer and under
different atmospheric stability conditions (Monin and Obukhov, 1954; Foken, 2006; Zilitinkevich
and Esau, 2007). These theories have been extensively validated with measurements from wind
tunnels (Cermak, 1971) as well as measurements in real situations (Businger et al., 1971; Högström,
1990; Beljaars and Holtslag, 1991; Oncley et al., 1996). They are also widely used to calculate the
wind profile in specific situations but also to calculate model boundary conditions, for example, in
mesoscale meteorological models (Pielke, 2002).

The development of such laws is usually based on the following assumptions (Monin and
Obukhov, 1954): (a) it considers meteorological horizontal averages over layers which are long
enough to neglect the surface heterogeneity (obstacles are accounted as a roughness that is
specified only at the ground level), (b) the size of the eddies generated by the turbulence increases

Abbreviations: 1D, One dimension; CIM, Canopy Interface Model; TKE, Turbulent Kinetic Energy; LES, Large Eddy

Simulation.
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regularly with height, (c) the effect of atmospheric stability is
taken into account using specific parameterisations (based on
the Richardson number for example). The main disadvantage
of these expressions is that they can only be used on
restricted situations (e.g., flat surfaces) and as demonstrated by
Rotach (1993), Roth (2000), and Karam et al. (2009) they are
inappropriate to simulate the flow inside the urban canopy layer.
Indeed, in urban areas, complex and heterogeneous obstacles
(like buildings) exchange fluxes with all the atmosphere inside
the canopy and not only with the ground level as specified in the
boundary layer laws. In addition, the presence of obstacles in the
canopy disturb the flow in such a way that the assumptions about
the eddy sizes (b) and the parameterisation of the atmospheric
stability (c) are not valid (Oke, 1987; Foken, 2008). This makes
the boundary layer laws unable to simulate accurately the flow
inside the urban canopy.

In order to improve the simulation of urban areas in
meteorological models, Masson (2000) and other authors
(Martilli et al., 2002; Kondo et al., 2005; Masson and Seity, 2009;
Krpo et al., 2010; Salamanca et al., 2010) have proposed several
3D parameterisations to calculate fluxes exchanged between
the atmosphere and the buildings inside the canopy. None of
them computes the modified vertical profiles of meteorological
variables inside the urban canopy layer whereas such profiles are
crucial for some applications like to estimate accurately heating
and cooling energy demands inside buildings (Bueno et al., 2013;
Mauree et al., 2015).

The goal of this work is to develop a 1D Canopy Interface
Model (CIM) to simulate wind, temperature and turbulent
kinetic energy (TKE) profiles inside and above the canopy
layer and to use them to calculate of momentum, energy and
TKE fluxes. Like for the boundary layer laws, CIM assumes
horizontal averages on long layers [assumption (a)]. Based on
this assumption, the Navier-Stokes (momentum, heat and TKE)
equations are simplified to be discretised and solved only in the
vertical direction. On flat surfaces, boundary layer laws (Prandtl,
Monin-Obukhov) have been extensively tested and compared
against measurements so that they can be considered as reliable
references. In this work, we propose a specific formulation
and discretisation of the TKE equation to ensure a perfect
agreement between the resolution of the simplified Navier-
Stokes equations on a flat surface and the Prandtl boundary
layer law (neutral stratification). We also propose a correction
for the production term of the TKE equation to improve the
concordance between the results simulated using the simplified
1D Navier-Stokes equations and the results calculated with
the Monin-Obukhov laws (stratified flows). The formulation of
the simplified 1D Navier-Stokes equations is then extended to
account for heterogeneous obstacles in the airflow. An extension
of Santiago and Martilli (2010) formulation for the mixing
length is proposed and a discretisation based on Finite Volume
Method is implemented to solve the 1D equations. The results
calculated with CIM are compared with different kind of results:
with the boundary layer laws on flat surfaces (neutral and
stratified flows), with results from Large Eddy Simulation (LES)
performed over series of obstacles and with experimental data
measured during the BUBBLE measurement campaign in Basel

(Switzerland). Finally, we look at the implications of this work on
the 1D resolution of the Navier-Stokes equation and give a few
perspectives.

LIST OF VARIABLES

|U| Ensemble mean of horizontal velocity
u Mean horizontal wind x-component
v Mean horizontal wind y-component
u∗ Surface friction velocity
Uort
I Wind speed orthogonal to the street

direction
θ Potential temperature
θsurf Surface temperature
θ∗ Temperature scale
e TKE
e∞ Stationary TKE
esurf TKE generated by horizontal surface
k Von Kármán constant
z Height
l Mixing length
z0,m, z0,h Momentum and energy roughness

length
ψm, ψh Momentum and heat empirical

functions
µt , κt , λt Momentum, heat and TKE diffusion

coefficients
φm, φh Momentum and heat empirical

functions
f sm, f

s
θ , f

s
e Source terms for the momentum, heat

and TKE
Pr Prandtl number
g Acceleration due to gravity
Ce, Cε TKE and dissipation constants
Rif Richardson number
L Obukhov length
CG Correction term
FU Integral over a volume of f su
φ, φ̂ Free and occupied volume
Bx, By x- and y- building dimensions
Wx,Wy x- and y- street dimensions
ϕ Surface porosity
ϕ̂h Horizontal occupied surfaces
ϕ̂vertx , ϕ̂verty Vertical occupied surfaces

FuHI , Fθ
H
I Forces due to horizontal surfaces for

momentum and heat

Fu
vertx
I , Fθ

vertx
I , Fe

vertx
I Forces due to vertical surfaces for

momentum, heat and TKE
Dc Direction of the canyon
h Building height
d Displacement height
L (I, n) Mixing length for each level, I and for

each class of building, n.
D (n) Displacement height for each class of

building
H (n) Height for each class of building
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COHERENCE BETWEEN NAVIER-STOKES
RESOLUTION AND BOUNDARY LAYER
LAWS ABOVE A FLAT SURFACE

In the boundary layer, several assumptions can be made. The
horizontal wind can be considered to be spatially uniform on
average. Furthermore, the friction produced by the surface is
simulated as the effect of a roughness that is supposed to
represent obstacles randomly dispersed on the ground. The
vertical fluxes are constant with height and are equal to the
product of vertical gradients of velocity (resp. temperature) and
the viscosity (resp. heat conductivity) coefficient. These viscosity
and heat conductivity coefficients are written as function of the
velocity constant u∗ that is proportional to the generated friction
and the mixing length that is proportional to the turbulent
eddy size. The latter increases with respect to the height.
The exchanged fluxes are furthermore modulated by empirical
functions (Businger et al., 1971).

Boundary Layer Laws: Monin-Obukhov
Equations
For the purpose of this study, we use the Monin-Obukhov
analytical solutions. The equations for the wind and temperature
are:

|U| = u∗
k

(
ln

z

z0,m
− ψm

)
and θ − θsurf =

θ∗
k

(
ln

z

z0,h
− ψh

)
,

(1)
where |U| is the ensemble mean of horizontal velocity, θ is the
potential temperature, θsurf is the surface temperature, u∗ is the
surface friction velocity, θ∗ is the temperature scale, k is the
von Kármán constant, z is the height and z0,m and z0,h are
the momentum and energy roughness length. ψm and ψh are
empirical functions to account for the stability of the atmosphere.
More information can be found on them in Jacobson (1999).

In the analytical solution, the momentum (µt) and heat
(κt) diffusion coefficients can be calculated using the following
equations:

µt =
u∗kz

φm
and κt =

θ∗kz

φh
, (2)

where φm and φh are empirical functions first defined by Businger
et al. (1971) and later modified by Benoit (1977).

Simplified Navier-Stokes Equations
For a fast resolution of the Navier-Stokes equations in
one-dimension, a Canopy Interface Model is developed to
resolve meteorological variables over a discretized column. Two
assumptions are commonly accepted: the average wind and
pressure are horizontally uniform (Holt and Raman, 1988; Stull,
1988; Cuxart et al., 2006).

The differential equations for the momentum and the
potential temperature can be written as:

∂u

∂t
= ∂

∂z

(
µt
∂u

∂z

)
+ f sm and

∂θ

∂t
= ∂

∂z

(
κt
∂θ

∂z

)
+ f sθ , (3)

where u is the mean horizontal wind component in the x- or y-
direction, f sm and f sθ are the terms representing the momentum
and heat fluxes exchanged between the flow and “solid”
surfaces (ground in our situation). The diffusion coefficients are
computed according to a 1.5-order turbulent closure (Equations
7, 8) as proposed by Monin and Yaglom (1971):

µt = Ce

√
el and κt = Prµt , (4)

where Ce is a constant, e is the turbulent kinetic energy (TKE),
Pr is the Prandtl number that represents the ratio between the
momentum and heat diffusion coefficients, and hence depends
on the stability of the atmosphere (Priestley and Swinbank, 1947).
In the absence of obstacles, the mixing length, l, is simply given
as:

l = z. (5)

The TKE is calculated, as proposed by Holt and Raman (1988),
by using:

∂e

∂t
= ∂

∂z

(
λt
∂e

∂z

)
+ P + G− ε + f se (6)

λt = µt (7)

where λt is the diffusion coefficient for the TKE. Analogous to
the momentum and heat equations, f se represent the additional
sources of TKE from the ground. P stands for the mechanical
generation of turbulence (due to the shear between air layers). G
is the buoyancy term due to temperature difference between each
layer. ε represents the TKE dissipation. These three terms can be
expressed as follows:

P = µt

(
∂u

∂z

)2

; G = Pr g

θ
κt

(
∂θ

∂z

)
; ε = Cε

e
3
2

l
, (8)

where Cε is a constant.

A Scale for TKE under Neutral Turbulence
Condition
In this situation the expected logarithmic solution for the wind
speed, above a plane surface, is well known. Similar to Masson
and Seity (2009), an analytical solution for TKE can be found
using the momentum diffusion coefficient equations (Equations
2, 4) and with φm = 1 and l = z:

e∞ =
(
ku∗
Ce

)2

. (9)

It should be highlighted here that e∞ is a constant value. In such
a case, we propose to write the TKE equation so as to define a
stationary value of TKE. Combining Equations (6, 8), as proposed
by Holt and Raman (1988), leads to:

∂e

∂t
= ∂

∂z

(
λt
∂e

∂z

)
+ µt

(
∂u

∂z

)2

− Cε
e
3
2

l
. (10)
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Since the TKE is constant (as demonstrated with Equation 9, over
a plane surface), the first two terms of Equation (10) are equal to
0, leading to an equilibrium between production and dissipation:

Cε
e∞

3
2

l
= µt

(
∂u

∂z

)2

. (11)

Replacing the diffusion coefficient in the above equation leads to:

Cε
e∞

3
2

l
= Ce

√
e∞l

(
∂u

∂z

)2

, (12)

and the stationary value for the TKE is given by:

e∞ = Ce

Cε
l2

(
∂u

∂z

)2

. (13)

The final TKE equation becomes:

∂e

∂t
= ∂

∂z

(
λt
∂e

∂z

)
+ Cε

√
e

l
(e∞ − e)+ f se . (14)

As Equations (9, 13) have to give the same result, a relation
between the two constants (Ce and Cε) can be found:

Ce
3

Cε
= k4 (15)

There is traditionally an inconsistency in the computation of the
TKE generated by the ground surfaces, due to the formulation of
the TKE equation (Masson and Seity, 2009; Rasheed, 2009). The
reason for this is that the TKE is calculated at the center of the
cell (as are the other variables such as u) while the ground surface
is located at the lower face of the cell. Therefore, the computation
of fluxes from the ground are located at the cell face.

The introduction of e∞, thus solves the numerical problem
of the resolution of the TKE equation (see Figure 1). As it
was shown that over a plane surface, the TKE is constant, this
then implied that both the sources from the horizontal surface,
denoted esurf , and e∞ are equal. e∞ can be reformulated using
the surface layer, to compute esurf :

esurf =
Ce

Cε

(u∗
k

)2
, (16)

thus bringing consistency in the computation of the TKE.

Stratified Flow
In case of a stratified atmosphere, over a flat surface, the analytical
solution given by Equation (9) becomes:

e =
(

ku∗
φmCe

)2

. (17)

This value is not constant anymore with height as φm is function
of z. However, if we want to keep the same formulation as in the
neutral case, we can make the following assumption based on the
findings from Brouwers (2007) and Charuchittipan and Wilson

FIGURE 1 | Representation of the new resolution scheme of the TKE in

CIM. TKE values can be calculated at the cell’s face (dots) and at the center

(cross) and then reported at the cell center. Roughness present in the lowest

cell of the column.

(2009): locally an equilibrium between the TKE production
and dissipation can be observed for any stability cases. Thus,
when rewriting with the formulation from the previous section
and taking into account the buoyancy from Equation (8), e∞
becomes:

e∞ = Ce

Cε
l2

[(
∂u

∂z

)2

+ Pr g

θ

(
∂θ

∂z

)]
. (18)

This can also be written to include the Richardson number as
suggested by Cuxart et al. (2006):

e∞ = Ce

Cε
l2

(
∂u

∂z

)2 (
1− Rif

)
with Rif = Pr

g

θ

(
∂θ

∂z

)
/

(
∂u

∂z

)2

.

(19)
This equation should yield the same results as the Equation (17).

Replacing the
(
∂u
dz

)2
term using the surface layer laws, a relation

between φm and Rif can be found:

φm =
(
1− Rif

)− 1
4 . (20)

It should be highlighted that this relation is relatively close
to those proposed by Businger et al. (1971). Indeed, they
proposed formulations for φm depending in the atmospheric
conditions. To be coherent with their formulation, the following
modification can be brought:

φm =
(
1− CGRif

)− 1
4 . (21)

where CG will vary depending on the atmospheric stability
and the height above ground. The introduction of CG can be
interpreted as a modification of the Prandtl number (Pr ∗ =
CG.Pr).
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According to Businger et al. (1971), in an unstable
atmosphere:

φm =
(
1− γm

z

L

)− 1
4
, (22)

and in a stable atmosphere

φm =
(
1+ βm

z

L

)
, (23)

where γm and βm are two constant equal to respectively 19.6 and
6, and

Rif φm = z

L
, (24)

where L is the Obukhov length (Obukhov, 1949).
Thus, in an unstable atmosphere and over a plane surface, if

Equations (21, 22) are equal, it is possible to find a relationship
for CG:

(
1− CGRif

)− 1
4 =

(
1− γm

z

L

)− 1
4
, (25)

(
1− CG

z

L

1

φm

)− 1
4

=
(
1− γm

z

L

)− 1
4
, (26)

CG = γmφm = γm

(
1− γm

z

L

)− 1
4
. (27)

The same reasoning can be applied for the stable case with
Equation (21, 23):

(
1− CG

z

L

1

φm

)− 1
4

=
(
1+ βm

z

L

)
. (28)

If
∣∣CGRif

∣∣≪1 it is possible to eliminate the power functions using
the Taylor series:

(
1+ CG

z

4L

1

φm

)
=

(
1+ βm

z

L

)
, (29)

CG = 4βmφm = 4βm

(
1+ βm

z

L

)
. (30)

These proposed corrections (Equations 27, 30) bring coherency
to the TKE equations w.r.t. the surface layer laws and the
governing equation finally becomes:

∂e

∂t
= ∂

∂z

(
λt
∂e

∂z

)
+ Cε

√
e

l
(e∞ − e)+ f se . (31)

where

e∞ = Ce

Cε
l2

(
∂u

∂z

)2
[(

∂u

∂z

)2

+ CGPr
g

θ

(
∂θ

∂z

)]
. (32)

Stevens et al. (1999), who also worked on the development of the
turbulence in the boundary layer but in 3D using LES, found
a similar formulation for the TKE production: it is a function

of a Richardson number multiplied by a correction term CG

which depends on the atmospheric stability. The fact that the
Richardson number cannot be calculated when the shear stress is
very low, implies that these kind of formulation cannot be applied
in the case of free convection.

One can note that, in comparison to the formulation of
Stevens et al. (1999), our CG correction term has been derived
for a 1D case and does not need any assumptions on the mixing
length. This will give us the freedom to modify it as a function of
the obstacle / building density in the canopy layer in next part of
the article.

INTRODUCTION OF URBAN OBSTACLES
IN THE NAVIER-STOKES RESOLUTION

The formulation derived in Section Coherence between Navier-
Stokes Resolution and Boundary Layer Laws above a Flat Surface
are developed for a layer above a plane surface. We here extend
them for use in an urban roughness layer. As done by Martilli
et al. (2002) and others, source terms are added in the f su f sθ
and f se terms of Equations (3, 6), to account for the dynamic
and energetic effects of buildings or trees (termed here as urban
obstacles). Further propositions are done to take into account
varying dimensions.

Discretisation of the Navier-Stokes
Equation Using Geometrical
Characteristics of the Urban Obstacles
We choose here to discretize Equations (3, 6) by using a finite
volume method as it helps to better account for the urban
obstacles effects on the air flow. Here for a sake of simplicity,
we only show the discretized equation for the momentum in the
x−direction. However, the same discretization methodology can
be applied for the y−component of the momentum as well as for
the discretization of the TKE and heat equations. We propose to
determine the solution using:

ut+ 1
I = utI +1t

Si

VI
µt i

utI−1 − utI
1z

−1t
Si+ 1

VI
µt i+ 1

utI − utI+ 1

1z

+1tFu, (33)

where S and V are the surface and volume characteristics of the
grid cells respectively, 1z is the height of the grid cell and FU is
the integral over a volume of f su [for additional information please
refer to Martilli et al. (2002)]. i and I are indices representing the
cell face or center respectively and will be used as such in the
following sections of this article.

With immersed obstacles, these grid cell’s surfaces and
volumes are however reduced modifying the capability of the
fluid to exchange meteorological quantities. Until now, obstacles
in urban canopy models were only described as arrays of regular
cubes uniformly distributed in a grid cell, whose dimensions were
uniform with height (Masson, 2000; Martilli et al., 2002). The size
of the obstacles can vary for the x- and y-directions at each level
of the grid cell in CIM.

Analogous to the definition of the porosity of a material, we
define surface and volume porosities as the respective remaining
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free surface and volume of the grid cells (Krpo et al., 2010).
Porosities in contrast to other obstacle morphological indices are
a-dimensional and authorize the coupling of CIM with any other
urban canopy or building energy models of varying degree of
complexity in the urban obstacle geometry representation.

They are computed based on the urban obstacle dimensions.
By definition, they vary between 0 and 1, with 1 meaning that the
entire surface or volume of the grid cell is free. Figure 2 describes
the 3D-geometry of obstacles as well as the resulting surface and
volume porosities.

The volume porosity (i.e., the empty volume of the grid cell)
is:

φ(I) = 1− φ̂(I), (34)

where the occupied volume φ̂ is given by:

φ̂(I) = Bx(I)

Bx(I)+Wx(I)

By(I)

By(I)+Wy(I)
, (35)

where Bx and By are the building lengths andWx andWy are the
street widths in the x- and y-directions respectively.

Based on volume porosity, the surface porosity (i.e., the empty
surface at the grid cells interface) can be calculated as follows:

ϕ(i) = min(φ (I) ,φ(I − 1)). (36)

The urban obstacles horizontal (ϕ̂h) surfaces (as shown in
Figure 2) at each level, over the total volume of the grid cell, are
computed as:

ϕ̂h(i) =
φ(I)− φ(I − 1)

1z
. (37)

The vertical (ϕ̂vertx and ϕ̂verty ) surfaces that represent the total
occupied surfaces, perpendicular to the x- and y-directions

respectively, over the total volume of the grid cell can be found
using:

ϕ̂vertx(I) =
Bx(I)

Bx(I)+Wx(I)

By(I)

By(I)+Wy(I)

1

Bx(I)
(38)

ϕ̂verty(I) =
Bx(I)

Bx(I)+Wx(I)

By(I)

By(I)+Wy(I)

1

By(I)
. (39)

The occupied and free volumes and surfaces are used (1) in
the calculations of the diffusion coefficients to represent the
reduction of the turbulence exchanges within the urban canopy
layer; but also (2) in the formalization of the surface fluxes
equations where they are acting as a weighted factor (i.e., the
surface fluxes induced by each surface of an urban obstacle
are computed according to the corresponding obstacle surface’s
area).

A representation of the forces induced by the urban obstacles
and the different terms can be seen in Figure 3. We slightly
modified the formulation proposed by Martilli et al. (2002) to
introduce the surface and volume characteristics and present the
proposed formulation in Data sheet 1 Annex A: Forces induced
by urban obstacles.

Use of the Vertical Distribution of
Porosities in the Computation of the
Mixing Length
In the presence of urban obstacles, their geometry limits the
maximum distance that an air parcel can travel (the maximum
free path). To take this into account, Santiago and Martilli (2010)
proposed a new formulation. They argued that inside the canopy
the mixing length was close to a constant which corresponds to
the findings of Raupach et al. (1996).

The mixing length is calculated as:

l(i) = max(h− d, z(i)− d), (40)

FIGURE 2 | On the left: 3D-view of obstacles with the occupied and free volume (Bx and By are the building length and Wx and Wy are the street width

in the x- and y-directions respectively. dx and dy are the horizontal grid resolution); on the right: side view of a section of the 1D-column showing the interpretation

of the occupied surface and porosities in CIM.
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FIGURE 3 | Representation of fluxes from the vertical and horizontal

surface when obstacles are integrated in CIM.

where h is the obstacle’s height, the zero-plane displacement
height was defined using:

d = h(1− φ)α , (41)

and φ is the volume porosity and α is a constant equal to 0.13.
In the present study, propose to account for the variation of

the urban obstacles height within the canopy. The methodology
was based on following steps:

1. the buildings were classified according to their height;
2. the ratio of each class in a grid cell was computed;
3. a mixing length for each building class was computed as if this

class occupied the whole grid box, and
4. a mean mixing length was calculated based on the ratios of

each building class in the grid box.

Figure 4 gives an example, where three classes of buildings were
considered with seven buildings present in the grid box. If we
consider N classes of buildings with a height (denoted H(n),
n= 1, N) which follows the vertical grid (i.e., the top of each grid
cell), the ratio of each class can be written using the occupied built
volume in the grid as follows:

P(n) = 1

φ̂(1)

N∑

I=1

(
φ̂(I)− φ̂(I + 1)

)
, (42)

Note that here we assume that the first level is the most occupied
level. A weighted mixing length can then be obtained with:

l(I) =
N∑

n= 1

P(n) L(I, n), (43)

where

L(I, n) = max(H (n)− D(n) , z(I)− D(n)) , (44)

FIGURE 4 | Example of vertical distribution of buildings (top) and their

classification in term of height (bottom). N = 3 in this case.

and where the zero-plane displacement height for each building
class is:

D(n) = H(n) (1− φ(n))α , (45)

with α still equal to 0.13 like in Santiago and Martilli (2010).

RESULTS AND DISCUSSIONS

CIM Performance under Different Stability
Conditions – without Obstacles
Table 1 describes the fixed boundary conditions for the top most
cell of CIM for three different atmospheric stability cases defined
by means of varying surface temperatures. CIM computations
are at this point compared with the analytical solutions given by
Equations (1, 9, 17).

Verification of the New Discretization Scheme

To verify the new discretization scheme adopted in CIM, we
compare the results obtained in a neutral case with the analytical
solution from the surface layer theory.

Figure 5 shows the wind and turbulent kinetic energy profiles.
It should be emphasized here that numerical errors due to the
new discretization scheme are negligible since there is strictly no
difference between the analytical and simulated profiles. This is a
significant improvement with regards to other studies which have
shown persistent numerical errors in the resolution of the TKE
[see for example Masson and Seity (2009) or Rasheed (2009)].

Stable and Unstable Case

When considering stable and unstable atmospheric conditions,
we also compare the simulation from CIM with the analytical
solutions derived from surface layer theory.
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Figures 6, 7 give the various profiles for the wind speed,
potential temperature and the turbulent kinetic energy. Two
different profiles are calculated from CIM – one without and one
with the CG term.

TABLE 1 | Experimental conditions – without obstacles.

Wind speed 9.5m s−1

Air temperature 293K

Surface temperature (Neutral case) 293K

Surface temperature (Stable case) 286K

Surface temperature (Unstable case) 300K

It can be highlighted that without the CG term in the TKE
equation, the analytical solution is considerably different from
the profiles computed by CIM. On the one hand, in the stable case
(see Figure 6), the calculated wind speed is substantially higher
as is the potential temperature. The apparent reason for this is
that there is an over-estimation of the turbulent kinetic energy
and this then leads to an enhance mixing above the surface. On
the other hand, with an unstable case (see Figure 7), there is a
significant reduction in the turbulent kinetic energy. In this case,
however, the reduction in the wind speed and in the temperature
is not of the same order of magnitude as the turbulent kinetic
energy.
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FIGURE 5 | Comparison of (A) the wind (U in m s−1) and (B) the turbulent kinetic energy (e in m2 s−2) profiles computed over a plane surface using the analytical

solution from the surface-layer theory and from CIM under neutral conditions. Altitude (z) is in meters.
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TABLE 2 | LES experimental conditions.

Obstacles dimension 10 m*10 m*10m

Wind speed 10.4m s−1

Atmospheric conditions Neutral + pressure gradient

The use of the CG term in the turbulent kinetic energy
noticeably modifies the profiles calculated by CIM. This
additional term is necessary to take into account that the fact that
the ratio between the diffusion coefficients, usually approximated
with the Prandtl number, is not a constant. It thus brings
consistency between the traditional formulation of the Navier-
Stokes equation and the surface layer theory.

CIM Performance with Urban Obstacles –
under Neutral Conditions
To assess CIM’s ability to reproduce vertical wind profile in an
urban environment, we compare the profile obtained from CIM
with those from an LES experiment designed for a regular arrays
of cubes (Coceal et al., 2007; Xie et al., 2008) (see Table 2) and
with data from the BUBBLE experiment (Rotach et al., 2005;
Christen et al., 2009) (see Table 3).

Comparison with an LES

A comparison of the profiles from the LES and CIM is given
in Figure 8. It can be underlined here that the horizontal wind
speeds are in very good agreement with each other. Note that
there is negative gradient for the TKE above the urban obstacles
which reflects the use of a pressure gradient. Although, CIM

TABLE 3 | BUBBLE experimental conditions.

Obstacles dimension 10 m*10 m*14.6m

Wind speed 2.14m s−1

Atmospheric conditions Neutral + pressure gradient

slightly underestimates the magnitude of the overall TKE, the
trend including the height at which the maximum TKE is
obtained are in very good accordance with the data from the LES.

Comparison with Experimental Data from Bubble

It can be observed from Figure 9 that in general CIM can
reproduce the expected profiles. CIM marginally overestimated
the wind speed in the urban canyon. One of the reason might
be the parameterization of the drag force coefficient that causes a
higher wind speed close to ground. Nevertheless, it can be noticed
that above the canopy layer, the wind speed computed by CIM is
in very good agreement with the measured data.

Figure 9B shows some differences between the TKE simulated
by the CIM model and the data from the Bubble experiment.
The overall trend coincides well with the measured data
although there are some discrepancies in the magnitude of
the maximum TKE budget near the building roofs. This also
reflects a similar finding to Santiago and Martilli (2010). For
the dissipation term (ε), there is a significant over-estimation
from the CIM computation at the roof level (see Figure 9C).
Inside the canopy and above the roof the simulation is however
in accordance with the measured data. Nevertheless, it can be
pointed out that this is a normalized term and when looking
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at the budget (see Figure 9B), it can be noticed that the
difference becomes much smaller between the computed and the
experimental data.

CONCLUSIONS

In order to develop a coherent resolution of the Navier-Stokes
equation in an urban roughness layer, a comparison between
the Navier-Stokes resolution and the boundary layer laws was
first undertaken. Three essential points have been addressed in
this article: the discretization of the TKE, the calculation of the
Richardson term in the TKE equation and the extension of the

mixing length formulation in an urban canopy with varying
dimensions of the buildings.

We proposed a new formulation that brought concordance in

the resolution of the TKE equation. First, we demonstrated that
in a neutral case and without obstacle, a constant TKE profile

should be obtained. Based on this we extended and generalized

the equation so that when obstacles are integrated in the canopy,
there is no conflict in the computation of the TKE at the face or

at the center of the cell.
Additionally, a modification of the Richardson term in the

TKE was proposed. This additional term is needed, at least, due
to the fact that the Prandtl number is usually considered as a
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constant. Although this correction brought coherence with the
analytical solution, few questions remain regarding the validity
of this term beyond the surface layer, especially inside the canopy
and in all stability cases. Furthermore, this modification proposed
can also be implemented in a 3D RANS model and this could be
a possibility for further validation.

Santiago and Martilli (2010) made a proposition for the
mixing length in an urban canopy. In this article, we have
presented one key adaptation to extend this formulation in case
of obstacles with varying heights.

Finally, we validated our model with data from two different
experiments: an LES study from Coceal et al., (2007) and
with data from the Bubble experiment (Rotach et al., 2005;
Christen et al., 2009). Although, there were some discrepancies
in the wind speed close to the ground, the simulation
results were in very good agreement with the measured data,
especially when taking into account the computational time
and the fact that CIM is a 1D column module resolving
the flow in 2 directions only. Such a module is expected to
bridge the gap between meso-scale and micro-scale models by
improving the surface representation effect on meteorological
variables.

The validation of the Canopy Interface Model needs to be
done more extensively specially for stratified flows. However,
with the current lack of finding measurements in control
environments to compare with the modeling results, it is
quite difficult to go beyond the current assessments. Future

measurement campaign or wind tunnel experiments could be
used for such validation.
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