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Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the
degree of adaptation and response to a later stressor. It is known that early-life stress can
impact on later health but less is known about how early-life stress impairs HPA axis activ-
ity, contributing to maladaptation of the stress–response system. Early-life stress exposure
(either prenatally or in the early postnatal period) can impact developmental pathways
resulting in lasting structural and regulatory changes that predispose to adulthood disease.
Epidemiological, clinical, and experimental studies have demonstrated that early-life stress
produces long term hyper-responsiveness to stress with exaggerated circulating gluco-
corticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has
emerged on early-life stress-induced metabolic derangements, for example hyperinsuline-
mia and altered insulin sensitivity on exposure to a high energy diet later in life.This draws
our attention to the contribution of later environment to disease vulnerability. Early-life
stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid
receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that inter-
actions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and
circulating glucocorticoid availability, with adverse metabolic consequences. This review
discusses the potential mechanisms underlying early-life stress-induced maladaptation of
the HPA axis, and its subsequent effects on energy utilization and expenditure.The effects
of positive later environments as a means of ameliorating early-life stress-induced health
deficits, and proposed mechanisms underpinning the interaction between early-life stress
and subsequent detrimental environmental exposures on metabolic risk will be outlined.
Limitations in current methodology linking early-life stress and later health outcomes will
also be addressed.

Keywords: early-life stress, metabolic disorders, 11-beta hydroxysteroid dehydrogenase 1, hyperinsulinemia, liver,
insulin signaling, glucocorticoids

INTRODUCTION
Stress can be defined as any condition including an adverse envi-
ronment, experience, or perceived threat to alter an organism’s
homeostasis, which elicits a physiological response involving both
peripheral and central systems via the release of glucocorticoids
from the adrenal cortex through activation of the hypothalamic–
pituitary–adrenal (HPA) axis (1). Glucocorticoids serve as the
critical end product of the HPA axis and negative feedback through
glucocorticoid–glucocorticoid receptor binding in the hippocam-
pus promotes adaptation and recovery from stress (2). Activity of
the HPA axis plays a critical role in restoring homeostasis following
imminent or acute stressor exposure (1). In contrast, recurrent or
persistent activation of the HPA axis and the autonomic nervous
system are associated with adverse health outcomes (3). Individu-
als respond differently to stressors, which can reflect a wide range
of adversities in life from major events to daily conflicts and pres-
sures. Increased levels of glucocorticoids interfere with energy
utilization and modify metabolic hormones such as insulin and
glucose, which are key regulators of energy metabolism (4–6). The
elicited response affects multiple physiological systems including

neuroendocrine, autonomic, and the immune system and is an
established risk factor for the development of disease (7–10).

There is longstanding recognition of the impact of stress dur-
ing critical early developmental periods such as childhood and the
consequential association with adverse mental health outcomes
and changes in brain development (11–13), however, less is known
regarding how this dysfunction may confer increased metabolic
disease risk. Emerging epidemiological evidence demonstrates
that adverse early-life stress-induced dysregulation of the HPA
axis and increases vulnerability for metabolic disorders. In par-
ticular, exposure to an adverse environment during prenatal and
postnatal periods, such as lack of nutrition or starvation during
war, traumatic experiences including childhood physical or sex-
ual abuse, neglect, adverse parenting or medical trauma has been
demonstrated to be one of the major risk factors contributing to
the development metabolic disorders including insulin resistance,
type 2 diabetes mellitus (T2DM), and hyperlipidemia (14–16).

While studies aimed at exploring underlying mechanisms are
difficult to achieve in humans, animal studies have shed some light
into the effects of early-life stress induced during the prenatal and
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postnatal periods on metabolic hormones and on peripheral tis-
sues involved in glucose/insulin and lipid metabolism (17–24). In
addition, the morphology of the pancreas is also affected by prena-
tal stress, with reduced beta-cell numbers (25). Thus, stress during
early development may incur permanent alterations in morphol-
ogy and function of key peripheral organs involved in metab-
olism of insulin, glucose and lipids, and these changes suggest
programing effects of early-life stress (26).

This review will unravel how early-life stress induces meta-
bolic derangements; an area that is less well explored. Despite
the emergence of human data in the field, mechanisms elucidat-
ing the association between stress and adverse metabolic outcomes
are lacking. Animal studies permit closer investigation of the stress
system and through various manipulations, allow the mechanisms
underlying effects of stress on metabolism to be explored. Of par-
ticular focus is exploring outcomes of stress during the perinatal
and early-life period for later life metabolic outcomes.

DOES EARLY-LIFE STRESS AFFECT RISK FOR LATER LIFE
METABOLIC DEFICIT?
MODELING EARLY-LIFE STRESS IN ANIMALS
As direct examination of the prospective effects of early-life stress
is not feasible in humans this had led to the development of
numerous animal models to explore the question of whether
early-life stress can affect risk for later life metabolic deficit. Ani-
mal models of early-life stress allow for controlled environmental
manipulation throughout developmental periods and later life.
With necessary caution these models can assist our understanding
of the link between developmental and environment experiences
and the conferred later life metabolic disease vulnerabilities. Inher-
ent differences in human and rodent biological maturation and
neuroendocrine development must be considered in study design
and translation to human health. Humans give birth to mature
young; with the final trimester of pregnancy being a period of
rapid brain development (27, 28). Rodent offspring are born rela-
tively immature with maximal growth phase initiated early in the
postnatal period. Despite greater maturity of human offspring at
the time of birth, development is far from complete with changes
in neurological processes, synaptogenesis, synaptic pruning, and
plastic changes in key functional areas including the hippocam-
pus occurring until late adolescence (29, 30). The environment
has been shown to impact this ongoing development beyond ges-
tation. Children physically healthy at the time of birth who were
abused in early life were shown to have reduced brain volume,
correlated to age of abuse onset, and duration of the stress (31).
Imposed stressors during rodent gestational or early postnatal life
are suggested to model the period of gestation, early postnatal, or
infancy in humans.

Humans and rodents have a vital dependence on adequate
nourishment and care to ensure normal development. This altri-
cial nature and vulnerable perinatal period across both species
means that models of maternal care can provide insight into how
early support and sensitivity to offspring needs can impact devel-
opment. Changes in maternal care have been shown to impact
rodent development with mother–offspring interactions such as
licking and feeding providing critical input for normal neurobi-
ological development and HPA axis function (32, 33). Adequate

maternal contact during this period assists in maintaining rodents
in their early-life hypo-responsive stress state and adverse experi-
ence through physical or psychological means or synthetic gluco-
corticoid administration can permanently alter HPA axis function
(34, 35).

Three popular paradigms of postnatal early-life stress are
maternal separation for varied periods of time from 15 min to 8 h,
maternal deprivation (absence of the dam for a more extended
period) and provision of only limiting nesting material. The
maternal separation model has been studied for more than five
decades, and is demonstrated in both mice and rats to affect the
HPA axis, and behavioral responses in mothers and offspring in a
sex dependant manner (36–39). Maternal deprivation is another
common form of early-life stress which has been studied over
decades (40–44). Twenty-four hours of maternal deprivation in
neonatal rodents induced marked elevations in plasma corticos-
terone and decreases in plasma glucose and leptin, amongst other
hormonal and neurotrophic factor changes (40, 43). This model,
however appears to reflect a severe nutritional insult rather than
psychological disturbances. Therefore, whether maternal depriva-
tion represents adverse early experience in the human context is
debatable. The limiting nesting paradigm, a more recently devel-
oped model of early-life stress, has been described elsewhere (35)
but, briefly, involves limiting the dam’s available material for nest
building, resulting in rudimentary and inadequate housing for
offspring, a chronic stressor for the dam and pups. Limited nest-
ing (LN) material, attempts to enhance commonalities to the
human condition of childhood neglect and maternal stress in
which the mother is present, yet care is abnormal and fragmented.
Notably, the LN model has been demonstrated to impair HPA
axis activity and induce behavioral deficits both in the dam and
pups (35, 45, 46).

Recently, early-life stress models in non-human primates have
demonstrated a lasting health impact following adverse early expe-
riences. Altering secure attachment relationships during early
life in Rhesus macaques significantly elevated prevalence and
frequency of illness and increased bodyweight trajectory (47).
Stress induced via variable foraging demand in bonnet macaques
during lactation affected the metabolic profile of their off-
spring; a decreased glucose disposal rate was observed during
hyperinsulinemic-euglycemic clamps in those exposed to early-life
stress (48).

OBSERVATIONS IN HUMAN STUDIES
Retrospective and observational studies in humans demonstrate
that early-life experiences can influence later life metabolic out-
come. Environmental changes during gestation and the early
postnatal period may impact development and predict metabolic
health outcomes. Manipulations of the early environment can
affect the developing nervous system, shaping individual differ-
ences in physiological and behavioral responses to environmental
insults. For example, disruption of the mother–infant relationship
during early life contributes to neuroendocrine, neurochemical,
and behavioral changes in the adult organism (49). Experience of
adversity during early life and adolescence in the form of parental
conflict or parental separation increased the risk of later life obe-
sity (50). Similarly, experience of a range of early-life stressors
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was positively correlated with increased adult BMI in men, inde-
pendently of mental health condition (51). These adverse early-
life experiences are associated with persisting changes in HPA
axis function in adult life with changes in the normal dynam-
ics of the stress system and its end-point hormone cortisol (52).
Commonly, a flattened cortisol circadian rhythm and hypo- or
hyper-responsiveness to future novel stressors is observed (53, 54).

Barker’s theory postulates that low birth weight predicts
increased disease risk later in life, including metabolic vulnera-
bility (55). Given this association, identifying factors that influ-
ence gestational growth, and ultimately determine birth weight
is important. Reduced birth weight and preterm birth have both
been associated with psychosocial stress exposure during preg-
nancy (56–58). Having a low birth weight baby (<2500 g) was
associated with stress-related psychiatric illness in pregnant moth-
ers, such as melancholic depression (59). Prenatal psychological
stress such as experiencing bereavement during pregnancy led to
an increased risk of developing T2DM in their children during
adulthood (60). Degree of social support during pregnancy has
also been associated with birth weight (61). Other psychological
stressors such as financial, relationship problems, and illness dur-
ing pregnancy led to elevated glucose, insulin, and C-peptide levels
during glucose tolerance test in their children aged 25 (62). Nutri-
tional stress during the neonatal period has also been shown to
adversely impact offspring health outcome, as explored below.

Famine exposure during pregnancy is a chronic early-life stress
that is also known to affect birth weight and increase risk for
metabolic disorders later in life. A well-documented period pro-
viding epidemiological evidence linking early-life adversity and
health outcomes is the 1944–1945 Dutch Famine (see Table 1).
A cohort of 741 subjects exposed to the Dutch Famine prenatally
had a reduced birth weight, yet at adulthood these subjects had
increased body weight, BMI, fasting proinsulin levels, and glu-
cose intolerance (63). A report of 7557 women exposed to the
Dutch famine showed increased risk for T2DM development in
their offspring (64). Exposure to the Chinese famine during the
1960s showed similar adverse outcomes for offspring, with women
having higher prevalence of metabolic disorders such as diabetes,
hypertriglyceridemia, and hypertension (65). A cross-sectional
study of subjects exposed to the Biafran famine during the Niger-
ian Civil War showed derangements in their metabolic profile
during adulthood with increased risk for diabetes in both middle-
aged men and non-pregnant women (66) (see Table 1). These data
highlight that adverse early experiences, whether psychological
or nutritional in nature during vulnerable developmental peri-
ods can impact offspring insulin and glucose metabolism during
adulthood (Table 1).

Despite increasingly available epidemiological evidence, the
mechanisms driving stress effects to lower birth weight remain
largely unknown. Changes in HPA axis function in individu-
als of low birth weight have been identified. A group of adult
men born with low birth weight had increased HPA axis respon-
siveness, which was shown to be associated with metabolic risk
factors including blood pressure and increased triglycerides (80).
Thus epidemiological evidence generally suggests early-life stress
induces perturbed HPA axis function and alters neuroendocrine
axis responsiveness. The increasing evidence demonstrating the

risk of early-life stress and later metabolic disorders emphasizes
the need to explore the mechanisms underlying this association.
Targets for intervention, whether through pharmacological means
or through lifestyle modification, need to be identified to reduce
this identified risk. It is important to note that not all individuals
exposed to adverse early environments develop metabolic deficits
later in life; these differences may relate to genetic makeup and the
environment to which the individual is exposed throughout life.

THE EFFECT OF LATER ENVIRONMENT ON HEALTH
OUTCOMES FOLLOWING EARLY-LIFE STRESS
Early-life stress in combination with a sub-optimal later envi-
ronment, such as a sedentary lifestyle, increased consumption of
high energy food or persistent adulthood stress may alter the risk
for developing metabolic disorders throughout life. Humans and
rodents are able to habituate and adapt to the environmental con-
ditions to which they are exposed (81–83). This adaptation occurs
in prediction of exposure to similar situations in the future, and
under normal conditions is of significant value, improving future
resilience and coping in these situations (see Figure 2). However,
it is suggested that if adaptation is inadequate, maladaptive, or
future environment differs from the programed phenotype, there
is increased disease susceptibility (84–87). Determining the long
term consequences of early-life stress-induced changes in neuronal
structure, and hormonal and nutritional status across different
environments is an important public health concern. Although
prevention or mitigation of early-life stress is the ideal, if through
modulating the later environment (e.g., providing a positive envi-
ronment) disease risk can be attenuated, important targets for
intervention can be identified.

Stress throughout adulthood negatively influences lifestyle
choices that are risk factors for metabolic disease, such as alter-
ations in eating behavior, intake of high-fat food (88), drug addic-
tion (89, 90), and reduced physical activity levels (91). Given this,
it is critical to determine whether early-life stress can have a lasting
influence on adult behavioral choices. Indeed, parental care fac-
tors play a key role in developing health behaviors and outcomes
in children (92, 93). Parental behaviors are often imitated by chil-
dren, thus a push to improve attitudes in parents, whether through
reducing stress, improving eating attitudes or increasing physical
activity may foster improved health status in successive genera-
tions. Recent research showed a direct association between activity
levels of parents and their preschool-aged children (94). Addi-
tionally, the behavioral profile that results from early-life stress
heightens the risk for impaired psychosocial function and psychi-
atric disorders, and this may independently influence metabolic
disease risk. Future human studies must focus on these lifestyle
factors during critical exposure periods and throughout adult life.

PRENATAL STRESS AND IMPACT OF LATER ENVIRONMENT:
HUMAN STUDIES
Prenatal exposure to adverse environments such as famine have
been associated with poorer lifestyle choices including smoking
incidence (66), HFD consumption, and reduced physical activity
(95, 96). As explored, a possible consequence of gestational stress
is preterm birth or low birth weight. Total physical activity lev-
els (97) and non-conditioning leisure time physical activity levels
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Table 1 | Human early-life stress studies exploring metabolic outcomes.

Early-life stressor Participants Offspring age Exclusion criteria Metabolic impact on offspring Reference

Prenatal :

maternal stress,

holocaust

exposure

137 adults, 74%

reported parental

holocaust exposure.

Remainder considered

unexposed controls

Middle-aged

men and

women

Psychosis, bipolar

disorder, substance

dependence

↑ Reported use of medications, including

psychotropic, antihypertensives, dyslipidemia

medication

Flory et al.

(67)

Organic mental

disorder

↑ Association with having two or more metabolic

syndrome components, e.g., T2DM,

hypertension, dyslipidemia or increased BMIDementia; oral

corticosteroids

Prenatal :

maternal stress,

psychosocial

58 offspring, of whom

36 exposed to maternal

stress. Remaining 22

considered unexposed

controls

Young adults Pregnancy

complication

Smoker

Acute or chronic

health problems

↑ BMI Entringer

et al. (62)↑ Very low-density lipoprotein (138%)

↓ High-density lipoprotein (16%) and low-density

lipoprotein (33%)

OGTT: offspring of mothers whom experienced

psychosocial stress compared to control

↑ Fasting plasma insulin levels (58%)

↑ Plasma insulin 2-h post-oral glucose load (59%)

↑ C-peptide 2-h post-oral glucose load (40%)

Prenatal :

maternal stress,

natural disaster

exposure

111 Women pregnant

during or conceived

within 3 months of the

Quebec ice storm

Children,

5.5 years of

age

↑ Obesity risk of offspring at 5.5 years old,

associated with severity of objective maternal

stress

Dancause

et al. (68)

Controlled for SES, pregnancy complications,

breastfeeding, smoking, psychological function,

and BMI

Prenatal :

maternal stress,

natural disaster

exposure

176 women pregnant

during or conceived

within 1 month of 1998

Quebec ice storm and

their children

Children,

mean age

13.5 years

Objective hardship positively correlated with

insulin secretion (P < 0.01) and BMI (P < 0.02)

Dancause

et al. (69)

Prenatal :

maternal stress,

bereavement

1,878,246 people, of

whom 45,302 were

exposed to stress.

Remaining considered

unexposed controls

Offspring

followed for

2–32 years

↑ Risk for T2DM

Second trimester identified as the most sensitive

Li et al. (60)

Prenatal and

postnatal :

maternal stress,

famine

741 people born in

Amsterdam before,

during or after Dutch

famine

Middle-aged

men and

women

Missing birth

records

↑ Bodyweight, BMI and waist circumference in

women 50 years of age exposed to early

gestation famine vs. non-exposed controls

Ravelli et al.

(70)

Preterm birth

(<37 weeks)

Deceased

Emigrated

Prenatal and

postnatal :

maternal stress,

famine

702 people born in

Amsterdam before,

during or after Dutch

famine

Middle-aged

men and

women

Missing birth

records

OGTT: offspring exposed to famine compared to

control

Ravelli et al.

(63)

Preterm birth

(<37 weeks)

↑ Fasting proinsulin levels and 2-h glucose

concentrations

Diabetes More pronounced if famine occurred during late

gestation or with later life obesityDeceased

Emigrated

(Continued)
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Table 1 | Continued

Early-life stressor Participants Offspring age Exclusion criteria Metabolic impact on offspring Reference

Prenatal and

postnatal :

maternal

perceived stress

152 women surveyed

during pregnancy/first

year of offspring life,

predominantly

low-income population

Infants ↑ Risk of infant being overweight (P =0.020) Watt et al.

(71)Correlation with consumption of sugar-sweetened

beverages (P =0.004) and with feeding infants

sugar-sweetened beverages (P =0.031)

Prenatal and

postnatal :

maternal stress,

depression

1249 women,

depressive symptoms

assessed during

pregnancy and

postpartum

Children

3 years of age

Multiple gestation Antenatal depression Ertel et al.

(72)Issues with English Smaller body size

Move prior to

delivery

↑ Central adiposity

Gestational age

greater than

22 weeks at first

prenatal visit

Postpartum depression
↑ Overall adiposity

Independent of SES, BMI, and health condition

during pregnancy

Postnatal :

childhood stress,

death of a parent

135 bariatric surgery

candidates

Middle-aged

men and

women

Substance abuse ↑ Risk of metabolic syndrome following childhood

parental loss (P =0.012)

Alciati et al.

(73)Severe personality

disorder

Mental retardation

Postnatal:

maternal stress

(mental, physical,

financial family

structure) and

altered food

security

841 Children across 425

low-income households

Children,

3–17 years old

Households above

200% of poverty

line

↑ Risk of offspring 3–10 years old being

overweight or obese in food secure environments

compared to periods of food insecurity (43.7%)

Gundersen

et al. (74)

Postnatal :

childhood

maltreatment

67,853 women in

Nurses Health Study II

25–42 Dose–response association between child

physical and sexual abuse with adult T2DM.

Hazard ratio for diabetes in child exposed to mild,

moderate and severe are 1.03, 1.26 and 1.54

respectively

Rich-

Edwards

et al. (75)

Postnatal :

childhood

maltreatment

n=972, born in

between April 1972 and

March 1973

32 years Individuals with

plasma c-reactive

protein >10 mg/l

↑ Inflammation assessed by c-reactive protein Danese

et al. (76)

Postnatal :

childhood

maltreatment

342 from study of

women health across

the nation (SWAN)

45.7 year

(mean age)

Physical abuse was associated with increased

plasma triglyceride and blood pressure

Midei et al.

(77)

Postnatal:

childhood

maltreatment

756 from population

based study

Young adult

(19–20 years)

↑ BMI in those exposed to neglect during

childhood

Lissau and

Sorensen

(78)Odds ratio 9.8 CI 1.35–28.2

Postnatal :

childhood

maltreatment

9310 of 1958 British

birth cohort

45 years ↑ BMI Thomas

et al. (79)↑ HbA1C ≥6

↑ Central obesity

(98) were not influenced by low birth weight. Despite this, adults
born preterm with very low birth weight (i.e., less than 1500 g)
had reduced smoking rates, yet were less likely to engage in leisure
time physical activity with reduced energy expenditure than nor-
mal gestational birth controls (98). Further, healthy children aged
5–8 years old who were born prematurely were shown to have
reduced physical ability to normal gestational age controls (99).

Physical activity has been shown to improve health outcomes fol-
lowing premature birth, with 4 weeks of passive range of motion
and compression exercises in premature infants shown to increase
bone mineral density. The authors suggested that early exercise
programs may improve physical fitness in later life (100). The
unequivocal benefits of physical activity should be considered as
a therapeutic tool, with activity levels inversely associated with
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metabolic syndrome (101). In low birth weight individuals, phys-
ical activity has been shown to modestly attenuate the association
between low birth weight and insulin resistance, as assessed by
HOMA-IR (102). Although this finding has not been replicated
by other studies (97, 103), physical activity was identified as a bet-
ter predictor of HOMA-IR comparative to birth weight a possible
target for intervention (103).

POSTNATAL STRESS AND IMPACT OF LATER ENVIRONMENT:
HUMAN STUDIES
There are limited data exploring the metabolic outcomes of post-
natal stress and environment interaction. Early-life stress has been
associated with later life addiction problems, including drug and
food addiction (104). Adult women who were abused as chil-
dren were significantly heavier and had a marked increase in food
addiction risk (105). Early-life maternal stress has been positively
correlated with the risk of the infant being overweight in an envi-
ronment of high food security (see Table 1). Infants exposed to
maternal stress during periods of food insecurity showed no sig-
nificant overweight risk (74) (see Figure 2). One limitation of
this study is the low socioeconomic status of the participants, as
this is an individual risk factor for the development of childhood
and adult obesity, amongst other health issues. Similar to these
findings, the number of parental stressors and degree of perceived
stress were positively associated with child obesity and increased
fast-food consumption (106). Children and adolescents are sus-
ceptible to stress, and given the association between perceived
stress and increased food consumption frequency and palatabil-
ity (107–109), environmental factors such as palatable food access
and physical activity may play a mediating factor between human
early-life stress and poor metabolic outcomes.

Physical activity may facilitate a protective role against child-
hood stressors, with more active children showing reduced salivary
cortisol response to stressful situations, reflective of lower HPA
axis reactivity (110). In addition to alterations in stress media-
tors, childhood maltreatment has been independently associated
with elevated levels of inflammatory markers in adulthood (76,
111) (see Table 1). Increased inflammation following early-life
stress is clinically relevant and may provide an important causal
link between adverse early-life experience and adulthood meta-
bolic risk. The benefits of physical activity on immune func-
tion and inflammation are well-established, with reductions in
inflammatory biomarkers associated with disease (112).

PRENATAL STRESS AND IMPACT OF LATER ENVIRONMENT:
ANIMAL STUDIES
Given the global epidemic of metabolic disease, examining the
growing body of animal evidence linking prenatal stress with
impaired metabolic profile when exposed to energy dense, palat-
able diets is imperative. The effects of stress during pregnancy on
metabolic consequences in later life are well characterized relative
to stress during the early postnatal period (22). Identifying how
programed changes during early life adversely impact suscepti-
bility to later life nutrition is critical and could provide targets
for intervention (see Figure 2). Two common models of prena-
tal stress exposure involve subjecting dams to a single stressor
during gestation, for instance restraint stress. Alternatively, dams

can be exposed to a combination of variable stressors such as
restraint, air puff startle, forced swimming, starvation, and bright
light exposure (113).

Evidence to support a programed resilience to later life meta-
bolic deficits following prenatal early-life stress has been observed
in some animal studies. For example, independent of body weight,
adult female offspring of stressed dams consuming standard lab-
oratory chow, had a lower insulin area under the curve (AUC)
during an oral glucose tolerance test (OGTT) (114), reduced
plasma insulin, and improvements in HOMA-IR (24) compared
to offspring of non-stressed dams. This improvement in insulin
sensitivity is suggestive of a prenatal early-life stress program-
ing of glucose handling in insulin sensitive tissues. However, it
is unknown if these improvements in insulin sensitivity following
prenatal early-life stress will be sustained as animals age. Exposure
of offspring to a later negative environment following prena-
tal stress, such as an HFD, induces maladaptation, rather than
resilience (see Figure 2). Offspring of stressed dams weaned onto
an HFD showed alterations in metabolic parameters with female
rats shown to have an elevated glucose AUC during an OGTT,
relative to control and stress-chow groups, whilst HFD fed males
of stressed dams required a greater amount of insulin to clear a
given glucose load relative to control (114). In a similar study,
prenatal stress did not alter glucose clearance as assessed through
intraperitoneal glucose tolerance test (IPGTT), yet, female off-
spring exposed to stress had increased visceral and retroperitoneal
fat depot mass after 10 weeks on a high-fat sucrose diet relative to
unstressed controls consuming the same diet (24).

The mechanisms by which prenatal stress alters later life meta-
bolic outcome remain unknown. Stress during pregnancy alters
maternal hormones, including circulating glucocorticoid levels.
Normal physiological levels of glucocorticoids during develop-
ment are essential for tissue growth and maturation, however,
excess levels of glucocorticoids, e.g., through pharmacological
interventions, have been shown to affect maturation (115, 116).
Elevated maternal glucocorticoid can cross the placenta (117), and
this has been shown to affect growth, morphology, and function of
brain and peripheral tissues during fetal development (118). Seckl
(119) has demonstrated a stress-mediated mechanism that under-
pins the low birth weight and increased risk for adulthood health
deficits; exposure to increased level of glucocorticoids either syn-
thetically (dexamethasone) during late gestation or via stress (mal-
nutrition, adverse environment exposures) reduces birth weight
and impacts maturation of major organs (119,120). Dams exposed
to prenatal variable stress were shown to have heavier adrenal mass
and lower fecal corticosterone secretion vs. non-stressed controls
(121). This is suggestive of a reduced corticosterone clearance in
these stressed dams during gestation. Excess glucocorticoid expo-
sure during pregnancy has also been shown to affect glucose and
insulin metabolism (17, 122, 123).

To model periods of nutritional stress in humans, such as
famine, reduced nutritional availability during gestation can be
used, enabling investigation of the developmental and program-
ing outcomes on offspring (124–126). Restricting dams to 30%
of normal food intake, led to low birth weight offspring; pups
who were undernourished then weaned onto HFD were found to
have significantly elevated leptin, C-peptide, insulin, and body fat
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compared to control-HFD pups. Notably, injection with leptin for
10 days during lactation (PND3–13) completely normalized these
markers (127), suggesting normal maternal levels of leptin are
important during development. Food intake and activity levels are
also influenced by nutritional insult during gestation. Offspring
of female Wistar rats undernourished during gestation (30% of
ad libitum) showed significantly reduced locomotor activity with
marked hyperphagia and hyperleptinemia when consuming either
standard chow or a high caloric diet (128). Leptin is a critical
adipocyte derived hormone known to play an essential role in the
regulation of feeding and in the maintenance of energy homeosta-
sis. Adult rats exposed to a single 24-h deprivation period during
the lactation period demonstrated marked reductions in leptin,
although this is difficult to interpret due to the nutritional insult
that would have accompanied 24 h of starvation (40, 129, 130).

POSTNATAL STRESS AND IMPACT OF LATER ENVIRONMENT:
ANIMAL STUDIES
Various models of postnatal early-life stress have explored the
influence of later life environmental insults on metabolic function,
each of which seem to elicit different outcomes and sex-specific
effects (see Table 2). Work in our lab demonstrated HFD fed male
rats previously exposed to maternal separation, have marked ele-
vations in plasma insulin, and decreased total white adipose tissue
mass, independent of body weight vs. HFD controls (131, 132). In
agreement, maternal deprivation induced early adulthood hyper-
insulinemia and impairments in insulin sensitivity, measured
through HOMA-IR, in male offspring fed with an HFD relative
to HFD controls (130). Similar metabolic changes are observed in
maternal deprivation exposed female offspring, with HFD shown
to cause early adulthood hyperinsulinemia, at PND35 compared to
PND102 in control rats consuming an HFD (130). Further, mater-
nally deprived female rats consuming a high-fat sucrose diet had
a trend for decreased fat depot mass vs. control (121). Less work
has examined the metabolic profile arising subsequent to early-
life stress induced by LN material. A recent study explored for
the first time the metabolic profile in Wistar female rats; showing
reduced body weight at weaning, and reduced food intake, sug-
gesting altered energy utilization and storage. Interestingly, these
pups had exaggerated HPA axis activity with delayed clearance of
corticosterone from the circulation, and taken together these data
further suggest an early-life stress-induced interaction between the
HPA axis and metabolic profile (133) (see Table 2).

Few studies have explored biological characteristics of periph-
eral tissues following early-life stress. Recently, maternally
deprived female rats were shown to have significantly reduced
brown adipose tissue β3-adrenergic receptor mRNA expression
and increased white adipose tissue prohibitin mRNA relative to
control, with no change in UCP-1 (136). The authors concluded
these results may facilitate adipose tissue proliferation later in life.
An altered response to nutritional challenge following early-life
stress is not only observed in high caloric fed states. Maternally
separated rats consuming an omega-3 deficient diet demonstrated
marked elevations in plasma insulin and impaired insulin sen-
sitivity, as assessed by HOMA-IR, relative to control animals
consuming the same diet (134). Functional studies performed
by our lab have demonstrated attenuated adulthood outcomes of

early-life stress when siblings are provided with a positive envi-
ronment of voluntary running wheel exercise (see Figure 2).
Male rats exposed to maternal separation and weaned onto a
standard chow diet demonstrated a hyper-responsive corticos-
terone response to novel restraint stress, which was dampened
with exercise and HFD. Impaired changes in metabolic parame-
ters of insulin and diet-induced obesity were also attenuated with
exercise, reversing maternal separation-induced hyperinsulinemia
and increased body weight relative to HFD controls and stressed
sedentary counterparts (132).

A common aspect across early-life stress models centers around
glucocorticoid exposure and HPA axis activation during the stress-
hypo-responsive period, a stage of neonatal resilience to mild
stressors suggested to likely trigger corticosterone secretion in
adult life (84). Synthetic glucocorticoid administration attempts to
replicate stress models, as this elicits an HPA axis response during
the early postnatal period in rodents (41, 138). This also allows
for controlled dose administration and with necessary caution
can improve understanding of the impact of glucocorticoid expo-
sure during these critical periods. Early-life corticosterone admin-
istration reduced adult female rat body weight and decreased
fat depot mass relative to control (139). Studies of glucocorti-
coid administration highlight the marked influence of combining
stress hormones and additional metabolic insults. In young male
Sprague-Dawley rats, glucocorticoid administration alone did not
alter insulin sensitivity, assessed by HOMA-IR, or glucose dis-
posal following an OGTT (140). Conversely, consumption of a
palatable HFD in combination with glucocorticoid exposure is
known to induce a marked increase in fasting plasma glucose
and insulin, with impaired glucose clearance following OGTT
(140, 141). Further investigation is required to determine whether
the unaltered or improved insulin sensitivity with chow con-
sumption would prove deleterious in the long term (as shown
in Figure 2).

EARLY-LIFE STRESS AND PROGRAMING OF PERIPHERAL
TISSUES
MECHANISMS UNDERLYING EARLY-LIFE STRESS-INDUCED METABOLIC
DEFICITS: ROLE OF THE HPA AXIS, GLUCOCORTICOID, AND TISSUE
11β-HSD1
To uncover the mechanisms underlying early-life stress-induced
metabolic derangements, it is first essential to understand the
action of glucocorticoids at different concentrations on glucose
and insulin homeostasis and lipid metabolism. At pharmacologi-
cal doses, glucocorticoids act as potent anti-inflammatory agents
but high levels of circulating glucocorticoids result in metabolic
derangements including increased visceral adiposity, dyslipidemia
(increased levels of triglycerides), increased non-esterified fatty
acids (NEFA) (142–144), and impaired glucose and insulin tol-
erance (145–147). In contrast to the anabolic actions of insulin,
glucocorticoids are predominantly catabolic, decreasing glucose
utilization and insulin sensitivity with both human and animal
data revealing insulin intolerance with excess exposure (145, 148).

Glucocorticoids exert tissue-specific metabolic effects, directly
targeting tissues for insulin metabolism, and they regulate skeletal
muscle, liver, and adipocyte insulin signaling (149). Glucocorti-
coids alter glucose and protein metabolism; increased levels of
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Table 2 | Postnatal early-life stress and metabolic consequences in rodents.

Offspring Stress protocol Other interventions Metabolic consequences Reference

Male Wistar

rats

MS: separation

for 240 min daily

from PND1 to 10

Diet : PND21–35: standard chow MS vs. control

↑ Food intake and bodyweight at weaning

↑ Gonadal and retroperitoneal WAT

↑ Plasma triglycerides

MS-deficient diet vs. control-adequate and control-deficient

Bernardi

et al. (134)

Control :

non-handled

PND35 to cull: n-3 polyunsaturated

fatty acid adequate or deficient diet

↑ Plasma leptin

MS-deficient vs. MS-adequate and control-deficient

↑ Fasting plasma insulin

↑ HOMA-IR index

Male Sprague-

Dawley

rats

MS: separation

for 180 min daily

from PND1 to 14

Social isolation: weaned into group

housing (n=3 per cage) or isolation

(single rat)

MS vs. control

↑ Bodyweight at weaning

Ryu et al.

(135)

Control :

non-handled

MS-isolation vs. MS-group

↑ Bodyweight from PND42

↑ Food intake at PND42 and 56

Control-group vs. control-isolation

No significant effect on weight gain with isolation

Female

Sprague-

Dawley

rats

MS: separation

for 180 min daily

from PND10 to 15

Diet : high-fat diet (HFD) No change in bodyweight Miki et al.

(136)Retroperitoneal WAT at 10 weeks of age

↑ Prohibitin mRNA in MS rats compared to control

(P < 0.001)

Control :

non-handled

Interscapular BAT at 10 weeks of age
↓ β3-Adrenergic receptor mRNA in MS rats compared to

control (P < 0.001)

No change in UCP-1 mRNA across groups

Male and

female

Sprague-

Dawley

rats

MS: separation

for 180 min daily

from PND2 to 14

Diet : weaning to cull: standard

chow or cafeteria style HFD

MS-chow vs. control

↑ Plasma corticosterone following restraint stress

Maniam

and Morris

(131, 132)

Control : 15 min

daily from PND2

to 14

Exercise: weaning to cull: exercise

(voluntary running wheels) or

sedentary (locked running wheels)

↓ Hippocampal GR mRNA expression

Reversed with HFD or exercise

MS-HFD vs. control-HFD

↑ Plasma insulin

↓Total WAT per gram bodyweight

MS-chow-exercise vs. MS-chow-sedentary

↓ Plasma corticosterone following restraint stress

MS-HFD-exercise vs. MS-HFD-sedentary

↓ Plasma insulin

Male and

female Wistar

rats

MD: 24 h

maternal

deprivation from

PND9 to 10

Diet : weaning to cull: standard

chow or HFD

MD-chow vs. control

↓ Plasma leptin

Mela et al.

(130)

Control :

non-handled

Reversed by HFD consumption

MD-HFD vs. MD-chow and control-HFD

↑ Hypothalamic IL-1β and TNF-α mRNA

MD-HFD males vs. MD-chow and control males

↑ HOMA-IR

Male and

female Wistar

rats

MD: 24 h

maternal

deprivation from

PND9 to 10

Diet : standard chow MD vs. control Viveros

et al. (40)↓ Bodyweight until 40–50 days of age

↓ Plasma leptin at PND75

MD males vs. control males

Control :

non-handled

↓ Plasma testosterone
↓ PPAR-α mRNA in perirenal adipose tissue at PND35

MD females vs. control females

↓ Plasma adiponectin at PND75

(Continued)

Frontiers in Endocrinology | Neuroendocrine Science May 2014 | Volume 5 | Article 73 | 8

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maniam et al. Early-life stress and metabolic disorders

Table 2 | Continued

Offspring Stress protocol Other interventions Metabolic consequences Reference

Male and

female

Sprague-

Dawley

rats

LN : dams and

pups subject to

limited nesting

material from

PND2 to 9

Diet : standard chow LN vs. control at PND9

↓ Bodyweight

Avishai-

Eliner et al.

(137)

Control : normal

bedding

↑ Plasma corticosterone and adrenal weight

↓ CRH mRNA in hypothalamic paraventricular nucleus

↓ GR mRNA in hypothalamic paraventricular nucleus and

frontal cortex

Female Wistar

rats

LN : dams and

pups subject to

limited nesting

material from

PND2 to 9

Control : normal

bedding

Diet : weaning to PND111: standard

chow

PND111–141: standard chow or

chow plus HFD

LN vs. control

↓ Bodyweight

↑ Consumption of palatable HFD as a percentage of total

food intake

Machado

et al. (133)

Following which rats underwent a

24-h food preference test

Prior chronic exposure to HFD did not decrease preference

for palatable food in LN rats, whereas control demonstrated

reduced preference for HFD

Male and

female

C56BL/6J

mice

LN : dams and

pups subject to

limited nesting

material from

PND2 to 9

Diet : standard chow LN vs. control at PND9

↓ Bodyweight, positively correlated to amount of nesting

material

Rice et al.

(45)

Control : normal

bedding

↑ Plasma corticosterone

↓ CRH mRNA in hypothalamic paraventricular nucleus

LN vs. control at adulthood

Restored bodyweight

↑ Plasma corticosterone

↓ CRH mRNA in hypothalamic paraventricular nucleus

glucocorticoids induced during stress increase protein degrada-
tion, which results in the generation of amino acids that serve as
precursor for glucose synthesis in the liver. In addition, excess
glucocorticoids inhibit glucose uptake into muscle by inhibit-
ing translocation of glucose transporter-4 (150–152). Chronically
increased circulating or tissue glucocorticoid levels may also lead to
insulin resistance, hypertriglyceridemia, and hepatic steatosis (see
Figure 1). Circulating glucocorticoid concentrations are tightly
controlled by activation of the HPA axis, however, tissue-specific
availability is regulated by multiple means including glucocor-
ticoid receptor expression, receptor affinity, and alterations in
glucocorticoid metabolism and clearance.

Mechanisms regulating intracellular glucocorticoid concentra-
tions are critical to understand the impact of stress on energy
metabolism including energy expenditure, storage, and utiliza-
tion. Intracellular levels of glucocorticoids are influenced by 11β-
HSD1 with the type-1 isoform predominantly expressed in the
liver (153) and to a lesser degree in adipose and skeletal muscle
(154). Evidence shows that tissue glucocorticoid levels are reg-
ulated by 11-beta hydroxysteroid dehydrogenase (11β-HSD1) in
target tissues (155) as 11β-HSD1 converts inactive cortisone to
biologically active cortisol (156, 157). The liver is a major site of
glucocorticoid metabolism where 11β-HSD1 regulates the access
of glucocorticoid to the glucocorticoid receptor, leading to gluco-
corticoid metabolism which, is regulated by 5-alpha/beta reductase
levels (155, 158). Fat, liver, and muscle-specific increases in 11β-
HSD1 are known to increase the risk for metabolic disorders such

as insulin resistance, hyperglycemia, and hyperlipidemia (159,
160). Tissue glucocorticoid amplifies the action of insulin to pro-
mote lipogenesis within hepatocytes (161). 11β-HSD1 in the liver
increases glucocorticoid action in liver to stimulate gluconeogene-
sis and inhibit beta-oxidation of fat, thus promoting lipid synthesis
(162–164). A very recent study demonstrated reduced 5-alpha
reductase was associated with fatty liver (165). Thus liver-specific
glucocorticoid synthesis and clearance regulated by 11β-HSD1
and 5-alpha reductase appear to affect hepatic lipid accumula-
tion. Interestingly, animal studies demonstrate a link between
hepatic glucocorticoid metabolism with regulation of HPA axis
activity and lipid synthesis in the liver. For example, transgenic
overexpression of 11β-HSD1 in liver of null mice normalized the
exaggerated HPA axis activity in response to stress, and led to fatty
liver (166, 167). On the other hand, hepatic deletion of 11β-HSD1
led to hyperactivity of the HPA axis (168). These studies suggest
liver 11β-HSD1 greatly contributes to amplify circulating gluco-
corticoid levels, and thus likely mediates the negative feedback
activity to dampen HPA axis activity, a concept previously pro-
posed by Chapman et al. (169). Several studies have demonstrated
a blunted activity of the HPA axis in response to novel stress fol-
lowing high energy diets such as high sugar or HFD either after
adulthood chronic stress or chronic stress exposure during early
life (131, 132, 170). As these studies did not report measures of
liver 11β-HSD1, it is not clear whether under-activity of the HPA
axis following early-life stress and postnatal high energy diet is
modulated by liver 11β-HSD1 levels.
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FIGURE 1 | How does ELS increase the risk for insulin resistance and
hyperglycemia? Early-life stress (ELS) induced by three different
paradigms including maternal deprivation, maternal separation, and limited
nesting material are known to dysregulate HPA axis activity, with limited
data on the effects of ELS on hypothalamic feeding neuropeptides and
inflammation. It is proposed that ELS disturbs circulating glucocorticoids
(GC) through a combined action of HPA axis activity, hypothalamic feeding
neuropeptides, and inflammatory changes. The effects of ELS on liver
11β-HSD1, an enzyme that converts inactive GC to active GC, and
5α-reductase, an enzyme involved in GC metabolism, is less known. It is

proposed that during the maladaptation period, ELS affects tissue levels of
these enzymes, thus increasing exposure of peripheral tissues to GC.
Excess GC availability can alter insulin signaling, leading to
hyperinsulinemia and insulin resistance over time. Thus, increases in
circulating and tissue GC induced by ELS act synergistically to exacerbate
insulin resistance in peripheral tissues and alter energy expenditure and
utilization. ELS, early-life stress; MD, maternal deprivation; MS, maternal
separation; LN, limited nesting material; GC, glucocorticoids; TNF-α, tumor
necrosis factor alpha; IL-6, interleukin 6; IL-1β, interleukin-1 beta;
11β-HSD1, 11-beta hydroxysteroid dehydrogenase.

Thus, liver 11β-HSD1-HPA axis is a potential pathway in early-
life stress-mediated metabolic disturbances, particularly insulin
sensitivity, glucose metabolism and lipid synthesis, and mobi-
lization as outlined in Box 1. This hypothesis, however, needs
systematic examination in the future. Early-life stress, modeled
through prenatal dexamethasone treatment, has been shown to
upregulate 11β-HSD1 in peripheral tissues such as liver, pan-
creas, and subcutaneous fat in rat offspring at 4 months with
persistent increases at 1 year of age (171). Interestingly, it was
previously shown that early-life stress alters the expression of
liver 5-alpha reductase mRNA (172, 173). Thus, this suggests a
programing effect of early-life stress on tissue 11β-HSD1 expres-
sion, glucocorticoid metabolism, and glucocorticoid signaling.
There has been limited evidence regarding early postnatal stress
effects on 11β-HSD1 expression and glucocorticoid metabolism
of peripheral tissues, which needs to be explored in future studies
(Figure 1).

We propose that early-life stress may alter availability of tis-
sue glucocorticoids and glucocorticoid signaling. Specifically, we
propose that during the maladaptation period (see Figure 2),
early-life stress enhances availability of tissue glucocorticoids via
increases in liver 11β-HSD1. The tissue glucocorticoid-induced
insulin resistance may involve glucocorticoids altering insulin
signaling via increasing phosphorylation of PKB/akt, which stim-
ulates insulin secretion, that is, glucocorticoids work synergisti-
cally with insulin which increases adipocyte lipolysis and liver
lipogenesis (see Figure 1). Another possibility is that early-life
stress impairs glucocorticoid signaling involving glucocorticoid–
glucocorticoid receptor binding and phosphorylation of the
glucocorticoid receptor. Impairment in glucocorticoid signaling
leads to alteration in glucocorticoid targeted genes that regu-
late hepatic glucose production, and hepatic lipogenesis includ-
ing peroxisome proliferator-activated receptor gamma, coactiva-
tor 1 alpha (PGC1-alpha), phosphoenolpyruvate carboxykinase
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Box 1 Outstanding research questions/proposals.

1. Does chronic exposure to negative postnatal environments
such as HFD and adulthood stressors lead to maladaptation
following early-life stress?

2. Is the stress-induced perturbation of metabolic profile medi-
ated by the liver 11β-HSD1-HPA axis interaction?

3. How can positive postnatal environments reverse the early-life
stress-induced metabolic damage?

4. What are the mechanism(s) underlying early-life stress-induced
improvement of insulin sensitivity and improved glucose
metabolism if rodents are maintained on chow diet?

FIGURE 2 |The combination of early-life stress exposure with altered
later environment may determine metabolic outcomes. Early-life stress
(ELS) exposure during gestation or the postnatal period is hypothesized to
influence an offspring’s response to later environments (85, 87). This
programing occurs in an attempt to facilitate habituation and resilience to
future similar situations. Offspring exposed to environments that do not
differ to that to which they were exposed during early life, i.e., “matched”
or positive environments, such as exposure to exercise have been shown
to adapt and demonstrate resilience (74, 114, 131, 132). Conversely,
exposure to a negative environment, i.e., “mismatched,” such as a
sub-optimal diet (131, 132, 134) or chronic stress following ELS may lead to
maladaptation, and metabolic deficits, with increased levels of triglycerides,
free fatty acids, adiposity, and insulin resistance as measured by HOMA-IR.
Thus, there is a pendulum of vulnerability and the trajectory following ELS is
influenced by the later life environment.

(PEPCK), glucose 6-phosphate (G6P), and diacylglycerol acyl-
transferase (DGAT). Genes known to mediate hepatic lipid accu-
mulation such as PGC1-alpha and adipose DGAT1 were altered
in rat pups from dams that had been subjected to prenatal stress
(174). PGC1-alpha plays an essential role in fatty acid oxidation
while increased DGAT1 in adipose tissue increases lipogenesis.
DGAT1 transgenic mice fed with an HFD demonstrated a 300%
increase in liver triglycerides suggesting a redistribution of the
fat from adipose tissue to liver via re-esterification of fatty acid
with glycerol (175). Another study showed that prenatal stress
induced through manipulation of the availability of food, that is
either by limiting intake, or exposing to a high energy food during
pregnancy led to fatty liver in pups relative to controls (176).

In conclusion, the role of liver 11β-HSD1 in regulating HPA
axis activity, and whether it is modulated by stress early in life,
warrants investigation. We propose that early-life stress induces

changes in glucocorticoid metabolism and signaling, likely medi-
ating the metabolic consequences reported. The question of how
these affect glucocorticoid-induced insulin dependent processes,
including hyperinsulinemia and lipid metabolism following an
early-life stress exposure will be addressed in the following section.

PROPOSAL OF HOW ELS MAY INCREASE RISK OF INSULIN
RESISTANCE, AND HYPERGLYCEMIA
It has been known for decades that stress early in life in both
humans and animals can affect HPA axis activity in later life (131,
132, 177–179), however, the effects of early-life stress on hypo-
thalamic neuropeptides involved in feeding are less well known,
with only a few studies exploring hypothalamic neuropeptides
following maternal separation or deprivation (131, 180). Feeding
regulation, which is tightly regulated by orexigenic and anorex-
igenic hypothalamic neuropeptides, is also influenced by HPA
axis activity and circulating glucocorticoid concentrations (181,
182). Glucocorticoids stimulate feeding responses by increas-
ing the release of neuropeptide Y (NPY) and inhibiting that of
corticotrophin releasing hormone in the hypothalamus however
the orexigenic effect of glucocorticoids may be counteracted by
leptin (183).

Mela and colleagues explored the effect of 24 h of maternal
deprivation on postnatal day 9 in rats on hypothalamic feeding
neuropeptides measured at 14 weeks of age in rats fed with chow or
HFD (130). No significant differences in orexigenic (NPY, agouti-
related peptide (AgRP) and anorexigenic (pro-opiomelanocortin
and cocaine- and amphetamine-regulated transcript) neuropep-
tides were observed between the chow and HFD fed rats. An
interesting finding in this study was that while HFD did not
alter these neuropeptides in control females, rats that experi-
enced maternal deprivation had significantly decreased hypo-
thalamic NPY and AgRP mRNA expression and a significant
increase in hypothalamic pro-opiomelanocortin and cocaine- and
amphetamine-regulated transcript relative to their chow counter-
parts. The increased caloric intake by HFD fed rats relative to their
chow counterparts was similar between the maternally deprived
and control rats. But an increased plasma leptin concentration
in the maternally deprived HFD fed female rats suggests a pro-
graming effect of maternal deprivation which dysregulated feeding
homeostasis. Whether this may be linked to either the HPA axis
activity or tissue-specific availability of glucocorticoids needs to
be explored in the future. The significantly reduced fasting triglyc-
erides and lack of change in fasting insulin by HFD feeding is
puzzling, and these may be related to either the strain or the diet
used. Thus, use of appropriate controls and dietary conditions
are critical to enable exploration of the underlying mechanisms
linking combined early-life stress and high-fat feeding with later
metabolic risk. Overall, limited studies have directly investigated
whether early-life stress affects hypothalamic neuropeptides and
inflammation.

The increased availability of glucocorticoids discussed above
may play a role in altering tissue insulin signaling by increasing
the phosphorylation of PKB/akt. Animals exposed to early-life
stress may be resilient to the increased availability of tissue gluco-
corticoids and thus subsequently show a dampened secretion of
insulin. While there are no systematic studies on early-life stress
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and metabolic consequences, there is evidence in rodents show-
ing early-life stress does not affect basal metabolic hormones if
animals consume chow, including non-fasted plasma insulin and
leptin (131, 132). Another study demonstrated improved insulin
sensitivity following early-life stress when measured during adult-
hood (170). Taken together, we propose that early-life stress may
lead to resilience, and thus the organism potentially may adapt to
any changes in the postnatal environment, such as exposure to high
energy diet, or later stressors through enhanced negative feedback
sensitivity of the HPA axis activity and reprograming of the periph-
eral tissue sensitivity to glucocorticoid exposure (see Figure 2).
However, if an organism exposed to early-life stress is chronically
exposed to these negative postnatal environments (high energy
diet and later stressors), the enhanced negative feedback sensitivity
maybe dysregulated, resulting in perturbed HPA axis activity, lead-
ing to a phase known as maladaptation (see Figure 2). Indeed there
is evidence that such maladaptations can influence glucose/insulin
homeostasis, resulting in the manifestation of metabolic disor-
ders including insulin resistance, hyperglycemia, hyperlipidemia,
as suggested in Figure 2.

During periods of maladaptation, increased tissue glucocorti-
coids and circulating corticosterone will impair the insulin sig-
naling pathway, leading to hypersecretion of insulin; a condition
leading to insulin resistance (see Figure 2). This will mediate tis-
sue specific effects, that is, increased adipose lipolysis through
beta-oxidation which releases free fatty acids into the circula-
tion and re-esterification in the liver to promote lipogenesis. In
addition, increased tissue glucocorticoid levels via insulin stimula-
tion increases hepatic glucose production. Prenatal stress has been
shown to increase hepatic PEPCK mRNA and this was enhanced
with high energy feeding (174). There are no data thus far on
the impact of early postnatal stress on hepatic glucose produc-
tion, which is an important measure to be considered for future
studies to improve understanding of the link between postna-
tal stress and risk of pre- or diabetes. In addition, increased
glucocorticoid-induced hyperinsulinemia also alters the muscle
glucose utilization via affecting the glucose transporter gene and
expression, including the GLUT4-transporter.

CONCLUSION AND FUTURE DIRECTIONS
Despite significant progress in the field of early life programing
and metabolic disease risk many challenges exist. Human studies
are vital in providing evidence of the association between early-
life adversity and disease incidence but data must be interpreted
with necessary caution. A majority of human evidence is based
on parental or offspring self-report raising the possibility of con-
founding due to issues with information recall, lack of accuracy,
and the potential for bias.

Future studies in humans should seek to better quantify stress
exposure during the early-life period and at the time of assess-
ment to improve knowledge of how different stress types may
alter disease risk. Given both environment and genetic predisposi-
tion determine health outcome, studies should not only consider
stressor experience during early life but also control for socioe-
conomic status, food and education availability, ethnicity, and
lifestyle factors such as nutritional status, smoking, and physical
activity throughout their lifetime.

According to the hypothesis explored throughout this review,
programed adaptation during early life occurs in an attempt to
adapt to the predicted later life environment and hence even seem-
ingly trivial variations in stressors during these periods may vary
the observed outcomes. Inconsistency in findings across experi-
ments could be due to the marked differences in study design.
Procedural variations in maternal separation have been reviewed
elsewhere (177). In the literature, there is no consistent proce-
dure, rather multiple experimental conditions fall under the broad
term of maternal separation. Thus, duration, and age at separa-
tion, temperature in which pups are separated, whether pups are
isolated from litter mates during separation and whether pups
are removed or remain in their home cage have all been shown to
influence behavioral outcomes and brain function. Animal models
must consider the influence of maternal care on long term out-
comes, which is a major aspect the novel model of limiting nesting
material attempts to explore. Work exploring prenatal or gesta-
tional stress exposure could benefit from cross-fostering to better
delineate effects of maternal stress and the influence of received
postnatal care. Offspring of low care dams that were cross-fostered
by high-licking high arched back nursing dams were resilient in
terms of the decline in hippocampal synaptogenesis and spatial
learning seen in offspring reared by low care dams (184).

Animal research should ultimately aim to improve public health
outcomes. To ensure this, analysis of behavioral, physiological,
and molecular parameters is required. The current literature lacks
assessment of whole body insulin sensitivity measures or assess-
ment of β-cell structural changes – key factors that influence
metabolic outcome. Models need to reflect the human condi-
tion upon which they are based, which brings the need for valid
controls. Given the complex heterogeneity of both the stress sys-
tem and metabolic disease the phenotype of experimental animals
would ideally be comprehensively assessed, rather than examining
single factors. Species and strain differences must be considered
and these animals must be valid models for the environmental
conditions that the study aims to investigate.

Investigation of the environmental influence provides us with
an opportunity to better identify factors determining vulnerabil-
ity and resilience to early-life experience. A better understanding
of factors driving the association between genetic predisposition
with both early and adult environment will help with the identi-
fication of targets for intervention with the hope of minimizing
disease incidence. As known, high energy feeding impairs glucose
and insulin tolerance and affects lipid metabolism, thus chronic
HFD could serve as a good model to study the altered effects of
early-life stress on metabolism. Our lab and others have shown
early evidence that HFD or altered nutrition lead to altered insulin
levels in early-life stressed animals relative to control (131,132,134,
170). Together these studies appear to suggest that both short term
diet and long term diet exaggerate plasma insulin. Despite this, a
single marker or circulating hormone levels limit ability to draw
conclusions of how early-life stress may exert negative impact on
insulin sensitivity and overall metabolic risk. Future studies need
to adopt a mechanistic approach, examining animals using appro-
priate metabolic tests that will provide answers to the outstanding
questions outlined in Box 1. An alternate model of early-life
stress, variable foraging demand, demonstrated impaired insulin
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resistance in non-human primates as measured by hyperglycemic-
insulin clamp (185). Functional studies in rodent early-life stress
models, such as glucose or insulin tolerance tests, or preferably
glucose clamp, would be useful to explore this further.

In conclusion, the mechanisms whereby adverse early-life
events accelerate metabolic deficits have received little attention
to date. When combined with a sub-optimal subsequent environ-
ment (e.g., poor diet, stress, physical inactivity) early-life stress
may exacerbate the risk of metabolic disease. One potential mech-
anism underlying early-life stress-induced metabolic deficits is the
interaction between the HPA axis and liver 11β-HSD1. Positive
later environments may modulate the negative impact of early-life
stress not only on behavioral outcomes, but also on metabolism.
Given the burgeoning issues of metabolic and mental health dis-
orders, the question of how early-life stress impacts subsequent
disease risk warrants further investigation.
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