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Extended-range (<35 day) predictions of area-averaged convection over

northern Australia are investigated with the Bureau of Meteorology’s Predictive

Ocean-Atmosphere Model for Australia (POAMA). Hindcasts from 1980-2011 are used,

initialized on the 1st, 11th, and 21st of each month, with a 33-member ensemble.

The measure of convection is outgoing longwave radiation (OLR) averaged over the

box 120◦E-150◦E, 5◦S-17.5◦S. This averaging serves to focus on the intraseasonal

and longer time scales, and is an area of interest to users. The raw hindcasts of daily

OLR show a strong systematic adjustment away from their initial values during the first

week, and then converge to a mean seasonal cycle of similar amplitude and phase to

observations. Hence, forecast OLR anomalies are formed by removing the model’s own

seasonal cycle of OLR, which is a function of start time and lead time, a usual practice for

dynamical seasonal prediction. Over all hindcasts, the model forecast root-mean-square

(RMS) error is smaller than the RMS error of persistence and climatological reference

forecasts for leads 3–35 days. Ensemble spread is less than the forecast RMS error (i.e.,

under-spread) for days 1–12, but slightly greater than the RMS error for longer leads.

Binning the individual forecasts based on ensemble spread shows a generally positive

relationship between spread and error. Therefore, greater certainty can be given for

forecasts with smaller spread.

Keywords: Australian monsoon, monsoon prediction, tropical prediction, intraseasonal, extended-range,

subseasonal, POAMA, dynamical prediction system

INTRODUCTION

As defined by the World Meteorological Organization, extended-range weather forecasts cover the
lead-time range of 10–30 days. Stakeholders in agriculture, industry, and the resources sector have
continually called out for forecasts on this intermediate range, but few operational products exist.
At the Bureau of Meteorology, for example, the only operational product that currently focuses on
this range is theWeekly Tropical Climate Note (WTCN: http://www.bom.gov.au/climate/tropnote/
tropnote.shtml), which currently provides non-quantitative text-based outlooks of likely large-scale
tropical conditions for the coming few weeks.

In recognition of the demand for quantitative extended-range forecast products, the Bureau of
Meteorology has sought to provide such quantitative guidance through further development of
its dynamical coupled ocean-atmosphere prediction system (Hudson et al., 2011, 2013). Testing
of the evolving model/system for skill on the extended range (also known as the intraseasonal
or multi-week range) has mostly concentrated on weekly or longer averages of grid-point fields
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(Hudson et al., 2011, 2013; Marshall et al., 2014b) or on daily
indices of large-scale climate phenomena such as the Madden–
Julian Oscillation (MJO; Marshall et al., 2011), Southern Annular
Mode (SAM; Marshall et al., 2012), and blocking (Marshall et al.,
2014a). Zhu et al. (2014) took the approach of examining the
skill of a seamless range of time scales, including the extended
range, by using time averages equal in length to the forecast
lead time. Recently, Marshall and Hendon (2015) examined the
skill of predicting Australian monsoon indices of rain and wind.
Together, this research provides encouraging signs of useful
extended-range skill in many locations provided there is suitable
time-averaging or selection of the intraseasonal climate signals.

For northern Australia, strong intraseasonal variability of
tropical convection and rainfall has been long appreciated
and documented (see review by Wheeler and McBride, 2011).
A frequently-used measure of convection in the Australian
monsoon region, and one that is of relevance to the WTCN,
is the area-averaged outgoing longwave radiation (OLR) over
the box 120◦E-150◦E, 5◦S-17.5◦S, as displayed in Figure 1. This
figure uses dark shading to indicate a negative OLR anomaly,
which is indicative of a greater number of cold clouds and/or
colder cloud tops than normal in the region, i.e., enhanced
convection. Strong intraseasonal variability of convection can be
seen in most years. For example, the 2007/08 wet season is made
up of about three complete intraseasonal cycles, with monsoon
“bursts” occurring in mid-November 2007, late December 2007
to early January 2008, and most of February 2008 (see also
Wheeler, 2008). The intraseasonal variability in 2007/08 can be
seen to be well correlated to the MJO, as indicated by the times
of MJO Phases 4-6 (horizontal thick lines in Figure 1, using
the definition of MJO phases of Wheeler and Hendon, 2004).
It is this empirical relationship that is one of the main inputs
to the WTCN. However, in some other years (e.g., 2009/10,
2010/11) any relationship with the MJO is less apparent, and
other variability plays an important role (examples provided
in Wheeler and McBride, 2011). Noting that the WTCN is
currently heavily reliant on the MJO for its outlooks, and that
the Bureau’s dynamical prediction system attempts to model all
of the important sources of variability, it is of interest to see how
well the dynamical prediction system performs for this region.

In this work we therefore investigate the quantitative
extended-range prediction of the aforementioned area-averaged
OLR using an ensemble of hindcasts from the Bureau’s
operational coupled modeling system, the Predictive Ocean
Atmosphere Model for Australia (POAMA) version 2 M
(hereafter POAMA-2M). We investigate the model forecast bias,
the removal of this bias, the resulting prediction skill, the
ensemble spread versus error, and a real-time forecast display.

DATA AND MODEL FORECAST SYSTEM

Observational OLR and MJO Data
The observed OLR data is the NOAA satellite interpolated
OLR (Liebmann and Smith, 1996) available from 1974 to the
present. Daily MJO index data are the Real-time Multivariate
MJO (RMM) index of Wheeler and Hendon (2004) obtained
from http://www.bom.gov.au/climate/mjo.

POAMA-2M Forecast System
We analyse POAMA-2M (Hudson et al., 2013) which currently
(early 2017) produces the Bureau of Meteorology’s operational
monthly and seasonal forecasts. This version of POAMA was
developed specifically to provide more skilful output on the
extended-range time scale (hence the letter “M” for multi-week).
Improvements included in this version of POAMA are the
use of perturbed atmosphere and ocean initial conditions and
a burst ensemble (an ensemble starting from a single initial
time as opposed to a lagged ensemble), as well as the use of
three different model configurations (using different convective
parameterizations or flux correction at the ocean surface) to form
a multi-model ensemble (Hudson et al., 2013).

The atmospheric component of POAMA-2M is a spectral
model with resolution T47 (∼250 km grid) and 17 vertical
levels. The ocean component has a zonal resolution of 2◦ and a
varying meridional resolution of 0.5–1.5◦ with 25 vertical levels.
The unperturbed initial conditions are provided by separate
data assimilation schemes for the ocean versus the atmosphere
and land. For the atmospheric and land initial states, they
are generated by nudging of wind, temperature, and humidity
toward one of two analysis products that come from different
global models (i.e., different to the model used in POAMA-2M).
The hindcasts and forecasts are therefore more likely to suffer
from “initial shock” than a model that has its own atmospheric
data assimilation (Hudson et al., 2011). Perturbations to the
initial conditions of the central member are generated using a
coupled breeding scheme. Ten perturbed states are produced,
providing 11 different initial states that are input to three
different configurations of the model, providing a 33-member
ensemble (Hudson et al., 2013). This description applies to both
the hindcasts and real-time forecasts.

HINDCASTS AND BIAS REMOVAL

We analyse hindcasts from POAMA-2M that have been
initialized on the 1st, 11th, and 21st of each month for the
period 1980 to 2011. Observations of OLR are not used as part
of the model initialization. Instead, the model OLR is computed
by the model’s radiation scheme and depends critically on the
production of convection and clouds by the model’s convective
parameterization. Therefore, the model OLR is not necessarily
the same as observed at the initial condition. Further, since
the atmospheric initial conditions are produced by nudging
toward a different model (see above), there is high potential
for initial shock of the model OLR as the model shifts toward
its own attractor. This is explored in Figure 2, which shows
the annual cycle of observed OLR (black curve) together with
the annual cycle of all the day 1 hindcasts (blue) and day 20
hindcasts (green), for the region of interest. Interestingly, the
initial (day 1) OLR is close to observed during the wetter months
of December-April, but is systematically about 15 Wm−2 higher
than observed during the drier months of June-October, whereas
the day 20 OLR is close to observed during the drier months
and systematically too high during the wetter months. Therefore,
the initial shock in the OLR field is to increasing OLR (i.e., less
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FIGURE 1 | Time series of daily NOAA satellite-observed outgoing longwave radiation (OLR), averaged for the box 17.5◦S–5◦S, 120◦E–150◦E, for July

2007-June 2013. Dashed line shows the smoothed climatological seasonal cycle with dark and light shading to indicate negative and positive OLR anomalies

respectively. Thick horizontal lines indicate when the Wheeler-Hendon RMM index of the MJO was in phases 4, 5, or 6, for the months of November through April only.
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FIGURE 2 | POAMA-2M OLR (area-averaged for same box as Figure 1)

hindcast climatology (thin rainbow-colored lines) formed by averaging

all available hindcasts for each different start date, e.g., for 1st July,

11th July, 21st July, 1st August, etc. Thick lines are interpolated and

smoothed versions of all the day 1 hindcasts (blue line) day 20 hindcasts

(green line) and observations (black line). The smoothed seasonal cycle is

obtained by retaining only the first 3 annual harmonics.

convection) in the climatologically-wet months but decreasing
OLR (i.e., more convection or colder surface temperatures) in
the dry months. Further, the individual hindcast climatologies
from each start date (thin colored lines) demonstrate that most
of this initial shock occurs in the first few days of the hindcasts.
This figure is a strong demonstration for the need to compute
anomalies for the model with respect to the lead-time dependent
hindcast climatology, a procedure that is now common for
dynamical seasonal prediction (Stockdale, 1997; Hudson et al.,
2011). This is a first-order linear correction for the initial shock,
model drift, and model mean bias.

Separate lead-dependent hindcast climatologies are calculated
for each of the three model configurations making up the multi-
model ensemble. Resulting individual ensemble anomalies, and
the multi-model ensemble mean anomaly, may then be plotted
relative to the observed climatology, as shown for an example
hindcast in Figure 3. In this example the forecast ensemble mean
(thick pink line) is shown to track the verifying observations quite
well in the first couple of weeks, with the ensemble members
gradually spreading around it. Note that the same color is used
for ensemble members using the same initial condition, as input
to the three different model configurations, resulting in three
lines of each color. Interestingly, there is a grouping of these
ensemble members for short lead times, showing that for the
first few days it is the initial condition that most determines the
forecast trajectory, rather than the model physics. We will return
to this issue in the next section.

HINDCAST PERFORMANCE AND
SKILL-SPREAD RELATIONSHIP

Model OLR vs. Observed OLR
Model performance is evaluated for the bias-corrected multi-
model ensemble mean OLR anomalies in comparison with the
verifying observed OLR anomalies. Two metrics have been
calculated; the correlation (shown later) and the root mean
square (RMS) error for lead times from 1 to 35 days. These
measures are calculated over all the hindcasts, and over various
subsets. Figure 4 shows the RMS error for the ensemble mean

FIGURE 3 | Example bias-corrected hindcast for start date 21

December 2007, showing ensemble mean (thick pink line) and all 33

ensemble members (3 members per rainbow color). Thick gray line

shows the observed OLR from both before and after the model start date, and

thinner gray line is the observed climatological seasonal cycle.

from all hindcasts (upper panel) and for the summer monsoon
months of December through March (DJFM; lower panel).
Also shown are the RMS error for forecasts computed using
climatology (i.e., a zero anomaly), the RMS error for persistence
of the initial daily anomaly, and the hindcast “skill” computed as
a percentage improvement of POAMA over climatology (using
the same numerical scale as the error, i.e., from 0 to 40%).

The RMS error of POAMA is smaller than that of both
persistence and climatology for the range 2–35 days for both
the all season and the summer monsoon (i.e., DJFM) season.
Although the POAMA hindcast RMS error is greater in DJFM,
the hindcasts are more skilful relative to climatology during this
season, with a percentage improvement of about 36% at a lead of
1 day compared to 30% for the all-seasons case, and a percentage
improvement of about 16% compared to 9% at a lead of 10
days. We contend that these percentage improvements represent
a useful level of skill.

The spread (pink lines in Figure 4) for the all-season case is
less than the model RMS error for days 1 to 12, i.e., indicating
that the ensemble is under-spread. Between days 12 and 16
the spread is very close to the RMS error for both the model
forecasts and climatological forecasts. Beyond day 16 the spread
of the ensemble exceeds the RMS error of a climatological
forecast, which implies that the POAMA forecasts have slightly
greater variance than observed. For the summer months only,
the ensemble appears to be under-spread for lead times up to
about 20 days, and the spread stays below the RMS error of a
climatological forecast for all leads.

Impact of MJO on Forecast Skill
As noted in the introduction, some, but not all, seasons show
a strong relationship between the OLR over northern Australia
and the phase of the MJO. It has also been previously shown
that prediction of the RMM index of the MJO is somewhat
more skilful when the MJO is strong at the initial time (Rashid
et al., 2011). It therefore seems a reasonable hypothesis that the
prediction of OLR over northern Australia should be more skilful
when the MJO is strong in the initial conditions. We test this
hypothesis by examining the impact of the MJO on the forecast
skill when stratifying the hindcasts according to the presence or
absence of a strongMJO signal (Figure 5A), and also by the phase
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FIGURE 4 | Root-mean-square (RMS) error of area-averaged OLR (in W

m−2, on a scale from 0 to 40 W m−2) for POAMA ensemble-mean

hindcasts (red curve), reference forecasts using a forecast of zero

anomaly (i.e., climatology; green), and persistence of the initial daily

anomaly (blue). Also shown is the ensemble spread (magenta) in W m−2,

and skill score as a percentage improvement of POAMA over climatology

(orange) on a scale from 0 to 40%. (A) Is for all seasons, and (B) for summer

monsoon (DJFM) season only.

of the MJO (Figure 5B) at the initial time. However, there is no
evident impact of the amplitude or phase of the MJO on the
hindcast RMS error. For the correlation skill (not shown), there
appears a weak increase in correlation between days 2 and 9 for
hindcasts initialized with a strong MJO, but it is not statistically
significant. Thus we cannot confirm our hypothesis above. This
appears consistent with the result of Marshall et al. (2011) who
found that although POAMA was able to correctly simulate
and predict the relationship between the MJO and rainfall (i.e.,
convection) over most of the tropical Indo-Pacific, it was not able
to do this over the Maritime Continent and northern Australia,
indicating that there is still room for improvement in these
extended-range forecasts for northern Australia.

Ensemble Spread vs. Observed
Uncertainty and Error
The relationship between the spread and the underlying observed
variability is further highlighted by the rank histogram or
“Talagrand diagram” (Talagrand et al., 1997; Hamill, 2001),
shown in Figure 6 using all hindcasts. This histogram is
constructed by counting where the verifying observation lies
amongst all the ensemble members for each hindcast. Ideally
the distribution should be flat, which occurs when the ensemble
spread matches the observed variability, whereas a U-shaped
distribution indicates insufficient spread with many verifying
observations falling near the extremes or outside the range of

FIGURE 5 | RMS errors of all POAMA hindcasts (A) stratified by RMM

amplitude, blue for RMM > 1.3, green RMM ≤ 1.3, and red for all cases, and

(B) stratified by RMM phase, with red for all cases, blue for phases 1 and 8,

green for phases 2 and 3, magenta for phases 4 and 5, and orange for phases

6 and 7.

the ensemble members, and a domed distribution indicates too
much ensemble spread. All three types of distributions can be
seen in Figure 6, which shows too little spread at 3 days lead,
too much spread at 20 days lead, and about the right level of
spread at 10 days lead. This result is consistent with Figure 4A

which suggested that ensemble spread was insufficient at short
leads (up to ∼12 days) and over spread beyond about 16 days.
The lack of ensemble spread at short lead times is exacerbated by
the use of the same initial conditions for each of the three model
configurations. This shows up in Figure 6 in the strong peak
found at every third bin, due to the very small separation between
the three ensemble members with identical initial conditions. As
discussed by Hudson et al. (2013), this clearly signifies the need
for using different initial conditions for each of the three model
configurations.

Binning the individual forecasts based on ensemble spread
shows a generally positive relationship between spread and error
(Figure 7). The spread-error correlations are 0.55 for the 3-day
lead, 0.57 for the 10-day lead, and 0.90 for the 20-day lead. These
correlations are more encouraging of a positive relationship
between spread and error than others that have been listed in the
literature (as reviewed by Grimit and Mass, 2007), especially for
the 20-day lead. Therefore, especially for the 20-day lead, greater
certainty can be given to forecasts with smaller spread.

REAL-TIME FORECASTS

Real-time forecasts have been performed once a week since
August 2011 and twice a week since February 2013, and run
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FIGURE 6 | Rank histogram for hindcasts at 3-day (red), 10-day (green),

and 20-day (blue) lead for all hindcasts. Thin black line is expected

distribution assuming hindcasts fully represent observed uncertainty.

out to at least 120 days. For most forecasts, the start date will
not coincide with the dates for which hindcast climatologies
are available. There are a number of possible strategies to
obtain climatological values for any arbitrary start date. These
include simply using the nearest available climatology or linearly
interpolating between the two closest dates. The approach
adopted here is to fit a smoothed annual cycle to each lead
time, similar to the annual cycles for the observed and initialized
data, and then obtain a climatological value for any start date
and lead time by interpolation from this smoothed annual cycle.
Smoothed annual cycles for lead times of day 1 (blue) and day 20
(green) are shown in Figure 2.

Real-time anomalies are then calculated in a similar manner
to that used for the hindcasts. The consistency of the forecasts
over a run of forecasts is demonstrated in Figure 8, which shows
the ensemble mean of a sequence of 11 forecasts initialized
between 04 Feb 2013 and 11 Mar 2013. This example shows a
general agreement between one start time and the next, although
with a notable exception to this for forecasts initialized before
1st March vs. those initialized after 1st March, showing that
the model had a “change of heart” at that time. Comparison
with the observed OLR anomalies shows that the forecast of
positive OLR anomalies for 12–25 March by those forecasts
initialized after 1st March, indicating suppressed convection,
verified well. Overall, verification of all the available real-time
forecasts (Figure 9) shows that the hindcast skill is generally
maintained by independent forecasts. The limited real-time
POAMA forecasts have lower RMS errors than persistence
beyond the first day of the forecast, which is better than was
the case for the hindcasts (Figure 4), which took 2–3 days to
beat persistence. However, compared to climatological forecasts,
the POAMA real-time forecasts lose skill more swiftly than the
hindcasts, with the POAMA RMS error slightly exceeding that of
climatology at lead times greater than about 15 days. We cannot
think of a difference in the model prediction system between

FIGURE 7 | Spread vs. RMS error for hindcasts at a lead of 3 days (red)

10 days (green) and 20 days (blue). Binning of the hindcasts is based on

the ensemble spread, using 9 bins containing 128 hindcasts each. Numbers in

brackets are correlation between spread and RMS error for each lead time.

FIGURE 8 | Real-time forecasts (area-averaged ensemble mean OLR)

for all start dates from 4 February to 11 March 2013. Thick gray line

shows the observed OLR from both before and after the model start dates,

and thinner gray line is the observed climatological seasonal cycle.

the hindcasts and real-time forecasts that could explain these
skill differences (e.g., the model physics and initialisation remain
the same), so we assume that the skill differences are a result
of the rather short period (<5 years) of real-time data, and the
associated statistical uncertainty this causes.

CONCLUSIONS

We examine the ability of the latest version of the POAMA
system (POAMA-2M) to simulate the seasonal cycle of OLR
over the north Australian monsoon region, and to predict its
variability on timescales out to 35 days. After the period of
initial shock is over (i.e., after the first few days), the model’s
seasonal cycle shows that it does not have enough convection
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FIGURE 9 | Verification of all available POAMA forecasts from August

2011 to June 2016 (red curves) compared with persistence (blue

curves) and climatological forecasts (green curve) for the same period.

during the wet season and consequently has smaller amplitude
than observed. After correcting for this bias, model hindcasts
show skill, over persistence and climatological forecasts, at lead
times beyond 2 days. These hindcasts show that the model has
greater skill during the summer monsoon season fromDecember
to March, but this skill is largely independent of the state of

the MJO. Examination of the spread of hindcasts suggests that
the model has insufficient spread at short lead times (<12
days), and slightly too much spread at longer lead times (>16
days). Real-time forecasts are constructed in a similar manner
to the hindcasts, with the required bias correction obtained by
interpolating the model seasonal cycle to give values at each real-
time forecast start time. Verification of all available forecasts from
August 2011 through to June 2016 suggests that the hindcast skill
relative to persistence and climatology is mostly maintained in
completely independent forecasts.

AUTHOR CONTRIBUTIONS

WD and MW jointly designed the research, interpreted the
results, and wrote the paper. WD analyzed the prediction system
output and made Figures 2–9. MW made Figure 1, undertook
the milestone reporting to funding bodies and managers,
formatted the manuscript, and submitted the manuscript.

FUNDING

This work was partially supported during 2011–13 by the
Northern Australia/Monsoon Prediction project of theManaging
Climate Variability Program managed by the Grains Research
and Development Corporation.

ACKNOWLEDGMENTS

We thank the POAMA and related teams for their dedication
to producing and maintaining POAMA, and for supporting its
products. In particular, we thank Griffith Young for the POAMA
web pages and computing support. Greg Browning and Andrew
Marshall kindly provided internal reviews.

REFERENCES

Grimit, E. P., and Mass, C. F. (2007). Measuring the ensemble spread–

error relationship with a probabilistic approach: stochastic ensemble

results. Mon. Weather Rev. 135, 203–221. doi: 10.1175/MWR

3262.1

Hamill, T. M. (2001). Interpretation of rank histograms for

verifying ensemble forecasts. Mon. Weather Rev. 129, 550–560.

doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2

Hudson, D., Alves, O., Hendon, H. H., and Wang, G. (2011). The impact of

atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim.

Dyn. 36, 1155–1171. doi: 10.1007/s00382-010-0763-9

Hudson, D., Marshall, A. G., Yin, Y. H., Alves, O., and Hendon, H. H.

(2013). Improving intraseasonal prediction with a new ensemble generation

strategy. Mon. Weather Rev. 141, 4429–4449. doi: 10.1175/MWR-D-13-

00059.1

Liebmann, B., and Smith, C. A. (1996). Description of a complete

(interpolated) outgoing longwave radiation dataset. Bull. Am. Met. Soc. 77,

1275–1277.

Marshall, A. G., and Hendon, H. H. (2015). Subseasonal prediction of

Australian summer monsoon anomalies. Geophys. Res. Lett. 42, 10913–10919.

doi: 10.1002/2015GL067086

Marshall, A. G., Hudson, D., Hendon, H. H., Pook, M. J., Alves, O.,

and Wheeler, M. C. (2014a). Simulation and prediction of blocking

in the Australian region and its influence on intra-seasonal rainfall

in POAMA-2. Clim. Dyn. 42, 3271–3288. doi: 10.1007/s00382-013-

1974-7

Marshall, A. G., Hudson, D., Wheeler, M. C., Alves, O., Hendon, H. H.,

Pook, M. J., et al. (2014b). Intra-seasonal drivers of extreme heat over

Australia in observations and POAMA-2. Clim. Dyn. 43, 1915–1937.

doi: 10.1007/s00382-013-2016-1

Marshall, A. G., Hudson, D., Wheeler, M. C., Hendon, H. H., and Alves, O.

(2011). Assessing the simulation and prediction of rainfall associated with

the MJO in the POAMA seasonal forecast system. Clim. Dyn. 37, 2129–2141.

doi: 10.1007/s00382-010-0948-2

Marshall, A. G., Hudson, D., Wheeler, M. C., Hendon, H. H., and Alves, O. (2012).

Simulation and prediction of the Southern Annular Mode and its influence

on Australian intra-seasonal climate in POAMA. Clim. Dyn. 38, 2483–2502.

doi: 10.1007/s00382-011-1140-z

Rashid, H. A., Hendon, H. H., Wheeler, M. C., and Alves, O. (2011). Prediction of

the Madden-Julian oscillation with the POAMA dynamical prediction system.

Clim. Dyn. 36, 649–661. doi: 10.1007/s00382-010-0754-x

Stockdale, T. N. (1997). Coupled ocean–atmosphere forecasts in

the presence of climate drift. Mon. Weather Rev. 125, 809–818.

doi: 10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2

Talagrand, O., Vautard, R., and Strauss, B. (1997). “Evaluation of probabilistic

prediction systems,” in Proceedings, ECMWF Workshop on Predictability.

Reading: ECMWF, 1–25.

Wheeler, M. C. (2008). Seasonal climate summary southern hemisphere

(summer 2007-08): mature La Nina, an active MJO, strongly positive

Frontiers in Earth Science | www.frontiersin.org 7 April 2017 | Volume 5 | Article 28

https://doi.org/10.1175/MWR3262.1
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1007/s00382-010-0763-9
https://doi.org/10.1175/MWR-D-13-00059.1
https://doi.org/10.1002/2015GL067086
https://doi.org/10.1007/s00382-013-1974-7
https://doi.org/10.1007/s00382-013-2016-1
https://doi.org/10.1007/s00382-010-0948-2
https://doi.org/10.1007/s00382-011-1140-z
https://doi.org/10.1007/s00382-010-0754-x
https://doi.org/10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive


Drosdowsky and Wheeler Extended Prediction of Australian Monsoon

SAM, and highly anomalous sea-ice. Aust. Meteorol. Mag. 57,

379–393.

Wheeler, M. C., and Hendon, H. H. (2004). An all-season real-

time multivariate MJO index: development of an index for

monitoring and prediction. Mon. Weather Rev. 132, 1917–1932.

doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

Wheeler, M. C., and McBride, J. L. (2011). “Australasian monsoon,” in

Intraseasonal Variability in the Atmosphere-Ocean Climate System,

2nd Edn, eds W. K. M. Lau and D. E. Waliser (Berlin: Springer),

147–198.

Zhu, H., Wheeler, M. C., Sobel, A. H., and Hudson, D. (2014). Seamless

precipitation prediction skill in the tropics and extratropics from a global

model. Mon. Weather Rev. 142, 1556–1569. doi: 10.1175/MWR-D-13-

00222.1

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer SW and the handling Editor declared their shared affiliation,

and the handling Editor states that the process nevertheless met the standards of a

fair and objective review.

Copyright © 2017 Drosdowsky and Wheeler. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Earth Science | www.frontiersin.org 8 April 2017 | Volume 5 | Article 28

https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/MWR-D-13-00222.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Earth_Science
http://www.frontiersin.org
http://www.frontiersin.org/Earth_Science/archive

	Extended-Range Ensemble Predictions of Convection in the North Australian Monsoon Region
	Introduction
	Data and Model Forecast System
	Observational OLR and MJO Data
	POAMA-2M Forecast System

	Hindcasts and Bias Removal
	Hindcast Performance and Skill-Spread Relationship
	Model OLR vs. Observed OLR
	Impact of MJO on Forecast Skill
	Ensemble Spread vs. Observed Uncertainty and Error

	Real-Time Forecasts
	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


