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The central circadian pacemaker in the suprachiasmatic nucleus (SCN) is a critical com-
ponent of the neuroendocrine circuit controlling gonadotropin secretion from the pitu-
itary gland. The SCN conveys photic information to hypothalamic targets including the
gonadotropin releasing hormone neurons. Many of these target cells are also cell
autonomous clocks. It has been suggested that, rather then being singularly driven by
the SCN, the timing of gonadotropin secretion depends on the activity of multiple hypo-
thalamic oscillators. While this view provides a novel twist to an old story, it does little to
diminish the central role of rhythmic hypothalamic output in this system. It is now clear that
the pituitary, ovary, uterus, and oviduct have functional molecular clocks. Evidence supports
the notion that the clocks in these tissues contribute to the timing of events in reproductive
physiology. The aim of this review is to highlight the current evidence for molecular clock
function in the peripheral components of the female hypothalamo-pituitary-gonadal axis as
it relates to the timing of gonadotropin secretion, ovulation, and parturition.
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INTRODUCTION
Generating a complete picture of the timing systems role in preg-
nancy and parturition requires examining the molecular clocks
role in the timing of events that precede fertilization. The tempo-
ral control of ovulation and the events that follow depend in large
part on the timing of luteinizing hormone (LH) and follicle stim-
ulating hormone (FSH) secretion from the pituitary gland (1).
Serum gonadotropin levels display robust diurnal variation (2–4).
In nocturnal rodents, LH secretion increases in the afternoon and
peaks 3–4 h into the night (3, 5). These rhythms are dependent
upon the activity of pacemaker neurons in the suprachiasmatic
nucleus (SCN) (6, 7). As with behavior, gonadotropin secretory
rhythms persist in constant conditions (8, 9). Neuropeptidergic
SCN efferents pass temporal cues from the retina to gonadotropin
releasing hormone (GnRH) neurons in the preoptic area of the
basal forebrain (10, 11). GnRH stimulates gonadotropin secretion
from the pituitary gland via the portal vasculature. The timing of
the ovulation-inducing surge of LH depends on this neuroen-
docrine network (12, 13). It has long been the view that this
complex circuit is the sole source for timing cues in the female
reproductive system (5, 14).

The biochemical substrate for circadian oscillations is a
transcription-based autoregulatory negative feedback loop of
interacting clock gene transcription factors, including at its core
the transcriptional enhancer bmal1 and the repressors period (1,2)
and cryptochrome (1,2) (15). In addition to SCN neurons, the
pituitary, ovary, uterus, and oviduct are each comprised of cell-
autonomous circadian clocks [see Figure 1; (16–23)]. However,
a functional role for the clock in these tissues, particularly with

regard to the timing of ovulation, implantation, and parturition,
has yet to be thoroughly defined (24, 25). The clock in the ovary
may play a significant role in the timing of ovulation, steroid hor-
mone synthesis, follicular growth, and differentiation (26–30).
Clock genes in the uterus and oviduct have been implicated in
the processes of implantation, embryo maturation, development
of the fetus, and eventual parturition (18, 23, 31–33). Others
have linked circadian clock function to reproductive physiology,
with particular emphasis on steroid hormone biosynthesis (34–
36). Mutations altering clock gene expression have a substantial
impact on reproductive function in both rodents (31, 33, 37, 38)
and humans (39).

Taken together, these data indicate that while oscillators in
the basal hypothalamus play a critical role, the peripheral com-
ponents of the hypothalamo-pituitary-gonadal (HPG) axis may
also contribute to the timing of reproductive physiology. Disrup-
tion of the molecular clock in these peripheral tissues or reduced
synchrony amongst these oscillators may be a factor in diseases
that cause infertility (40). The goals of this review are: (1) high-
light the evidence for molecular clock function in the peripheral
tissues of the HPG axis and (2) briefly speculate on the physio-
logical ramifications of disrupted molecular clock function as it
relates to ovulation and the events that follow. For the purpose
of this mini-review, we will avoid discussion of the complex and
well-described role of the clock genes in photoperiod-dependent
reproductive physiology. Our intention is to shed light on the most
salient and current evidence for peripheral clock function in basic
female reproductive physiology and highlight potential impacts of
circadian disruption on fertility.
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Sellix Peripheral clocks and reproduction

FIGURE 1 | Circadian clock function in the peripheral tissues of the
female HPG axis. The central circadian clock in the suprachiasmatic
nucleus (SCN) drives rhythmic GnRH secretion and subsequent
gonadotropin secretion from the pituitary. In addition to these
neuroendocrine pacemakers, clocks are also present in the pituitary
gonadotroph, uterine endometrium and myometrium, oviduct epithelial
cells and ovarian theca, interstitial, and granulosa cells. Clock function has

been implicated in GnRH signaling, gonadotropin sensitivity, ovulation,
steroid hormone synthesis, embryonic maturation, implantation, and
decidualization. Synchronization of central and peripheral oscillators is
mediated by several putative humoral and neural cues, driven either
directly or indirectly by the SCN. Moreover, feedback signals from the
periphery, e.g., steroid hormones of ovarian origin, modulate the timing of
the clock in both central and peripheral tissues of the HPG axis.

CIRCADIAN CLOCK FORM AND FUNCTION: THE PITUITARY
GONADOTROPH
Both circadian and ultradian patterns of LH secretion have been
described in female mammals (41–45). Examination of LH release
from isolated pituitary explants and pituitary cell cultures indi-
cated that individual gonadotrophs or a subpopulation of dif-
ferentially regulated gonadotrophs may be autonomous circadian
oscillators (44, 46). More recently several groups have described
cell autonomous clock gene expression in the pituitary gland (16,
22, 47–52). However, the evidence for molecular clock function
in specific hormone secreting cells is limited to gonadotrophs and
lactotrophs (22, 50, 51). Kakar and colleagues provided the earliest
evidence for a functional clock in gonadotrophs with the revelation
that GnRH induces per1 expression in gonadotroph cell lines (53).
Olcese and colleagues subsequently determined that per1, but not
per2, gene expression was activated by GnRH receptor (GnRHR)
through MAP kinase-dependent signaling (54). This group also
identified seven clock-gene target sequences in the mouse GnRHR
promoter and determined that both BMAL1 and CLOCK bind to
and activate GnRHR expression (22). Most importantly they were

able to co-localize PER1 with LH in pituitary cells in situ (22).
Further, using siRNA they confirmed that suppression of bmal1
expression effectively reduced GnRHR mRNA. Finally, this group
reported that GnRH mediated activation of early growth response
protein-1 (EGR-1) also leads to activation of per1 expression (51).

In addition to GnRH signaling and receptor gene expression,
the molecular clock may also regulate physical changes in the
pituitary. That is, gonadotroph proliferation changes during the
estrous cycle (55) and exhibits a diurnal rhythm, with a peak in
S-phase near 14:00 h (56). A rhythm of gonadotroph prolifera-
tion with a period equal to the 4-day estrous cycle and a peak on
estrous was described in rats (57). Together, these data indicate
that the circadian clock in gonadotrophs may regulate rhythms
of cell proliferation, secretory responses to gonadotropins, and
gonadotropin gene expression. Recently, it was reported that only
per1 mRNA was rhythmically expressed in human pituitary glands
(58). Surprisingly, a rhythm of PER1 protein was not detected.

Finally, it was recently reported that, unlike global bmal1 dele-
tion, cell-specific deletion of bmal1 in gonadotrophs had no effect
on the amplitude and timing of gonadotropin secretion (52). Mice
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with gonadotroph-specific bmal1 KO had normal fertility, though
the duration of the estrous cycle was increased (52). These data
suggest that molecular clock function in regions upstream (basal
hypothalamus) or downstream (ovary) may be more critical for
normal reproductive function in mice.

CIRCADIAN CLOCK FORM AND FUNCTION: THE OVARIAN
FOLLICLE
Rhythmic expression of clock genes in the ovary has been observed
in rat (19–21, 26), mouse (59), quail (60), and chicken (61). In
2006 a pair of independent studies reported rhythms of clock
gene expression in the rat ovary (19, 20). These studies revealed
that gonadotrophin exposure in vivo induced cyclic expression of
bmal1 and per2 mRNA in the ovaries of hypophysectomized pre-
pubertal rats (20). They also observed diurnal rhythms of per1 and
per2 expression that persisted across the reproductive cycle (19).
Further, these authors confirmed rhythms of clock gene expres-
sion within large preantral follicles, small antral follicles, graafian
follicles, and corpora lutea. The same group have subsequently
confirmed this finding (29). More recently it was reported that
rhythms of clock gene expression are only present in mature iso-
lated granulosa and luteal cells (21, 26, 62, 63). Comparable results
have also been reported in quail, with only the largest preovulatory
follicles showing rhythmic per2 expression (60). The absence of
rhythmic clock gene expression in immature or differentiating cells
has also been reported in the thymus and testis (34). These data
suggest that circadian rhythms of clock gene mRNA are“activated”
at some point during differentiation of follicular cells. Studies on
the ontogeny of the clock support this notion, though there is
also limited evidence that rhythmic gene expression can persist
even in the absence of a functional molecular clock (64, 65). New
evidence suggests that the appearance of robust rhythms of clock
gene expression in mature follicles may be due to FSH-dependent
expression of gap junction proteins (30). Disruption of cell-to-cell
communication via gap junction blockers (e.g., lindane) reduces
the amplitude and lengthens the period of PER2-luc expression
in rat granulosa cells (30). These data indicate that gonadotropin-
dependent communication among follicular cells may play a role
in the appearance and/or maintenance of clock controlled gene
(CCG) expression.

Gonadotropins clearly affect the timing and amplitude of
clock gene expression in ovarian cells (20, 26, 27, 29, 63). We
have systematically determined the phasic nature of sensitivity
to gonadotropins in cultured rat granulosa cells (27). The physio-
logical significance of these results is puzzling, given the transient
nature of the follicle (29). Rather than mediating entrainment, it is
likely that the impact of gonadotropins on the timing of clock gene
expression reflects the indirect influence of receptor-mediated
activation of cAMP-dependent signaling pathways (66).

Despite all the evidence for a molecular oscillator in follicular
cells, the physiological significance of the ovarian clock is largely
a mystery. Our own work reveals that the timing of ovulation
may depend on a window of sensitivity to gonadotropins. We
have observed a circadian rhythm of sensitivity to exogenous LH-
treatment following suppression of endogenous LH secretion with
a selective GnRHR antagonist (28). We have more recently deter-
mined that this rhythm is not dependent on the mature pattern

of ovarian steroid hormone secretion or a fully developed and
sexually mature neuroendocrine system, as we have observed the
same rhythm in juvenile mice primed with equine gonadotropins
(unpublished observation). These data indicate that rhythmic sen-
sitivity of the ovary to gonadotropins may be an innate feature of
the mature preovulatory follicle, driven in part by the ovarian
clock.

How might the clock in follicular cells regulate the timing of
sensitivity and/or prepare the preovulatory follicle for ovulation at
the appropriate time? It is well known that the LH surge induces
a significant change in gene expression within the granulosa and
theca cells of the follicle (66–68). However, evidence for rhyth-
mic expression of LH-responsive genes is limited. Several genes
induced by LH signaling in the ovary are possible CCG candi-
dates. LRH-1 (also known as CYP7A promoter binding factor)
was first cloned and identified as an orphan nuclear receptor in
the liver (69). In the ovary, LRH-1 expression is limited to the
granulosa cell layer and is implicated in the regulation of steroid
hormone biosynthesis and bile acid production (70). Recently,
LRH-1 was shown to bind directly to CLOCK (71) and act syner-
gistically to drive CLOCK:BMAL1 mediated transcription in the
liver (71). In the ovary, LRH-1 has been implicated in the control
of steroid biosynthesis in granulosa cells through direct activation
of cytochrome P450 side chain cleavage (CYP11A1) transcription
(72). Thus, LRH-1 may represent a mechanistic link between LH
receptor signaling and the molecular clock in follicular cells.

In response to the LH surge enzymatic pathways responsible for
follicular rupture are activated (67, 73, 74). A significant step in the
response to LH is an increase in the level of prostanoids, includ-
ing prostaglandin E2 (PGE2) and PGF2α (74). The rate-limiting
enzyme for prostaglandin (PG) synthesis is cyclooxygenase-2
[COX2; (74)]. COX2 catalyzes the conversion of arachidonic acid
to PGs and evidence suggests that COX2 expression is regulated
by E-box promoter elements (74). In addition, treatment with
PGE2 in vivo has been shown to phase shift the rhythm of per1,
d-element binding protein (dbp), and rev-erbα mRNA expression in
the heart, liver, and kidney (75). Most recently, it was revealed that
luteinized or “mature” granulosa cells do in fact have robust circa-
dian rhythms of ptgs2 and lhcgr gene expression that are disrupted
and in some cases abolished by bma11 siRNA (76). Together, these
data suggest that an increase in COX2 and LH receptor expression
and/or PG activity preceding the arrival of the LH surge may allow
for predictive changes in ovarian cells in anticipation of ovulation.

It is also clear, from work in both rodents (30, 31, 36, 76) and
birds (35), that the circadian clock plays a considerable role in
the amplitude and timing of steroid hormone biosynthesis. Cir-
cadian rhythms of steroidogenic acute regulatory protein (StAR),
3beta-hydroxysteroid dehydrogenase (3β-HSD), 11α-hydroxylase,
and aromatase (cyp19) have been observed in mature granulosa
cells (30, 76). These rhythms are altered or abolished following
treatment with bmal1 siRNA (76). Further, bmal1−/− mice have
abnormally low levels of progesterone secretion due to reduced
StAR expression (31).

THE CIRCADIAN CLOCK IN THE UTERUS AND OVIDUCT
Evidence for circadian clock function in the uterus is limited but
supports a contribution of the uterine clock in the process of
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implantation, development of the conceptus, and eventual partu-
rition (17, 23, 31, 33). Johnson and colleagues were the first to
describe rhythmic clock gene expression in the uterus (17). Sub-
sequent investigations determined that uterine cells were in fact
semi-autonomous clocks (21, 32, 77). The timing of clock gene
expression in the uterus appears to be affected by the reproductive
cycle (78) and stimulation with ovarian steroids (79, 80). Global
knockout of the core clock gene bmal1 disrupts implantation,
alters the level of steroid hormone synthesis, and compromises
fertility (31). Further, targeted deletion of bmal1 gene expression
in the myometrium abrogates normal implantation (33). Finally,
it was recently reported that circadian clock gene expression in
endometrial stromal cells was attenuated during decidualization
(81). In contrast with data from ovarian, testicular, and thymus
tissue, where molecular clock function is linked to differentiation
and maturation, these data suggest that silencing of the clock in
uterine stromal cells may be permissive for cellular differentiation
and maturation (81).

As with the uterus, initial evidence for a functional clock in the
oviduct was provided nearly a decade ago by Johnson and col-
leagues (17). In the 10 years following few studies have advanced
our understanding of clock function in this tissue. In fact, only
one additional study by Kennaway and co-workers has examined
clock function in the oviduct. These authors described rhythms
of several clock genes and CCGs including per2, bmal1, dbp, plas-
minogen activator inhibitor-1 (PAI-1), and rev-erb in the oviduct,
supporting the notion that the embryo is exposed to rhythmic
environmental conditions during passage to the uterus (18). Fur-
ther the authors suggest that rhythmic secretory activity of epithe-
lial cells may be critical for embryonic development. As with the
ovary, additional functional studies of clock dependent physiology
are needed to confirm the role of the clock in both the uterus and
oviduct.

SUMMARY
The aim of this brief review is to discuss our current under-
standing of molecular clock function in the peripheral tissues
of the mammalian female reproductive tract. It should be clear

that, while we know a great deal about the location and charac-
ter of the clock, our understanding of peripheral clock function
is rather limited. The discovery of nearly ubiquitous clock gene
expression in the tissues of the HPG axis suggests widespread
and diverse physiological function. The female reproductive tract
is fertile land for these explorations as it is elegantly organized,
thoroughly integrated by positive and negative feedback, and tem-
porally robust in its output. Using targeted deletion approaches
(e.g., Cre-Lox system), investigators have begun to more thor-
oughly and intensively characterize molecular clock function in
the uterus and pituitary gland. Extension of this approach to the
ovary and oviduct will provide a more complete picture of clock
function in these tissues.

It is clear that both adequate output of the SCN and coor-
dination between the central pacemaker and peripheral clocks is
critical for physiological homeostasis. Nowhere does this appear
to be more true than in the reproductive axis. Rather than sim-
ply top–down hierarchical control, the HPG axis can be consid-
ered a partnership of synchronized and cooperative oscillators
(Figure 1). The means of this synchronization remains to be ade-
quately defined. Perhaps the system relies on the timing of adrenal
glucocorticoids or autonomic nervous cues, each directly or indi-
rectly influenced by the SCN [see Figure 1; (82, 83)]. More likely
coordination of central and peripheral clocks is mediated by a
synergy of multiple cues (82). Moreover, it is possible and even
likely that feedback from these peripheral clocks acts to modulate
the output of the central neuroendocrine network. This is cer-
tainly true of the HPG axis, as we have seen that ovarian steroids
can affect central and peripheral oscillators, including the ovary
itself. As the complex nature of the circadian timing system con-
tinues to be appreciated we are certain to discover how its function
(and “dysfunction”) is an integral aspect of conditions that affect
reproductive health and fertility.
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