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Skeletal muscle maintenance is a dynamic process and undergoes constant repair and 
regeneration. However, skeletal muscle regenerative capacity declines in obesity. In 
this review, we focus on obesity-associated changes in inflammation, metabolism, and 
impaired insulin signaling, which are pathologically dysregulated and ultimately result in 
a loss of muscle mass and function. In addition, we examine the relationships between 
skeletal muscle, liver, and visceral adipose tissue in an obese state.
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inTRODUCTiOn

Current estimates are that one-third of the United States population is obese, and this number is 
rapidly escalating (1). Many of these patients additionally suffer from preclinical or overt type 2 dia-
betes mellitus (T2DM) (1, 2). Multiple studies suggest that skeletal muscle wasting in these patients, 
especially those above the age of 60  years, can be severe (3–5). Diminished capacity for skeletal 
muscle regeneration likely contributes to the loss of lean muscle mass seen in diabetic patients (6). 
Obesity, a common precursor to T2DM, is also noted to have significant and independent negative 
effects on lean skeletal muscle mass (7). This is correlated with insulin resistance and reduced mus-
cle performance (8). Overall, these patients suffer from a significant decline in muscle strength, as 
compared to age-matched controls, and a loss of functional independence (3–5). However, the effects 
of obesity on skeletal muscle regeneration remain largely unknown. Stimulation or preservation 
of skeletal muscle regeneration could possibly enable these patients to improve their strength and 
functional activity, as well as maintain skeletal muscle mass (8, 9).

Recent studies demonstrate that mice fed a high-fat diet (HFD) exhibit reduced hind limb 
muscle mass and form fewer and smaller fibers following skeletal muscle injury (10). Additionally, 
there exists a reduction in the total number of satellite cells, which are required for skeletal muscle 
regeneration (10, 11). Therefore, it is of significant clinical importance to understand how obesity 
impacts muscle regeneration and identify mechanisms that may be targeted for therapeutic benefit. 
Skeletal muscle mass in these patients is not only essential for ambulation but also necessary for 
glucose utilization and maintaining insulin sensitivity (12). Multiple factors affect muscle mass in 
patients with obesity including satellite cell function, inflammation, insulin signaling, and metabolic 
derangements. Furthermore, obesity-related increases in visceral adipose tissue (VAT) and fatty acid 
accumulation in the liver, as with non-alcoholic fatty liver disease (NAFLD), are intimately linked to 
the maintenance of muscle mass. When evaluating obesity and corollary loss of skeletal muscle mass, 
systemic mediators and their effect on muscle regeneration must be considered.

SATeLLiTe CeLLS

Satellite cells in skeletal muscle are located beneath the basal lamina of mature muscle fib-
ers and are thought to be the major source of regeneration following muscle injury (13). It 
is now known that the satellite cell population is heterogeneous and contains both myogenic 
and non-myogenic cell populations. Using fluorescence-activated cell sorting (FACS), unique, 
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myogenic stem cells, or skeletal muscle precursors (SMPs), 
within the satellite cell pool can be identified and isolated for 
further study (14). Early life obesity, induced by HFD, results 
in both a reduction in SMP cell frequency and impaired differ-
entiation (10). Specifically, myogenic differentiation (MyoD), 
a critical factor in promoting skeletal muscle differentiation, is 
significantly reduced in satellite cells isolated in a diet-induced 
obesity (DIO) murine model (15).

In addition, satellite cell activation in a murine DIO model is 
impaired, which can be partially attributed to a loss in hepatocyte 
growth factor (HGF) signaling in skeletal muscle (16). Skeletal 
muscle-specific decrease in active HGF following injury limits 
activation of satellite cells from their quiescent state. HGF activa-
tion of SMPs requires AMP-activated protein kinase (AMPK), 
a protein essential to maintain satellite cell number and induce 
myotube formation. The active, or phosphorylated form of AMPK, 
promotes skeletal muscle glucose uptake and increases insulin 
sensitivity. Recent studies suggest that the satellite cells isolated 
from injured muscles of DIO mice demonstrate decreased AMPK 
activity and impaired regeneration (17). Fibrogenic/adipogenic 
precursors (FAPs) are a separate and distinct population in the 
satellite cell compartment (18). These cells are unable to directly 
form myofibers but can promote the differentiation of SMPs or 
form adipose tissue based on the local environment (18–20). 
A common observation in conditions associated with impaired 
skeletal muscle insulin sensitivity is an accumulation of ectopic 
lipids within (intracellular) and between (extracellular) skeletal 
muscle fibers (21), which is linked to reduced insulin sensitivity 
and diminished muscle function (22). The contribution of FAPs 
to these intramuscular lipid deposits remains unknown, as does 
their precise contribution to skeletal muscle regeneration in a 
model of obesity.

inFLAMMATiOn

Obesity results in chronic, low-grade skeletal muscle inflam-
mation (23). Recent studies further suggest DIO alone can 
reprogram both skeletal muscle and liver to increase the produc-
tion of proinflammatory cytokines, including tumor necrosis 
factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and IL-6 (24). 
Increased IL-6 has been shown to limit skeletal muscle differen-
tiation in vitro (25). In murine models of cachexia, both IL-6 or 
nuclear factor-kappa B (NF-κB) overexpression in skeletal muscle 
causes severe muscular atrophy (26, 27). Separately, in persistent 
inflammatory conditions, IL-6 actions are associated with 
increased muscle wasting (28). Despite multiple studies suggest-
ing that skeletal muscle-specific upregulation of proinflammatory 
cytokines induces muscle wasting; this area warrants further 
research in regard to obesity. To date, no studies have shown 
that IL-6 or NF-κB inhibition, either systemically or in skeletal 
muscle, improves regeneration in an obesity model. In addition, 
it remains unclear whether local inflammation from skeletal 
muscle, increased cytokine release from liver or visceral fat, or a 
combination are required for impaired muscle regeneration and 
loss of muscle mass.

TNF-α, another proinflammatory cytokine, also has catabolic 
effects on muscles in chronic inflammatory state. Elevated TNF-α 

circulation in obese models can cause muscle wasting, inflamma-
tory myopathies, and insulin resistance by regulating activation 
and secretion of other proinflammatory cytokines (29, 30). TNF-
α supplementation additionally limits C2C12 muscle myoblast 
cell differentiation in  vitro by repressing MyoD synthesis. The 
effects of TNF-α on skeletal muscle regeneration in an obese 
model remains unknown.

In addition, obesity further promotes deposition of mac-
rophages in VAT, which contributes to inflammation, increased 
lipolysis, and subsequently ectopic fat deposition in skeletal 
muscles (31). In the early stages of obesity, an increase in these 
macrophages precedes T cell accumulation. T cells, in turn, are 
polarized into proinflammatory Th1 cells that cause myocyte 
inflammation through interferon secretion. The inhibition of 
ectopic macrophage accumulation in fat may reverse insulin 
resistance and thereby improve muscle function (32, 33). These 
points further highlight that muscle wasting in obesity is a 
systemic issue, instead of secondary to local changes in skeletal 
muscle alone.

inSULin ReSiSTAnCe

An array of growth factor signaling cascades, regulated by 
insulin, are required for the proper maintenance of skeletal 
muscle mass. Obesity-associated insulin resistance alters these 
pathways and can variably inhibit muscle regeneration. Insulin 
signaling is a highly complex pathway within skeletal muscle, 
mediated by insulin growth factor-1 (IGF-1) (34). Specifically, 
downstream of IGF-1, both the mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K) pathways are known to regulate skeletal muscle 
regeneration (35).

Mitogen-activated protein kinases are enzymes that become 
catalytically activated in response to diverse stimuli such as 
mitogens, osmotic stress, and proinflammatory cytokines. 
MAPK activity mediates the crosstalk between canonical and 
non-canonical transforming growth factor (TGF-β) in a DIO 
model (36). In skeletal muscle, TGF-β1 inhibits differentiation 
of fetal myoblasts (37). Separately, increased levels of TGF-β can 
cause muscle injury to heal with fibrosis, rather than regenerated 
skeletal muscle (38). Increased p38 MAPK and TGF-β activity 
within ectopic adipocytes may induce satellite cell senescence 
(39). Paradoxically, results from C2C12 studies, a murine 
myoblast model for skeletal muscle development, demonstrates 
a positive role for activated MAPK in cell migration (40). 
MAPK signaling and activity remain controversial with respect 
to skeletal muscle regeneration in obesity, and this topic war-
rants further research. Interestingly, follistatin supplementation 
improves muscle growth in circumstances with elevated TGF-β 
signaling (41).

In models of muscular dystrophy, an increase in PI3K 
activity can be beneficial for regeneration, as it increases Akt 
activity and downstream, promyogenic factors, which stimulate 
muscle growth. Akt activation also helps in preventing muscle 
atrophy by inducing the expression of mammalian target of 
rapamycin and ribosomal protein S6 kinase beta-1 (S6K1) 
(42). Specifically, in DIO models, an increase in Akt activity by 
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phosphatase and tensin homolog (PTEN) inhibition restores 
skeletal muscle regeneration (11). The role of decreased insulin 
signaling with regard to skeletal muscle injury remains a topic 
of active research.

MeTABOLiSM

Obesity and chronic overnutrition are closely associated with 
increased mitochondrial-derived oxidative stress (43, 44). 
Skeletal muscle from obese or diabetic patients shows decreased 
mitochondrial content and a corollary loss of fatty acid oxida-
tion (45, 46) associated with excess caloric consumption and 
non-inherent mitochondrial dysfunction (47). In patients 
with T2DM, targeted overexpression of catalase within mito-
chondria can protect skeletal muscle from ischemic injury, but 
the role of oxidative stress and mitochondrial dysfunction in 
obesity-related loss of skeletal muscle regeneration remains 
unknown (48, 49). In the context of obesity, skeletal muscle 
undergoes a protective shift to retain its functional capacity 
by converting to glycolytic, type II muscle fibers, mediated 
by Brg1/Brm-associated factor (Baf60c) (50–52). The Baf60c 
pathway increases Akt activation, which, as discussed previ-
ously, improves diet-based glucose tolerance and increases 
insulin sensitivity. Independently, muscle-specific Akt activa-
tion also leads to hypertrophy of type II muscle fibers with 
subsequent resolution of hepatic steatosis, decreased fat mass, 
and improved metabolic parameters (53). However, Baf60c 
signaling is decreased in obese rodent models, possibly due to 
the inhibitory effects of TNF-α (51, 52).

In contrast, many studies suggest that hypertrophy of 
oxidative muscle fibers (type I) can also promote metabolic 
homeostasis. Muscle-specific overexpression of peroxisome 
proliferator-activated receptor-delta (PPAR-δ) (54, 55) promotes 
higher levels of type I fibers relative to type II fibers, improved 
performance in endurance, exercise, and resistance to DIO. 
Conversely, mice that are deficient in peroxisome proliferator-
activated receptor-gamma (PPAR-γ) coactivator 1-alpha (PGC-
1α) display abnormal oxidative fiber growth and develop an 
increase in body fat (56). These studies suggest that increased 
energy expenditure in skeletal muscle mediated by hypertrophy 
can protect against weight gain and metabolic dysfunction. In 
addition, myostatin-deficient mice are resistant to DIO (57), but 
this metabolic effect may be due to either changes in type I or 
type II fibers, or from the direct action of myostatin on adipose 
tissue (58). Overall, it remains unclear whether or not a type 
I or type II fiber majority contributes to the improvement in 
metabolic parameters in DIO, but an increase in muscle mass, 
in general, appears to counteract the metabolic derangements 
seen in obesity.

In the absence of muscle hypertrophy, reactive oxygen 
species (ROS) accumulate in skeletal muscle. In obese condi-
tions, increased ROS production is associated with contractile 
dysfunction, chronic oxidative stress followed by protein loss, 
and muscle atrophy (59). ROS is also capable of modulating the 
insulin signaling pathway, although the exact mechanism remains 
unclear. Studies suggest that ROS decreases insulin response 

and contributes to impaired mitochondrial activity (60). Sirtuin 
(SIRT), a NAD(+)-dependent histone deacetylase (HDAC) 
localized in mitochondria, has been found to regulate several 
mitochondrial genes and is important in muscle differentia-
tion, activation of myogenesis, and skeletal muscle metabolism. 
Specifically, SIRT1 promotes glycolysis and inhibits adipogenesis, 
thereby attenuating obesity-related insulin resistance (61–63). 
Conversely, in T2DM, inhibition of SIRT1 alters mitochondrial 
metabolism and increases the production of ROS (64).

Histone deacetylases, in general, are a group of enzymes 
that regulate gene expression by altering chromatin structure. 
In obesity models, HDAC inhibition restores PPAR-γ function 
improving skeletal muscle glucose and fatty acid metabolism. 
HDAC inhibition also generates non-traditional effects such 
as reducing adipose tissue expansion, resistance to obesity, and 
improvement in insulin sensitivity (65, 66). HDAC inhibitors 
have proven their potency in hampering fibrosis and favorably 
encouraging therapeutic muscle regeneration (67). Evaluation 
of HDAC inhibitors for the treatment of obesity-related muscle 
wasting is underway (68).

In skeletal muscle, glucose transporter 4 (GLUT4) levels 
are directly associated with increased oxidative capacity (69). 
Increases in GLUT4 translocation to the plasma membrane 
promotes improved rates of satellite cell proliferation and dif-
ferentiation (70). AMPK increases GLUT4 gene expression in 
human skeletal muscles (71). AMPK is also a widely recognized 
regulator of energy metabolism. Decreased AMPK activity is 
associated with metabolic disorders such as obesity and T2DM 
(18, 72). AMPK also plays a key role in upregulating the tran-
scription levels of paired box protein 7 (Pax7), myogenic factor 
5, myogenin, and MyoD, all of which are necessary for muscle 
growth. Although metabolic rate is stimulated through AMPK 
activity, ATP/AMP ratios for the AMPK activation pathways are 
not affected by obesity (18, 73).

Skeletal muscle isolated from patients with T2DM shows 
reduced levels of diacylglycerol kinase-delta (DGKδ), a key 
enzyme in triglyceride biosynthesis required for appropriate 
AMPK function. DGKs control the expression levels of diacylg-
lycerol (DAG) by catalyzing its conversion to phosphatidic acid 
utilizing ATP (74). Elevated plasma free fatty acid (FFA) levels 
from enlarged adipose tissue in obese models force intramyo-
cellular DAG accumulation (75). In an obese population, 
increased DAG accumulation, secondary to reduced DGK or 
increased, circulating FFA, results in inhibition of both glucose 
uptake and glycogen synthesis. This further exacerbates insulin 
resistance.

LiveR AnD FAT

As previously noted, obesity-associated liver dysfunction can 
have a profound impact on skeletal muscle maintenance and 
regeneration. NAFLD commonly occurs in obesity and is cor-
related with sarcopenia, even in the absence of insulin resistance 
(76, 77). Loss of muscle mass reduces a key cellular target for 
insulin action, contributing to glucose intolerance and, in turn, 
further muscle depletion. In addition, NAFLD is associated with 
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FiGURe 1 | Systemic regulators of obesity mediated loss of skeletal muscle regeneration. Obesity results in both increased visceral adipose tissue and 
fatty acid accumulation in the liver. These changes manifest as increased circulating fatty acids, inflammatory mediators, and insulin resistance, leading to metabolic 
derangements within skeletal muscle, and ultimately, decreased skeletal muscle regeneration by the deregulation of multiple signaling pathways. This figure 
summarizes key factors limiting muscle regeneration in an obese state.

4

Sinha et al. Skeletal Muscle Regeneration in Obesity

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 29

the production of multiple proinflammatory factors, including 
NF-κB, IL-6, and TNF-α, all of which are known to be protein 
catabolic (78). VAT also releases circulating FFA, leading to 
further liver damage (79). Independently, VAT can also result 
in higher levels of proinflammatory cytokines, similar to the 
liver (80). Thereby, liver damage and VAT accumulation work 
synergistically to impair skeletal muscle regeneration in obesity 
by increasing FFA circulation, proinflammatory cytokines, and 
limiting promyogenic insulin actions on muscle. These pathways 
are depicted in Figure 1.

COnCLUSiOn AnD PeRSPeCTiveS

Obesity is accompanied by significant health concerns, includ-
ing severe loss of skeletal muscle mass. The maintenance of 
skeletal muscle is necessary for ambulation, proper insulin 
signaling, and glucose homeostasis. Obesity-related loss of 
muscle mass perpetuates a cycle of increasing metabolic 
abnormality, associated liver dysfunction, and further muscle 
loss. Effective methods to target obesity-associated muscle 
wasting must account for multiple systemic changes that occur, 
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