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4-Aminobenzylamine (ABA) and phosphoric acid (PA) were blended in various proportions
with poly(4-styrenesulfonic acid) (PSSA) to form a new group of membranes exhibit-
ing proton conductance under water-free conditions. The 4-ABA molecule, possessing
an aniline-like and benzylamine-like functional group, can interact both with the PA and
the PSSA via nucleophilic interaction, thereby allowing proton jumping in the structure.
Physico-chemical and thermal characteristics of the prepared solid membranes were inves-
tigated by IR spectroscopy and thermogravimetric analysis, respectively. Electrochemical
impedance spectroscopy was employed to investigate their proton-conductance proper-
ties. Transparent composite membranes were prepared. However, the membranes are
opaque for relatively high content of PA. These membranes are thermally stable up to
300°C. The proton conductivity increases with temperature and also with content of PA.
Values as high as 1.8 10−3 S cm−1 were measured at 190°C in fully anhydrous condition.×

Keywords: medium-temperature fuel cell, proton conduction, water-free, membranes, polymer

INTRODUCTION
The polymer electrolyte membrane fuel cell (PEMFC) has
attracted global attention as clean power source for portable
electronic devices, transportation systems, and power generating
apparatuses. There are,however, some issues to be overcome before
the PEMFC technology becomes commercially viable. Improve-
ment of current platinum-based cathode catalysts for the oxygen
reaction is one issue. Another issue is poisoning of the anode cat-
alyst due to the CO either present in fuel feed or produced by the
electro-oxidation reaction of fuel (Jiang et al., 2006; Zhang et al.,
2006; Cheng et al., 2007; Cui et al., 2009). These problems can
be significantly mitigated by operation at elevated temperature
(100–200°C). However, that requires development of new durable
membranes enabling operation at high temperatures and, conse-
quently, water-free conditions (Zhang et al., 2006). It should be
pointed out that operation at elevated temperature has two more
beneficial effects: first, it improves heat removal from the fuel cell
and possibly enables heat recovery from gas out-streams; second,
it facilitates overcoming water-related issues, namely flooding of
the electrodes pores by the liquid water, thereby reducing the com-
plexity and cost of the system (Oetjen et al., 1996). PA fuel cells
were conceived to operate at such elevated temperatures. Here, the
electrolyte is PA impregnated into a porous SiC matrix. However,
two important issues are that the PA electrolyte is a liquid above
42°C and, moreover, it is somewhat volatile at the elevated oper-
ation temperatures of the fuel cell (Larminie and Dicks, 2000).
These issues can be overcome by employing a solid polymer elec-
trolyte membrane. However, the ability of such a membrane to
transfer protons from anode to cathode relies on water presence
critically. Conductivity of these membranes dramatically drops

above 100°C due to loss of water. Therefore, in order to still bene-
fit from advantages connected to elevated-temperature operation,
development of new, water-free polymer electrolyte materials, and
also new concepts to make membranes thereof (De Martino et al.,
2009) is of great importance.

Poly(benzimidazole) (PBI) impregnated in various propor-
tions with PA was proposed as a proton-conducting membrane
material able to operate at elevated temperature and low humid-
ity (Wainright et al., 1995). Another promising approach inves-
tigated extensively is to incorporate non-volatile, amphoteric
fillers able to interact with protons much like water. These fillers
can assist protons to hop from site to site (Grotthuss mecha-
nism) through a dynamic hydrogen-bonded networks (Parvole
and Jannasch, 2008; Tricoli et al., 2012). In this regard, hetero-
cyclic compounds such as imidazole, benzimidazole, pyrazole, and
triazole have been incorporated into various polymeric matri-
ces (Bozkurt et al., 2003; Sevil and Bozkurt, 2004; Yamada and
Honma, 2005; Goktepe et al., 2008). Poly(acrylic acid), poly(4-
styrenesulfonic acid) (PSSA) and poly(vinylphosphonic acid)
are examples of such matrices. The best proton conductivities
achieved were about 1× 10−3 S cm−1 at 150°C under anhydrous
condition (Yamada and Honma, 2005). Although extensive works
have been performed, issues regarding modest proton conductiv-
ity, leakage of the filler, and scarce mechanical properties of com-
posite membranes still remain. In this work, we incorporated 4-
aminobenzylamine (ABA) (Figure 1A) and PA into PSSA in vari-
ous proportions. ABA can bind both to the PA and the PSSA matrix
by nucleophilic interaction of its amine groups (Figure 1B). IR
spectroscopy was used to asses such interactions. Thermal stability
of the prepared membranes was evaluated by thermogravimetric
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FIGURE 1 | Chemical structures of (A) ABA molecule and
(B) PSSA/ABA/PA composite membrane.

analysis (TGA). Proton conductivity for different molar ratios
of PSSA/ABA/PA was investigated by electrochemical impedance
spectroscopy (EIS).

MATERIALS AND METHODS
MATERIALS AND MEMBRANES PREPARATION
Poly(4-styrenesulfonic acid) (18 wt% solution in water,
M w= 75,000), ABA (purity 99%), and PA (anhydrous, purity
99%) were purchased from Aldrich and used as received.
PSSA/ABA/PA blends with molar ratios of 1:1:0, 1:0.5:0.5, 1:1:1,
and 1:1:2 were prepared. Briefly, a measured amount of ABA
was dissolved in 2 ml of the PSSA solution at room temperature
and then the appropriate quantity of the PA water-solution was
added under stirring for 1 h. The resulting solution was poured
into a Teflon dish and transferred to a convection oven at 45°C
to completely evaporate water. The obtained films had thickness
of 400–500 µm and diameter of 2.3 cm. Then 6-mm disks were
cut and utilized for the conductivity measurements. The com-
posite membranes with molar ratios of 1:1:0 and 1:0.5:0.5 were
transparent; however, composites of 1:1:1 and 1:1:2 molar ratios
were fairly opaque. For brevity, PSSA/ABA/PA blends with molar
ratios of 1:1:0, 1:0.5:0.5, 1:1:1, and 1:1:2 are addressed by S1, S2,
S3, and S4, respectively, in the following account. Prior to fur-
ther experiments, the cast membranes were stored in a silica-gel
desiccator.

IR SPECTROSCOPY
The IR spectra of the composite membranes were recorded in the
600–4000 cm−1 range on a Bruker (mod. Tensor 27) FT–IR spec-
trometer with attenuated total reflectance (ATR) technique. The IR
spectra of bare PSSA and ABA are also presented for comparison.

THERMOGRAVIMETRIC ANALYSIS
Thermogravimetric analysis (TGA) was performed by a TA instru-
ment (mod. TGA Q-500) under nitrogen from 50 to 500°C with
heating rate of 10°C min−1.

PROTON CONDUCTION
The proton conductivity of casted membranes was investigated
by EIS, using a Solartron 1255/1287 frequency response ana-
lyzer/electrochemical workstation interface equipped with Z-view
software for spectra analysis. EIS spectra were recorded in the fre-
quency range of 10−1–106 Hz with applied-voltage amplitude of
10 mV. The test cell has a sandwich structure with the membrane
clamped between two stainless-steel disk electrodes. Once locked,
the electrodes/membranes assembly was automatically sealed by
a system of Viton O-rings, thereby remaining isolated from the
environment. Full details about the cell can be found elsewhere
(Hu et al., 2008). The measurements were performed in the tem-
perature range of 30–190°C under fully anhydrous condition. The
membrane was lodged in the open test cell and then transferred
to a vacuum oven (10−2 torr) at 100°C, where it was first let dehy-
drate for at least 12 h and then sealed by locking the cell while it
was in the oven.

RESULTS AND DISCUSSION
THERMAL ANALYSIS
We recorded the TGA traces for three samples: (1) the bare PSSA;
(2) the two-components (PSSA and ABA) sample, i.e., S1 and (3),
a sample where all three components (PSSA, ABA, and PA) are
present, S3. The TGA plots are shown in Figure 2. The trace of
bare PSSA is also shown for reference. The TG trace of PSSA dis-
plays a weight loss of ≈20% up to 220°C due to absorbed water
release (Yang, 2011). Then, two main losses are observable: the
first one in the range of 280–400°C, is assigned to desulfonation
of the aromatic ring, while the second one from 400 to 450°C, to
main-chain cleavage (Yang, 2011).

For TGA of S1, the first weight loss of ca. 2% from 90 to 320°C is
attributed to release of physically bound water (i.e., water moisture
inevitably absorbed from the environment before or during any
experimental step). The second and third convoluted weight losses
from 320 to 450°C are attributable to desulfonation and cleavage
of polymer backbone, respectively, although release of ABA can-
not be ruled out, despite its very high boiling point (349°C) and
nucleophilic bond to the sulfonic groups of PSSA. Comparing the
TG traces of bare PSSA and S1, it can be inferred that presence
of ABA makes the desulfonation temperature of PSSA higher by
c.a. 40°C, probably due to the interactions between the benzy-
lamine group of ABA and the sulfonic group of PSSA. Existence
of this interaction is also supported by the fact that the amount
of absorbed water is much less in S1 than that in bare PSSA as
evidenced by the TG traces. In fact, binding of the benzylamine
groups of ABA to the sulfonic acid groups of PSSA is expected to
depress the amount of absorbed moisture from the environment.
The TGA trace of S3 displays an initial weight loss of 5% up to
300°C ascribable to release of absorbed moisture and also to the
water release from the condensation reaction of P–OH groups in
PA (Lee et al., 2012). From 310 to 360°C, desulfonation of aro-
matic rings of PSSA occurs, while main polymer chain undergoes
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FIGURE 2 |TGA traces of PSSA, S1: PSSA/ABA/PA (1:1:0) and S3:
PSSA/ABA/PA (1:1:1) composite membranes.

cleavage from 360 to 450°C. Again, release of ABA is also possible
in those temperature ranges. In summary, TGA results show that
PSSA/ABA/PA membranes are thermally stable up to 300°C as a
result of the acid–base interactions of the PSSA matrix with ABA.

IR SPECTROSCOPY
In Figure 3, IR spectra of PSSA, ABA, S1, and S3 are pre-
sented. The peak at 1650 cm−1 corresponds to water bound to
the sulfonic groups of PSSA. Apparently, the intensity for S1 is
considerably attenuated as compared to the bare PSSA sample,
implying a decreased amount of absorbed water in agreement
with the above TGA results. It is also worthwhile to mention
the new peak at c.a. 1170 cm1 in the S1 spectrum. This peak
is assignable to the SO3

− groups (Rajagopalan et al., 1987) and
is interpretable as the result of the protons of SO3H groups
transferred to the nitrogen atom of benzylamine moiety of ABA.
That creates ionized SO3

− groups, which gives rise to this new

FIGURE 3 | FT–IR spectra of (A) ABA, (B) PSSA, (C) S1: PSSA/ABA/PA
(1:1:0), and (D) S3: PSSA/ABA/PA (1:1:1) composite membranes.

Table 1 | FT–IR assignments of PSSA.

Wave no. (cm−1) Assignment

1037–1170 SO3
- symmetric and asymmetric stretching

(Rajagopalan et al., 1987; Glipa et al., 1999)

1226 SO3H symmetric stretching (Rajagopalan et al., 1987;

Glipa et al., 1999)

1650 O–H bending of H2Oabs (Tsai et al., 2011)

3000–3670 O–H stretching of H2Oabs (Tsai et al., 2011)

peak. Finally, in the spectrum of S3, new peaks appear at 945
and 1861–2750 cm−1. Such peaks are ascribable to symmetric
and asymmetric stretching vibration of O–P–O groups and OH-
stretching of P–OH groups in H2PO4

– (Glipa et al., 1999). A
summary of the PSSA IR-peaks assignment, based on past studies,
is provided in Table 1 and served as the reference for the above
analysis.

PROTON CONDUCTIVITY
A typical Nyquist plot of our samples at different temperatures is
shown in Figure 4. All impedance responses were fitted with the
equivalent circuit model shown in figure inset. The semi-circle at
high frequencies is representative of the neat impedance of the
bulk membrane and modeled by the parallel of a resistor R with
a constant phase element, CPE. R is the actual ohmic resistance
of the membrane, whereas the CPE accounts for capacitive behav-
ior of the membrane. The tail at low frequencies of the Nyquist
plot represents the impedance of the membrane/electrodes inter-
faces and is modeled by CPEint, which is in series with the neat
impedance of the bulk membrane. The proton conductivity was
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Jalili and Tricoli Water-free proton conducting membranes

FIGURE 4 | Nyquist plot of S1: PSSA/ABA/PA (1:1:0) membrane under
fully anhydrous conditions at 150°C.

calculated from R as extracted from the fits. This resistance can
be determined also from the real part of the impedance where the
semi-circle portion in Nyquist plot links to the tail-like portion
(point P in figure).

Figure 5 displays the proton conductivity behavior vs. tem-
perature in fully anhydrous condition for all the composite mem-
branes. Apparently,Arrhenius-type behavior is observed with acti-
vation energies about 90 kJ mol1 for all samples. For S1, which does
not contain PA, the proton conductivity reaches 4× 10−5 S cm−1

at 190°C. For the PA-containing samples S2, S3, and S4, con-
ductivity value is higher and increases with PA content. The
highest value of 1.8× 10−3 S cm−1 was registered at 190°C for S4.
Table 2 summarizes the conductivity values at 190°C along with
the activation energies. From these results, it can be concluded
that addition of PA improves proton transport in membranes.
In the absence of PA, like in S1, the aniline- and benzylamine
groups act as proton-hopping sites to conduct protons. In this
case, the protons come solely from the sulfonic groups of PSSA.
For the S2, S3, and S4 composites, an additional amount of pro-
tons comes also from the PA present; thus, the observed increase
of conductivity should not come as a surprise. It is important,
however, to point out that the presence of H3PO4 also brings
about additional proton-hopping sites within the matrix, namely
the H2PO4

– ions created from protonation of aniline groups of
ABA by PA. In fact, the H2PO4

– ions are proton-accepting sites
and, as such, enable proton jumping. In the end, the observed
increase of conductivity consequent to addition of PA is due
to both the larger number of protons and proton-hopping sites
present.

It is useful to compare the above conductivity values with
those of PA-doped PBI membranes. Other authors (Schechter and
Savinell, 2002) reported a conductivity of c.a. 9× 10−3 S cm−1 at
200°C for a 6:1 PA/PBI molar ratio. This conductivity value is
five times higher as compared to our S4 membranes. However, it
should be pointed out that the PA content was also sensibly higher:
about 68 wt% in 6:1 PA/PBI membranes vs. ca. 38% in S4.

FIGURE 5 |Temperature dependence of conductivity in PSSA/ABA/PA
composite membranes under fully anhydrous condition.

Table 2 | Proton conductivity and activation energy.

Sample Conductivity at

190°C (S cm−1)

Activation energy

(kJ mol−1)

S1 ≈4×10−5
≈90

S2 2.9×10−4
≈90

S3 8.1×10−4
≈90

S4 1.8×10−3
≈90

CONCLUSION
We have obtained hybrid membranes made out of a
poly(styrenesulfonic acid) (PSSA) matrix incorporating 4-ABA
and PA. The basic idea was to accomplish water-free proton-
conducting membranes where the nucleophilic nitrogen moieties
of ABA can work as proton-solvent groups that are able to transfer
the proton even in the absence of water. The composites display
fairly high thermal stability up to 300°C. That reasonably appears
to be a consequence of the acid–base interactions of PSSA and PA
with ABA, which depresses the volatility of both PA and ABA. The
PSSA/ABA/PA composite electrolyte with 1:1:2 molar proportion
exhibits proton conductivity of 1.8× 10−3 S cm−1 at 190°C under
fully anhydrous condition. Proton conductivity depends on tem-
perature according to the Arrhenius law behavior with activation
energy about 90 kJ mol–1, indicative of proton-hopping mecha-
nism. The conductivity values are somewhat lower than that of
PBI/PA as reported in previous studies. However, it should be
pointed out that the PA content in our materials is sensibly lower
than that in those PBI membranes. Most importantly, beyond the
compounds used in this study, our approach allows employment
of a large variety of materials with proton-solvent characteris-
tics, which enables possible improvement of proton conductivity.
Thus, the present work has to be intended as a first step of an
ongoing effort aimed at development of new water-free proton-
conducting membranes. More specifically, future development
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can be envisioned in two directions: one is employing alternative
Bronsted-base fillers with higher pKa to enhance proton-hopping
mobility. On the other side, it should be pointed out that these
membranes are soluble in water. As a result, they can be used
only in dry condition. Therefore, further work is necessary also in
developing matrix and filler components, which cannot be easily
leached out in the presence of excess water.
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