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Leptin is a pleiotropic hormone that plays a critical role in regulating appetite, energy 
metabolism, growth, stress, and immune function across vertebrate groups. In mam-
mals, it has been classically described as an adipostat, relaying information regarding 
energy status to the brain. While retaining poor sequence conservation with mammalian 
leptins, teleostean leptins elicit a number of similar regulatory properties, although 
current evidence suggests that it does not function as an adipostat in this group of 
vertebrates. Teleostean leptin also exhibits functionally divergent properties, however, 
possibly playing a role in glucoregulation similar to what is observed in lizards. Further, 
leptin has been recently implicated as a mediator of immune function and the endocrine 
stress response in teleosts. Here, we provide a review of leptin physiology in vertebrates, 
with a particular focus on its actions and regulatory properties in the context of stress 
and the regulation of energy homeostasis.
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iNTRODUCTiON

Leptin is a class I helical cytokine encoded by the obese gene (ob) that has typically been character-
ized as an adipostat, circulating in proportion to the quantity of white adipose tissue and relaying 
information regarding the energy status of the animal to the central nervous system (1, 2). In mam-
mals, leptin is pleiotropic, regulating a multitude of physiological processes including appetite, lipid 
metabolism, growth, reproduction, stress, and immune function [reviewed in Ref. (3)]. The function 
of leptin has been less extensively studied in non-mammalian vertebrates; however, there is grow-
ing evidence in teleosts that leptin may play a greater role as a glucoregulatory hormone than an 
adipostat in this group of vertebrates. Studies on the interactions between leptin and the stress axis 
as well as the immune system, however, suggest that some of the actions of leptin may be conserved 
between fish and mammals despite the low sequence conservation between these two groups. Here, 
we provide an overview of what is known about the role of leptin in regulating energy homeostasis 
and the stress response in teleost fishes and compare this to the known effects of leptin in mammals 
and other vertebrate groups.

LePTiN CHARACTeRiZATiON, DiSTRiBUTiON, AND SiGNALiNG

Orthology in vertebrates
Leptin was first cloned in the mouse by Zhang et al. (1) and has since been identified in all extant 
vertebrate groups examined to date. Following the discovery of leptin in the mouse, orthologs were 
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FiGURe 1 | Alignment of teleost leptin A (LepA) with the leptin homologs from other vertebrate classes. Accession numbers: tilapia LepA, AHL37667.1; 
zebrafish LepA, NP_001025357.2; salmon LepA, ACZ02412.1; fugu, NP_001027897.1; Xenopus, NP_001089183.1; falcon, NP_001298279.1; mouse, 
NP_032519.1; human, NP_000221.1. Shaded areas represent the conserved cysteine residues required for the formation of the disulfide bridge. The four 
alpha-helices are indicated by dashed lines within the parentheses.
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identified in several other mammalian species (4); however, 
attempts to isolate a putative leptin sequence in non-mammalian 
vertebrates were largely unsuccessful. It was not until 2005, over 
a decade after its discovery in mammals, that a leptin homolog 
was cloned in a non-mammalian species, the Japanese pufferfish 
[Takifugu rubripes (5)]. This delay was due to the low amino 
acid identity (often less than 30%) between vertebrate leptin 
sequences (6) (Figure 1). The deduced primary structure of the 
pufferfish leptin (pLep) shared only 13.2% identity with human 
leptin; however, three-dimensional modeling suggested a strong 
conservation of tertiary structure with mammalian leptins, as 
pLep also possesses four α-helices (5). Further, the amino acid 
sequence of pLep contained two cysteine residues to form the 
disulfide bridge between α-helices C and D, a highly conserved 
element of vertebrate leptins (5).

Shortly after the identification of pLep, a leptin homolog was 
cloned in an amphibian, Xenopus laevis, that shared 35 and 13% 
amino acid identity with human and pLeps, respectively (7) 

(Figure 1). Putative leptin sequences have also been identified in 
the tiger salamander [Ambystoma tigrinum (8)] and in the green 
Anole lizard [Anolis carolinensis (9)], both of which show low 
amino acid identity to human leptin. In teleosts, leptin orthologs 
have now been characterized in striped bass [Morone saxatilis 
(10)], common carp [Cyprinus carpio (11)], rainbow trout 
[Oncorhynchus mykiss (12)], zebrafish [Danio rerio (13)], Atlantic 
salmon [Salmo salar (14)], orange-spotted grouper [Epinephelus 
coioides (15)], Japanese medaka [Oryzias latipes (13, 16)], yellow 
catfish [Pelteobagrus fulvidraco (17)], Nile tilapia [Oreochromis 
niloticus (18)], Jian carp [C. carpio var. Jian (19)], Arctic charr 
[Salvelinus alpinus (20)], grass carp [Ctenopharyngodon idella 
(21)], silver carp [Hypophthalmichthys molitrix (21)], chub 
mackerel [Scomber japonicus (22)], mandarin fish [Siniperca 
chuatsi (23)], and white-clouds mountain minnow [Tanichthys 
albonubes (24)]. These teleost leptins all have low sequence 
conservation with mammals, varying from 13 to 25% amino acid 
identity (Figures 1 and 2); however, each one is composed of two 
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FiGURe 2 | Alignment of teleost leptin B (LepB) with the leptin homologs from other vertebrate classes, tilapia leptin A (LepA), has been included  
for comparison. Accession numbers: tilapia LepA, AHL37667.1; tilapia LepB, AHL37668.1; salmon LepB, NP_001266063.1; zebrafish LepB, NP_001025357.2; 
Xenopus, NP_001089183.1; falcon, NP_001298279.1; mouse, NP_032519.1; human, NP_000221.1. Shaded areas represent the conserved cysteine residues 
required for the formation of the disulfide bridge. The four alpha-helices are indicated by dashed lines within the parentheses.
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exons separated by a short intron, contains the cysteine residues 
required for formation of the disulfide bridge, and is predicted 
to have retained the four-helix tertiary structure characteristic of 
mammalian leptins. Even within the teleost lineage, there is often 
low amino acid identity between species (<50%), unless the spe-
cies are closely related, such as within the salmonids or cyprinids.

Paralogs in Teleosts
In certain teleost species, two leptin paralogs have been identi-
fied. This is a common feature of teleostean class I cytokines, 
resulting from the genome duplication that occurred in the 
teleost lineage (6, 25). Zebrafish (D. rerio), Japanese medaka 
(O. latipes), orange-spotted grouper (E. coioides), Nile tilapia 
(O. niloticus), Mozambique tilapia (Oreochromis mossambicus), 
chub mackerel (S. japonicus), mandarin fish (S. chuatsi), and 
white-clouds mountain minnow (T. albonubes) have all been 
shown to possess two separate leptin proteins, leptin A (LepA) 
and leptin B (LepB) (13, 15, 18, 19, 22–24, 26) (Figures 1 and 2). 
The amino acid identity between LepA and LepB within each 

species is low, ranging from 18 to 30%, and phylogenetic analysis 
shows that the two genes form separate branches (18, 19, 24, 27). 
Due to the additional genome duplications that occurred within 
the salmonid and cyprinid lineages, a number of species includ-
ing the common carp (C. carpio), Atlantic salmon (S. salar), 
goldfish (Carassius auratus), rainbow trout (O. mykiss), and Jian 
carp (C. carpio var Jian) possess up to four leptin paralogs, two 
LepA genes, and either one or two LepB genes (11, 14, 19, 28, 29).  
The two LepA sequences and the two LepB sequences in these 
species share higher amino acid identities than is seen between 
the A and B forms (ranging from 71 to 83%); thus, the nomen-
clature typically used is leptin A1 and A2 and leptin B1 and B2 
(13, 14, 28, 29).

Tissue Distribution in Teleosts
Unlike in mammals where leptin is produced predominantly 
in adipose tissue, teleost leptins often have the highest mRNA 
expression levels in liver, with most species having low or 
non-existent leptin expression in adipose tissue. Other sites of 
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expression in teleosts are the brain, gonads, muscle, and kidney; 
however, this can vary widely between species (10–24, 26). In 
some instances, the tissue distribution between paralogs within 
a single species differs, and it has been suggested that lepa is more 
prominent in the liver, while lepb is predominantly expressed in 
the gonads, thus indicating divergent roles of the two paralogs 
(13, 29). However, studies on LepB are limited, and this differen-
tial expression pattern is not consistent across species, with most 
showing substantial overlap in the tissue expression patterns 
for the two forms. Regardless, lepa appears to be the predomi-
nantly expressed form in most species examined (15, 16, 24) 
showing 10–100 times greater tissue mRNA copy number than 
lepb and hence likely reflecting the major source of circulating  
leptin (26).

Receptor and Signaling Pathways
The leptin receptor (LepR) is part of the glycoprotein 130 family 
of cytokine receptors, which utilize gp130 as a signal transducer 
to activate signaling pathways within the cell, typically the Janus 
kinase/signal transducers and activators of transcription (JAK/
STAT) pathway (30, 31). Signaling via this pathway has been 
observed in the pituitary of both mammals and frogs, suggest-
ing conservation of this signaling mechanism for leptin across 
vertebrate groups (30–32). Although sharing low identity with 
mammalian receptors (<30%), teleost LepRs show genomic 
synteny with the human receptor and possess the functionally 
important JAK- and STAT-binding domains that are largely con-
served within vertebrates (14–18, 33–35). In teleosts, lepr mRNA 
is ubiquitously expressed, with higher levels typically being 
observed in the pituitary, hypothalamus, and gonads, suggesting 
that these are prominent sites of leptin action (14–18, 28, 33–35). 
Indeed, leptin regulates glucose sensing in the hypothalamus and 
hindbrain of rainbow trout (O. mykiss) both in vitro and in vivo 
(36, 37). These actions were attenuated when leptin was admin-
istered in combination with either a phosphoinositide-3-kinase 
or JAK2 inhibitor, indicating involvement of these pathways in 
leptin signaling (36, 37). Further evidence for leptin signaling 
via the JAK/STAT pathway comes from the increase in Akt and 
STAT3 phosphorylation observed in trout hypothalamic cells 
following incubation with leptin (38). The lipid regulatory activ-
ity of heterologous leptin on hepatocytes and ovarian follicular 
cells of yellow catfish (P. fulvidraco) is attenuated by JAK/STAT 
inhibitors, reiterating a role for this pathway in leptin signaling 
(39). Leptin has also been shown to act on the pituitary of tilapia 
(O. mossambicus) to stimulate prolactin (PRL) release through 
activation of the extracellular signal-related kinase (ERK) 
pathway (40) and on the liver of the hybrid striped bass [Morone 
chrysops x Morone saxatilis (41)] and Mozambique tilapia  
[O. mossambicus (42)] to regulate growth hormone (GH) recep-
tors and insulin-like growth factors (IGFs), although the signal-
ing pathways have yet to be determined. Albeit studies assessing 
the function of leptin in teleosts are limited, existing data sug-
gest that the sites of leptin action and the signaling pathways 
responsible for eliciting its effects may be conserved with that of 
other vertebrate systems. Further investigations are required to 
elucidate the full complement of intracellular pathways mediat-
ing leptin action(s).

LePTiN eNeRGY HOMeOSTATiC 
ACTiONS

Feeding
Leptin is renowned for its role in regulating food intake and body 
mass (43). Secreted primarily from adipose tissue in mammals, 
leptin serves as a lipostatic signal and conveys critical informa-
tion regarding metabolic state to the brain (44, 45). As lipid stores 
accumulate and circulating leptin rises, the hormone enhances 
energy expenditure and reduces food intake by stimulating ano-
rexic proopiomelanocortin/cocaine and amphetamine-related 
transcript neurons and inhibiting orexigenic neuropeptide Y/
agouti-related protein neurons (46–50). Leptin-deficient pathol-
ogies are typically accompanied by hyperphagia and obesity 
[reviewed in Ref. (45, 49, 51)]. The anorexigenic properties of lep-
tin have been well characterized in the context of leptin deficiency 
through experimental administration to obese, leptin-deficient 
ob/ob mice, as well as leptin-deficient humans, resulting in the 
reduction of food intake and body mass (52, 53).

In some fishes, leptin demonstrates a marked postprandial 
elevation [(54, 55); reviewed in Ref. (56, 57)] in accordance with 
the mammalian paradigm. Further, the administration of leptin 
via injection has been shown to reduce food intake in goldfish 
[C. auratus (58, 59)], rainbow trout [O. mykiss (12, 36)], grass 
carp [C. Idella (21)], Atlantic salmon [S. salar (60)], and striped 
bass [M. saxatilis (10)]. Properties similar to that of leptin-related 
pathologies initially observed in the db/db mouse have also been 
reported in a LepR-deficient medaka [O. latipes (61)]. This mutant 
line showed consistently elevated hypothalamic activity of orexi-
genic neuropeptides, suppression of anorexigenic neuropeptides, 
and increased food intake, suggesting a similar regulatory role for 
leptin in appetite suppression in fishes. While the anorexigenic 
properties of leptin would also suggest potentially concurrent 
lipostatic properties as seen in mammals, no changes in adiposity 
were observed in leptin receptor-deficient strains of zebrafish (62), 
and other species exhibit inconsistent correlations between fat 
deposition and leptin expression, e.g., during fasting leptin rises 
in fish as adiposity declines, while it declines with fasting and lipid 
stores in mammals (38, 42, 63–65). Nonetheless, the anorexigenic 
properties of leptin appear well conserved among vertebrates.

Metabolism
Leptin regulates energy availability in mammals by mobilizing 
lipid stores (66) and stimulating the oxidation of fatty acids (67). 
It also induces hypoglycemia by enhancing glucose uptake into 
peripheral tissues (68) and elevates metabolic rate in muscle and 
liver (69). Studies on the metabolic actions of leptin in other 
vertebrate classes are limited (Table 1) leading to difficulties in 
elucidating whether leptin evolved primarily as a lipolytic agent 
or if its basal metabolic functions are more glucoregulatory in 
nature. Teleosts appeared relatively early in the vertebrate lineage, 
and thus, understanding the role of leptin in regulating metabolic 
pathways in these fish could provide valuable insights into the 
evolution of energy homeostasis in vertebrates. The existing data 
in teleosts are equivocal, with lipolytic actions being reported 
in response to leptin treatment in some species, while in others, 
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TABLe 2 | Different effects of leptin on appetite, energy metabolism, and glycemia as well as the response to fasting in various teleost species.

Speciesa Leptin 
source

Appetite energy metabolism Glycemia Fasting Reference

Grass carp (Ctenopharyngodon idella) Carp Anorexigenic ↑ lipolytic enzyme mRNA ? ? Li et al. (21)
Catfish (Pelteobagrus fulvidraco) Human ? ↑ lipolytic enzyme mRNA ? ? Song et al. (39); Zhang et al. (70)

↑ enzyme activity
↓ triglycerides

Striped bass (Morone 
chrysops x Morone saxatilis)

Human Anorexigenic ? ? ↓ lep mRNA Won et al. (10)

Tilapia (Oreochromis mossambicus) Tilapia ? ↓ glycogen Hyperglycemic ↑ lepa mRNA Baltzegar et al. (71); Douros et al. (42)
↓ lipolytic enzyme mRNA ↑ plasma 

leptin A
Rainbow trout (Oncorhynchus mykiss) Salmonid Anorexigenic ↓ glycogen Hyperglycemic ↑ plasma Lep Murashita et al. (12); Kling et al. (72); 

Aguilar et al. (36, 37)
Goldfish (Carassius auratus) Human Anorexigenic ↑ glycogen Hypoglycemic No effect? de Pedro et al. (58); Vivas et al. (59); 

Tinoco et al. (28)↓ lipids

The source of leptin indicates whether homologous or heterologous leptin was used in the study.
aSpecies were chosen to highlight the disparate effects of leptin observed in teleosts.

TABLe 1 | Comparison of the source of leptin, response to fasting, and effects on appetite, energy metabolism, glycemia, and metabolic rate in the 
different vertebrate classes based on current knowledge.

Leptin effects

Source Adipocytes Adipocytes and hepatocytes Hepatocytes ? Hepatocytes
Appetite Anorexigenic Anorexigenic Anorexigenic Anorexigenic Anorexigenic
Fasting Levels decline ? ? ? Levels elevatea

Metabolic rate Elevates ? ? Elevates ?
Energy mobilization Lipolytic ? Glycogenolytic ? Glycogenolytic

Lipolyticb

Glycemia Hypoglycemic ? Hyperglycemic ? Hyperglycemic
Hypoglycemicb

?, unknown.
aPredominant response but does not occur in all species.
bResponse varies between species.
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leptin instead stimulates glycogen depletion and increases plasma 
glucose (Table 2).

Leptin actions appear to agree with the classic mammalian 
paradigm in grass carp (C. Idella), wherein it induces a decrease in 
the hepatic stearoyl-coA desaturase-1 mRNA, an enzyme involved 
in the synthesis of fatty acids, while simultaneously increasing the 
mRNA level of hormone-sensitive lipase (hsl) (21). Fatty acid lev-
els were not measured in these studies; however, an overall effect 
on lipid regulation cannot be ascertained. Nonetheless, human 
leptin increases activity and mRNA levels of lipolytic enzymes 
in catfish (P. fulvidraco) hepatocytes and ovarian follicular cells, 
which paralleled a decrease in overall lipid content, suggesting a 
lipolytic action of the hormone (39, 70). Further, human leptin 
increased the mRNA levels of various lipolytic genes, decreased 
the levels of lipogenic genes, and decreased overall triglyceride 
content in hepatocytes of the goby [Synechogobius hasta (73)]. 
In contrast, the mRNA levels of hormone-sensitive lipase, as well 
as lipoprotein lipase (lpl), decreased in the liver of Mozambique 
tilapia (O. mossambicus) in response to homologous hormone 
treatment (71). The latter study also observed a decrease in hepatic 
glycogen content and corresponding increase in plasma glucose 
(71), suggesting that leptin has hyperglycemic actions in teleosts 
and thus may represent a functional divergence from mammalian 

leptins. This corroborates an earlier study in rainbow trout  
(O. mykiss) in which central administration of leptin also 
increased plasma glucose while concurrently reducing the 
glycogen content of the liver (36). Similar effects were observed 
in lizards, with leptin decreasing hepatic glycogen content and 
increasing plasma glucose levels (74). Disparate results have been 
reported in goldfish, however, with human leptin increasing mus-
cle and liver glycogen while depleting liver lipids and lowering 
plasma glucose, similar to what is observed in mammals (58). The 
different actions of leptin reported in teleosts could be a function 
of differences in life history strategies or from using mammalian 
vs. homologous leptins. Baltzegar et  al. (71) reported similar 
glucoregulatory effects for both recombinant human leptin and 
tilapia LepA. However, distinct actions on regulation of hepatic 
hsl and lpl were observed between the two, with tilapia LepA 
reducing and human leptin having little effect on the lipases, 
suggesting that the use of homologous hormone may be essential 
for determining species-specific effects.

Further glucoregulatory roles for leptin have been demon-
strated in the brain of rainbow trout and tilapia. Aguilar et al. (36) 
demonstrated increases in the glucose and glycogen contents of 
the trout (O. mykiss) hypothalamus and hindbrain in response to 
an intracerebroventricular injection of human leptin, which were 
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paralleled by increases in glut2 mRNA and glycogen synthase 
activity. Leptin also induced a significant increase in glucokinase 
activity in the brain (36), suggesting that one of the functions of 
leptin may be to stimulate glucose uptake and metabolism. In 
the pituitary rostral pars distalis of the tilapia (O. mossambicus), 
homologous leptin induced an increase in the activity of phos-
phofructokinase, a rate-limiting glycolytic enzyme, and this was 
correlated with an increase in lactate secretion or overall gly-
colytic output (75). Although typically believed to be a lipolytic 
agent, leptin has also been implicated in glucose metabolism in 
mammals, having been shown to stimulate glycolysis and glu-
coneogenesis and inhibit glycogenolysis [reviewed in Ref. (76)]. 
These data suggest that one of the basal functions of leptin may be 
to regulate glucose uptake and catabolism (e.g., glycolysis) in ver-
tebrates; however, the source of glucose may vary as the hormone 
can elicit catabolic effects on either lipid or glycogen stores. One 
explanation for this could be the evolution of endothermy [see 
Ref. (77) for review of energetics between endothermy and ecto-
thermy]. Mammals exhibit higher metabolic rates that, if fueled 
by fatty acids and/or glucose that has been synthesized de novo, 
would allow glycogen stores to be conserved in the event the 
animal is in need of a rapid source of energy. Hence, leptin may 
promote gluconeogenesis, but not glycogenolysis. Whether leptin 
alters gluconeogenic pathways in fish remains to be determined.

LePTiN iNTeGRATiON wiTH THe 
CLASSiCAL eNDOCRiNe STReSS AXiS

endocrine Stress Response
It is apparent that leptin is a catabolic hormone in vertebrates that 
enhances energy mobilization and suppresses appetite, two pro-
cesses often linked to stress responses. Hence, the hormone may be 
integral to the endocrine stress response. Stress impacts virtually all 
aspects of vertebrate physiology including immunity, reproduction, 
hydromineral balance, and energy homeostasis (78–80). The adren-
ergic (humoral and neuronal) and hypothalamic–pituitary–adrenal 
[interrenal in fish; HPA/hypothalamic-pituitary interrenal (HPI)] 
axes are central components of the vertebrate stress response and 
ultimately aid in restoration of homeostasis when disrupted. In all 
vertebrates, including teleost fishes, acute and chronic stress events 
are mediated through the sympathetic adrenergic and HPA/HPI 
axes, two primary components of the endocrine stress response. 
The two axes release catecholamines (epinephrine/norepineph-
rine) and glucocorticoids (cortisol/corticosterone), respectively, to 
allow for the mobilization of energy stores (79, 81, 82).

Upon the perception of a stressor, sympathetic nerve fibers 
release acetylcholine onto chromaffin cells within the adrenal 
medulla (mammals) or interrenal tissue (teleosts) to stimulate the 
secretion of catecholamines and allow for the rapid mobilization of 
energy stores from peripheral tissues (81, 83–85). Simultaneously, 
the hypothalamus releases corticotropin-releasing factor (CRF), 
which stimulates the release of adrenocorticotropic hormone 
(ACTH) from the pituitary. ACTH then triggers the production 
and release of glucocorticoids from the adrenal cortex (mam-
mals) or interrenal cells of the head kidney (teleosts) (79, 80, 85). 
These glucocorticoids then elicit a myriad of metabolic effects 

such as inducing lipid and protein catabolism and stimulating 
gluconeogenesis to increase plasma glucose levels (79, 86). In 
a classic negative feedback pathway, the increase in circulating 
cortisol then inhibits further release of CRF and ACTH, attenuat-
ing the stress response.

Catecholamines and Leptin
Epinephrine is thought to be the primary hormone of the humoral 
adrenergic system in most fishes (80, 81). As part of the “fight 
or flight” response, catecholamines exert numerous actions that 
include rapid mobilization of glucose and free fatty acids through 
enhanced glycogenolysis and lipolysis, respectively, as well as 
regulation of respiration and blood flow (79, 81, 87). Leptin is 
also critical for regulating energy expenditure in vertebrates and 
responds to various stressors (see Leptin Responses to Stress in 
Vertebrates), yet little is known about how the hormone interacts 
with components of the endocrine stress axis, particularly in 
non-mammalian vertebrates (27). To date, the majority of studies 
examining the relationship between leptin and the stress axis have 
been performed in mammals (27, 51). However, studies in lizards 
[Podarcis sicula (74)] and teleosts have indicated that leptin may 
act as a key metabolic regulator during stress in all vertebrates 
through mobilization of energy stores (Figure 3).

Leptin has been shown to stimulate the release of catecholamines 
in both porcine (88) and bovine (89) adrenal medullary cells. In 
addition, leptin increased mRNA levels of tyrosine hydroxylase, the 
rate-limiting enzyme in catecholamine production (88). This sug-
gests a synergistic relationship between leptin and catecholamines 
wherein leptin mobilizes energy from lipids while simultaneously 
stimulating the release of catecholamines to mobilize glucose 
during periods of stress (90). Interestingly, other studies utilizing 
human chromaffin cells have shown no significant change in cat-
echolamine release with leptin treatment (91). The contradictory 
responses observed between human and other mammalian models 
could possibly be due to differences in methodology (isolated cells 
vs. whole adrenal tissue), the leptin concentrations used, or simply 
species differences (88). The regulation of catecholamines by leptin 
in fishes has not been well characterized. In goldfish (C. auratus), 
chronic leptin treatment resulted in no significant changes in 
hypothalamic catecholamines (58); however the effects of leptin 
on circulating catecholamines are yet to be examined.

While leptin exerts a stimulatory effect on catecholamine 
release in mammals, epinephrine has been shown to directly 
inhibit leptin secretion (92–95). In addition, increases in intra-
cellular cAMP in medullary cells, one of the second messengers 
involved in adrenergic signaling, downregulate leptin mRNA (96). 
Leptin increases intracellular cAMP in addition to stimulating 
catecholamine release (88), both of which could act in a negative 
feedback loop to inhibit further leptin release. One theory behind 
this inhibition is that it is not advantageous for catecholamines 
to stimulate leptin during acute stress as obtaining energy from 
lipolysis is too slow for a “fight or flight” response; however, it 
may play a role in mediating the response to chronic stress (27). 
The regulation of leptin by catecholamines in fishes and other 
ectotherms is still unclear. However, both leptin and epinephrine 
exhibit glycogenolytic and/or lipolytic actions and have been 
shown to increase during times of stress in fishes (71, 79).
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FiGURe 3 | interactions between leptin and the humoral adrenergic and hypothalamic–pituitary–adrenal/interrenal axes in teleosts and mammals. 
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Glucocorticoids and Leptin
The human ob promoter region possesses glucocorticoid response 
elements, suggesting that cortisol may elicit some of their actions 
by inducing leptin transcription (97, 98). Indeed, glucocorticoids 
elicited a stimulatory effect on leptin synthesis and secretion in 
rats (99), humans (100), and cultured human adipocytes (101) 
(Figure 3). In addition, the synthetic glucocorticoid dexametha-
sone increased mRNA levels and stimulated leptin secretion in 
rat adipocytes (96, 102). Similar results have been observed in 
teleosts, with cortisol increasing hepatic leptin mRNA levels 
in rainbow trout (O. mykiss) both in  vivo and in  vitro (103). 
In addition, when trout hepatocytes were treated simultaneously 
with cortisol and RU486, a glucocorticoid receptor antagonist, 
the increase in leptin mRNA was attenuated (103). Whether a 
similar response occurs with leptin secretion remains unknown. 
It has been speculated that since cortisol release is slower than 
that of catecholamines, the prolonged stressors that elicit cortisol 
actions would also benefit from the catabolic effects of leptin on 
lipids and/or carbohydrates reported in fishes, particularly in the 
liver where leptin is produced and may act locally (26, 27, 39, 71, 
73, 104).

Leptin in turn has an overall inhibitory effect on the HPA axis 
in mammals (98), inhibiting CRF release from the hypothalamus 
in mice (105) and suppressing cortisol secretion from adrenal cells 
(106–108) (Figure 3). In contrast, leptin has no effect on ACTH 
secretion from the pituitary, suggesting that it regulates gluco-
corticoid release indirectly via the hypothalamus and directly by 
acting on the adrenal gland (105). When human adrenocortical 
cells are incubated with leptin, a dose-dependent decrease in 
ACTH-stimulated cortisol secretion is observed (91), while in 
leptin knockout mice (ob/ob), circulating levels of glucocorticoids 
are 85% higher than basal. Injecting these knockouts with leptin, 
however, reduced the level of glucocorticoids by 40% (109, 110). 
These data could potentially suggest a synergism between leptin 

and cortisol wherein cortisol stimulates the secretion of leptin 
that, in turn, mobilizes energy stores necessary for coping with a 
stressor. It has also been suggested that the anorexigenic effects 
of leptin could counteract the weight gain effects of cortisol in 
mammals (111). Similar results have been observed in teleosts, 
suggesting that interactions between leptin and glucocorticoids 
may be conserved in vertebrates. In the common carp (C. carpio),  
leptin inhibited ACTH-stimulated cortisol secretion in vivo and 
caused a dose-dependent decrease in CRF-induced ACTH secre-
tion from the pituitary in vitro (6, 112). No changes in circulating 
cortisol were observed in leptin-injected goldfish [C. auratus (59)];  
however, it is possible that leptin only inhibits glucocorticoid 
production when the HPI axis has been activated and circulating 
cortisol levels are elevated. In general, we do know that teleost 
pituitary glands are responsive to leptin (6, 26, 40, 42), and as 
such, it has been postulated that leptin may regulate the stress axis 
at the level of the pituitary (6, 113).

Currently, there are no other studies in fishes examining the 
relationship between leptin and the hormones of the stress axis, 
specifically interactions with catecholamines and glucocorticoids. 
There is a need to address these gaps as understanding these inter-
actions will help to elucidate leptin’s basal function as a putative 
regulator of the endocrine stress response in these organisms and 
how these actions may differ from that of the classically described 
adipostat in mammals.

LePTiN ReSPONSeS TO STReSS  
iN veRTeBRATeS

Fasting
Catabolic stress associated with fasting typically leads to down-
regulation of leptin expression in mammals (114). The preponder-
ance of evidence in teleosts, however, points to fasting-induced 
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increases in leptin synthesis and secretion (23, 42, 58, 72, 115, 116);  
albeit evidence in two species, the hybrid striped bass (M. chrysops  
x M. saxatilis) and red-bellied piranha (Pygocentrus nattereri) 
show that production of the hormone may decline with fasting 
(10, 117). The general increase in leptin during fasting found 
in most teleosts presents a functional paradox between the role 
of leptin as an anorexigenic endocrine signal and the drive to 
increase food intake during fasting. Leptin could aid to limit 
feeding to avoid the metabolic costs associated with foraging 
and digestion (118) during periods of low food availability, or 
perhaps other orexigenic factors such as ghrelin, whose levels 
are known to increase dramatically with fasting (119), outweigh 
the anorexigenic properties of leptin in driving food intake when 
energy status is low. Regardless, the increase in leptin with fasting 
is likely critical for promoting the catabolism of energy stores to 
fuel essential cellular processes. The variability of responses in 
fishes compared to mammals may be attributed to distinct regula-
tion of energy stores, perhaps suggesting that signaling during 
altered metabolic states may not be reliant solely on leptin, but 
an integration of lipostatic, glucostatic, and other metabolic 
and endocrine signals. Further, as a consequence of genome 
duplication events in teleosts [reviewed in Ref. (120, 121)], some 
species possess multiple leptin paralogs that may exhibit different 
functional properties.

Hyperosmotic Stress
Euryhaline fishes can withstand wide fluctuations in environmen-
tal salinity. Through active excretion of ions, they can overcome 
large increases in plasma osmolality (>150  mOsm) during 
acute seawater challenge (71). The process of seawater acclima-
tion consumes 20–68% of their total metabolic energy demand  
(122, 123). Elevated leptin stimulates Na+ retention and induces 
hypertension in rats and may be associated with hypertension 
induced kidney disease in humans (124). Few studies have 
investigated the role of leptin in osmoregulation in teleost fishes, 
despite its regulatory interactions with GH, IGFs, and PRL, hor-
mones known to control salt and water balance (26, 40–42). In 
the Mozambique tilapia (O. mossambicus), acute seawater transfer 
induced significant increases in hepatic lepa and lepr mRNA levels 
(71). The authors propose that leptin may work with cortisol to 
mobilize energy stores by inducing hepatic glycogenolysis and 
gluconeogenesis, respectively, thereby allowing the organism to 
fuel the increased energy demands associated with hyperosmotic 
stress. The hormone had no direct effect on expression of the gill 
Na+K+-ATPase pump, so it remains unclear whether the hormone 
is ionoregulatory in teleosts. Additional studies suggest that 
leptin may stimulate the release of PRL, an important freshwater 
osmoregulatory or Na+-retaining hormone in teleosts (26, 40). 
Collectively, the results suggest that leptin may act to mobilize 
energy for seawater adaptation and promote GH sensitivity and 
IGF production to enhance seawater acclimation (41, 42, 71). It 
may also promote synthesis and secretion of PRL for freshwater 
adaptation (40).

Hypoxia
Oxygen is a necessary component of energy production in all 
vertebrates, and thus hypoxia represents a severe and potentially 

lethal stress. As leptin functions at the intersection of the endo-
crine stress response and metabolism, it is reasonable to postulate 
that it is involved in the vertebrate response to hypoxia. Indeed, 
an increase in the transcription of leptin in humans, observed 
in response to hypoxia and hypoxia-inducible factor 1 (HIF-1), 
transactivates the human leptin gene promoter (125, 126). In 
addition, leptin mRNA levels increase in response to hypoxia 
in a variety of mammalian cell lines (127–129). Interestingly, 
Meissner et  al. (130) reported that short-term hypoxia in rats 
had no effect on plasma leptin levels or expression in adipose 
tissue; however, leptin expression was increased in the liver, 
kidney, and lungs suggesting a unique metabolic role for leptin 
under hypoxic stress. Leptin has further been shown to attenuate 
apoptosis under hypoxic conditions and appears to be necessary 
for behavioral recovery following acute hypoxia (131, 132). 
Taken together, the data from mammals point to a crucial role for 
leptin as a multifaceted mediator of energy homeostasis during 
hypoxia.

The first report of leptin regulation by hypoxia in fishes came 
from Chu et al. (133). The authors showed that lepa expression 
increased after 4 and 10 days of hypoxic exposure in zebrafish  
(D. rerio) and implicated HIF-1α as a key mediator of this 
response. In common carp (C. carpio), the expression of lep-a1, 
lep-a2, and lepr in the liver increases in proportion with the 
length of hypoxic exposure (113). This study also showed that 
exposure to hypoxia upregulated expression of lepr mRNA in 
the pituitary, suggesting potential integration with the HPI axis 
(113). In addition, transcriptome data for the tilapia (O. mossam-
bicus) shows upregulation of genes responsive to hypoxia in the 
pituitary following leptin treatment [e.g., chaperone-containing 
TCP1, chromodomain helicase-binding domain, heat shock 
protein 90b1, Gene Ontology 0070482/001666 (75)]. Crucian 
carp (C. carassius) expresses multiple isoforms of the LepR in the 
gill, and the mRNA levels increased in response to hypoxia in vivo 
(134). While there are still significant gaps in knowledge with 
regards to how leptin is acting to augment organism energetics 
during hypoxia in fishes, it appears that leptin is indeed regulated 
by hypoxia in much the same way as mammals, increasing in 
response to the decreased availability of oxygen for ATP produc-
tion. The emerging role of leptin in stimulating glycolysis among 
different vertebrates may fit well with its upregulation during 
hypoxia or normoxia (Warburg effect).

immune Function and Disease
Immunity is intimately linked to an organism’s metabolism and 
energy status, and as such, allocating energy to the immune sys-
tem in states of both health and disease is critical to the overall 
fitness and survival of an organism (135). Fasting and nutritional 
deprivation are associated with an increased disease susceptibil-
ity, as well as immune system suppression and dysfunction in 
vertebrates (136–138). Due to its role as a vital neuroendocrine 
mediator of metabolic state, leptin has been investigated as a 
regulator of the energetics associated with the innate and adaptive 
immune responses. In mammals, increases in serum leptin levels 
occur with inflammation, a response that appears to be modu-
lated by glucocorticoids (139). Further, leptin has been shown to 
reverse starvation-induced immunosuppression by stimulating 
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the proliferation of pro-inflammatory cytokine-secreting T cells 
(140). Despite having been extensively studied in mammals, few 
studies have explored the interplay of leptin and immunity in 
teleost fishes or other non-mammalian vertebrates.

The correct allocation of energy to the innate immune sys-
tem, the first line of organism defense and the most important 
responder in the acute phase of an infection, is critical to host 
survival. Leptin signaling has been shown to be necessary for 
innate immunity in mammals (135, 141), increasing chemotaxis 
and oxidative function and delaying apoptosis in immune cells 
(142–146). Leptin increases activation and proliferation and 
induces production of pro-inflammatory cytokines in phagocytes 
(147). Similar functions have been observed in the adaptive 
immune response, wherein leptin acts to stimulate B-lymphocytes 
by inducing cell cycle entry, preventing apoptosis and caus-
ing the secretion of pro-inflammatory cytokines (148, 149).  
In addition, it has been determined that leptin signaling is neces-
sary for normal rates of glucose uptake and glycolysis in activated 
T-cells (150). These data suggest that, in mammals, leptin may 
drive immune activation by increasing the oxidative and overall 
glycolytic capacities of various immune cells.

Very little work has been done to directly connect leptin to the 
immune system in teleost fishes. Mariano et al. (151) showed that 
leptin drove ERK and STAT3 phosphorylation in both adherent 
and non-adherent trout leukocytes. Additional evidence for a 
role of leptin in regulating immune function in teleosts comes 
from MacDonald et al. (152) in which rainbow trout (O. mykiss) 
infected with a pathogenic hemoflagellate exhibited significantly 
higher mRNA and plasma levels of LepA. The authors determined 
that leptin was being secreted in response to the hypoxemia 
associated with the infection to reduce food intake (152). This 
would serve to prevent the organism from having to allocate 
energy toward digestive functions while in the diseased state. It 
is also possible that increases in leptin synthesis and secretion 
could lead to catabolism of energy stores necessary to meet the 
energetic demands of fighting the disease. Although limited, the 
data suggest an integration of leptin with immune function, and 
future studies should investigate the extent of leptin’s involvement 
in immunometabolic pathways in teleost fishes.

CONCLUSiON

In teleost fishes, there is much that remains to be elucidated 
about the role of leptin in energy homeostasis. Although there 

is evidence that leptin acts as a glucoregulatory agent in teleosts, 
there are also reports of leptin having lipolytic actions, particularly 
in the cyprinid fishes. In mammals, leptin has been implicated in 
regulating the metabolism of both glucose and lipids, suggesting 
some conservation of function between the two groups, perhaps 
sharing roles in promoting glycolysis. However, the increase in 
leptin levels during fasting presents a functional paradox against 
its role as an anorexigenic hormone. A further look into the func-
tion of leptins in regulating basal metabolism may shed light in this 
area. As multiple paralogs of leptin have been identified in teleosts, 
future studies should focus on whether the disparate actions are 
simply species-specific differences or the result of neofunction-
alization between the various leptin paralogs. To date, the studies 
investigating the involvement of leptin in regulating immunity and 
the endocrine stress response suggest that such roles may be con-
served within vertebrates. However, it is currently unclear by what 
means metabolic energy stores might be preferentially mobilized 
by leptin upon exposure to acute and chronic stressors, such as 
osmotic stress or hypoxia. Further, it remains to be determined how 
multiple endocrine signals (e.g., catecholamines, glucocorticoids) 
might integrate with leptin signaling to achieve the appropriate 
physiological response under such conditions. Studies in teleosts, 
or other ectotherms, may shed light on potential new functions of 
leptin that may be well conserved in the vertebrate lineage.
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