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A social signal transduction theory of depression has been proposed that states that

exposure to social adversity alters the immune response and these changes mediate

symptoms of depression such as anhedonia and impairments in social behavior. The

exposure of maternal rats to the chronic social stress (CSS) of a male intruder depresses

maternal care and impairs social behavior in the F1 and F2 offspring of these dams.

The objective of the present study was to characterize basal peripheral levels of several

immune factors and related hormone levels in the adult F2 offspring of CSS exposed

dams and assess whether changes in these factors are associated with previously

reported deficits in allogrooming behavior. CSS decreased acid glycoprotein (α1AGP)

and intercellular adhesion molecule-1 (ICAM-1) in F2 females, and increased granulocyte

macrophage-colony stimulating factor (GM-CSF) in F2 males. There were also sex

dependent changes in IL-18, tissue inhibitors of metalloproteinases 1 (TIMP-1), and

vascular endothelial growth factor (VEGF). Progesterone was decreased and alpha

melanocyte stimulating hormone (α-MSH) was increased in F2 males, and brain-derived

neurotrophic factor (BDNF) was decreased in F2 females. Changes in α1AGP, GM-CSF,

progesterone, and α-MSH were correlated with decreased allogrooming in the F2

offspring of stressed dams. These results support the hypothesis that transgenerational

social stress affects both the immune system and social behavior, and also support

previous studies on the adverse effects of early life stress on immune functioning

and stress associated immunological disorders, including the increasing prevalence of

asthma. The immune system may represent an important transgenerational etiological

factor in disorders which involve social and/or early life stress associated changes

in social behavior, such as depression, anxiety, and autism, as well as comorbid

immune disorders. Future studies involving immune and/or endocrine assessments and

manipulations will address specific questions of function and causation, and may identify

novel preventativemeasures and treatments for the growing number of immunemediated

disorders.
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INTRODUCTION

A social signal transduction theory of depression has been
proposed that states that exposure to social adversity, especially
during early life, alters immune responses, and these changes
mediate depression symptoms such as anhedonia and impaired
social behavior (Slavich and Irwin, 2014). Cytokine mediated
effects have been specifically implicated in depression and anxiety
associated alterations in social behavior (Dantzer et al., 2008).
Stressors during the perinatal period can induce persistent
changes in the immune system and offspring behavior (Bilbo
and Schwarz, 2012). For example, maternal immune activation
induces adverse changes in offspring social behavior (Hodes et al.,
2014; Machado et al., 2015). Exposure to early life stress also
alters the systemic immune response and behavior (O’Mahony
et al., 2009, 2011) and there is recent evidence that inflammatory
factors (IL-1 and IL-6) increase vulnerability to stress related
disorders and are associated with impairments in social behavior
(Hodes et al., 2014; Wood et al., 2014). Social defeat, a robust
social stressor often used in rodent studies, increases cytokine
secretion (Powell et al., 2009), deficient maternal care alters
immune associated gene expression (Cole et al., 2012), and it is
postulated that inflammation may mediate the adverse effects of
early life stress on mental health (Danese et al., 2007; Carpenter
et al., 2010).

Exposure to early life stress, both prenatal and neonatal,
can induce robust, behaviorally relevant changes in brain
development (Howerton and Bale, 2012; Bale, 2015), and it
has been suggested that these effects may be immune mediated
(Howerton and Bale, 2012). Neonatal endotoxin treatment
affects the development of the stress response and may increase
susceptibility to stress related disorders (Shanks et al., 1995) and
several additional studies have supported the hypothesis that
the adverse effects of early life adversity on neural plasticity
are mediated by inflammation (Musaelyan et al., 2014). The
chronic social stress (CSS) model of postpartum depression and

FIGURE 1 | The CSS model of postpartum depression and anxiety. F0 dams are exposed to novel male intruder stress for 1 h/day during lactation days 2–15.

This social stress is early life stressor for the F1 generation. Both the F0 and F1 dams exhibit depressed maternal care and increased maternal anxiety, and the

depressed maternal care of the F1 dams is an early life stressor for the F2 generation. The current study focused on male and female F2 adults. (F0: Nephew and

Bridges, 2011; Coverdill et al., 2012; Murgatroyd et al., 2015b; F1: Carini and Nephew, 2013; Murgatroyd and Nephew, 2013; Murgatroyd et al., 2015a; F2: Babb

et al., 2014).

anxiety (Figure 1) induces substantial changes in the maternal
behavior of F0 rat dams exposed to chronic male intruder stress
(interaction with a novel male intruder during days 2–16 of
lactation; Nephew and Bridges, 2011; Carini and Nephew, 2013;
Carini et al., 2013; Murgatroyd et al., 2015b) and also disrupts
maternal care in F1 dams (Carini and Nephew, 2013;Murgatroyd
and Nephew, 2013; Murgatroyd et al., 2015a) and social behavior
in juvenile and adult F2 offspring (Babb et al., 2014). For the F1
and F2 offspring of stressed dams, the effects of CSS on social
behavior may be mediated by early life exposure to depressed F0
maternal care and/or the male intruder stressor (F1 offspring) or
depressed F1 maternal care (F2 offspring). The social behavior
of both male and female F2 offspring of CSS exposed dams is
disrupted, with a decrease in allogrooming during adult social
interactions (Babb et al., 2014), supporting the use of the CSS
model to study the transgenerational effects of stress on the
etiology of disorders that involve maladaptive changes to social
behavior, such as depression, anxiety, and autism.

The objective of the present study was to characterize basal
peripheral levels of immune factors and related hormone levels
in the adult F2 offspring of CSS exposed dams and assess
whether changes in these factors are associated with previously
reported alterations in social behavior. The F2 generation was
chosen for this study due to the observation of significant
social deficits (most notably allogrooming) in these animals
(Babb et al., 2014), similar to recent work on IL-6 and social
behavior in rodent studies of resilience to social stress (Hodes
et al., 2014). Due to the novelty of this research topic in the
context of the CSS model, we targeted a broad panel of immune
factors as well as progesterone, brain derived neurotrophic
factor (BDNF), and alpha melanocyte stimulating hormone (α-
MSH) which comprise interacting networks that are not fully
understood (Lipton and Catania, 1997; Luger and Brzoska,
2007; Tait et al., 2008; Calabrese et al., 2014). The specific
immune factors and hormones were chosen based on a review
of applicable rodent and clinical literature, previous published
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data from the CSS model, and discussions with several basic and
clinical immunologists. Given the evidence implicating exposure
to social stress and immune factors in altered social behavior,
it was hypothesized that basal immune factors, progesterone,
BDNF, and α-MSH levels would be altered in CSS F2 offspring
and that these changes would be associated with decreased social
behavior.

METHODS

Animals
Sprague-Dawley rats in this study were maintained in accordance
with the guidelines of the Committee of the Care and Use of
Laboratory Animals Resources, National Research Council, and
the research protocol was approved by the Tufts Institutional
Animal Care and Use Committee. Food and water were provided
ad libitum, and light cycle was 12L/12D, with lights on at 0700. All
F0 dams were purchased as adults (Charles River, Wilmington,
MA), mated with breeder males, and housed in groups of three
until the day prior to parturition. Litters were culled to five males
and five females on the day of parturition. The F0 sample sizes
were 11 control dams and 13 CSS dams.

CSS Model
See Figure 1 for a visual overview of the CSS model. The F0
CSS dams were subjected to a CSS protocol from postnatal days
(PND) 2 to 16 as reported previously (Nephew and Bridges,
2011; Carini et al., 2013). This procedure consisted of placing a
similarly sized (220–300 g) novel Sprague Dawley male intruder
into a lactating female’s home cage (10.5′′W × 19′′D × 8′′H)
for 1 h from PND 2 to 16. The F1 pups were left in the
cage during the intruder presentation. Control dams were not
exposed to the CSS protocol; they were only tested for maternal
care and maternal aggression on PND days 2, 9, and 16 to
allow for behavioral comparisons with the CSS exposed animals.
Behavioral, endocrine, and neural gene expression data from
these F0 dams has been published (Murgatroyd et al., 2015b).

F1 and F2 Offspring
F1 CSS females were the offspring of F0 dams exposed to CSS.
F1 control females were the offspring of the F0 control dams
who were not exposed to CSS. Thus, the differences in the F1
generations were presence (F1 CSS) or absence (F1 control) of
attenuated maternal care and conflict between F0 dams and the
male intruders during age 2–16 days. After day 16, the F1 CSS and
F1 controls were treated identically. After weaning all F1 pups
on day 23, the female offspring from the 12 control and 12 CSS
dams were housed in groups of four until 70 days of age when two
from each litter were mated with six proven breeder males from
Charles River (24 F1 females for the control and CSS groups).
Behavioral and endocrine data from those F1 females have been
previously reported (Carini and Nephew, 2013; Murgatroyd and
Nephew, 2013; Murgatroyd et al., 2015a).

Total F2 pup number and litter weights were recorded on the
day of parturition, and litters were then culled to five females
and five males. The control F2 and CSS F2 animals were treated

identically throughout the study; the only difference between
the two groups was the attenuated maternal care (including
deficits in pup grooming, nursing, and milk intake by pups)
and increased restlessness and anxiety-related behavior (nesting,
self-grooming, locomotor activity) expressed by the CSS F1
dams toward the F2 offspring. To summarize, the early life
stress experience of the F2 generation consisted of exposure to
attenuated maternal care from the F1 dams. The final F2 adult
sample sizes were 10 for the control groups and 13 for the CSS
groups, and there were no treatment differences in litter size
or number or bodyweights at the juvenile, or adult stage, (all
p > 0.2). Juveniles were euthanized at 42 days old, and adults
were euthanized at 72 days.

Adult F2 Social Behavior Testing
The experimental rat was removed from the home cage and
placed in a clean breeding cage (16 × 20 × 8min.) for 10min
to allow for locomotor acclimation to the novel environment.
An empty clear plastic mouse cage covered with a plastic mesh
top was then placed in the breeding cage for 10min, and a
randomly selected same sex novel rat from the same treatment
group was placed under the cage top to test for social approach
for 10min. At the end of the 10min of social approach recording,
the mouse cage top was removed, and the focal and novel animals
were allowed to interact for 10min. Behaviors scored for social
approach consisted of time spent near and distant from the novel
rat (area next to the mouse top was divided into two sections),
time spent on top of the mouse cage top, olfactory investigation
of the novel rat through the mesh of the mouse cage cover,
self grooming, and total social approach (the sum of time near
novel rat, on top of mouse cage top, and olfactory investigation).
Adult social behaviors scored consisted of rostral and caudal
investigation, lateral contact, dorsal contact, tail grabbing,
allogrooming, self grooming, locomotor activity, aggression,
and total social contact (the sum of investigation, contact, tail
grabbing, and allogrooming). The social behavior data from the
animals in this study have been previously reported in Hormones
and Behavior (Babb et al., 2014), and only the novel cytokine data
and cytokine/allogrooming correlations will be presented in the
current study. During the social interaction test, adult F2 males
and females spent more time investigating a novel conspecific
and less time in direct social interaction, as assessed by time spent
allogrooming (Babb et al., 2014). The current decrease in F2 adult
allogrooming is supported by decreased pup grooming in F2
dams which were littermates of the animals in the present study
(unpublished data). All experimental animals were euthanized
within 3min of entering the animal room between 0800 and 1000
the day following social behavior testing, and trunk blood was
collected for the analysis of basal immune and hormone levels.

Immune and Endocrine Assays
An assay panel of pro- and anti-inflammatory cytokines (CXCL3,
CXCL2, GM-CSF, sICAM-1, IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-
6, IL-10, IL-13, IL-18, L-Selectin, TIMP-1, TNFα, VEGF) from
R&D Systems (R&D Systems, UK) was conducted on a Luminex
200 Bio-Plex Platform. Immediately prior to the initiation of
the study, the Bio-Plex platform underwent a complete on-site
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maintenance cycle. Samples were thawed directly on the day of
analysis. Working wash solutions and protein standards were
prepared within 1 h of beginning the assay by reconstituting
the standard in assay diluent and performing serial dilutions
according to manufacturer specifications. A magnetic plate
washer was utilized during the plate washing stages. Following
processing, protein concentrations were calculated and analyzed
with the xPONENT software (Luminex, v.3.1.871). Additional
cytokines and endocrine targets, IgE, CRP, α1AGP, BDNF,
progesterone, and α-MSH were measured by individual ELISAs
(R&D Systems, U.S.). Samples were run in duplicate in an
individual assay to eliminate interassay variation, and intraassay
variability was of 3–7%.

Statistics
Basal cytokine and hormone levels were analyzed with two-
way ANOVA (treatment and sex), which were followed with

individual two-tailed t-tests within each sex (t-tests were not
corrected for multiple comparisons). Pearson correlations were
used to test for significant cytokine and hormone behavioral
associations on the combined male and female data from the
control and CSS F2 groups, as well as separate tests on combined
control and CSS data from each sex in targets where there was an
effect of CSS.

RESULTS

The assay values for CXCL2, IFNγ, IL-1β, IL-2, IL-4, IL-10, IL-13,
and TNFα fell below the standard curve of the Luminex ELISA.
There were no significant differences in the values for IgE, CRP,
CXCL3, IL-1α, or L-Selectin (all p > 0.1). There was a significant
effect of sex on α1AGP levels [F(1, 45) = 5.0, p = 0.03] and a
significant interaction between sex and treatment [F(1, 45) = 6.1,
p = 0.03, Figure 2A]. α1AGP levels were lower in CSS F2 females

FIGURE 2 | Mean ± SEM basal plasma levels of α-1AGP (A), ICAM-1 (B), GM-CSF (C), IL-18 (D), TIMP-1 (E), and VEGF (F) in the adult F2 male and

female offspring of control dams and dams exposed to chronic social stress during lactation. *Denotes significant effect of CSS treatment, #denotes

significant effect of sex (p < 0.05).
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compared to control F2 females (p = 0.03, Figure 2A). There
was an overall effect of treatment on soluble ICAM-1, with lower
levels in CSS F2 animals [F(1, 45) = 5.0, p = 0.03, Figure 2B].
ICAM-1 levels were decreased in CSS F2 females compared to
controls (p = 0.02, Figure 2B). There were significant effects of
sex [F(1, 45) = 24.8, p < 0.01] and treatment (F(1, 45) = 7.1,
p = 0.01] on GM-CSF, with levels being generally lower in males
but higher in CSS F2 males compared to control F2 males (p =

0.02, Figure 2C). IL-18 [F(1, 45) = 10.3, p < 0.01, Figure 2D]
and TIMP-1 [F(1, 45) = 14.9, p < 0.01, Figure 2E] levels were
higher in F2males compared to F2 females, where levels of VEGF
were lower in F2 males [F(1, 45) = 32.0, p < 0.01, Figure 2F].
There was also a non-significant trend for increased levels of IL-6
in the CSS adult F2 females [2023.2 ± 324.2 vs. 1223.1 ± 246.0,
F(1, 22) = 3.9, p = 0.06].

Progesterone levels were decreased in males [F(1, 45) = 75.5,
p < 0.01], and levels in CSS F2 males (97.0 ± 10.8) were
lower compared to control F2 males (129.4 ± 12.1, p < 0.05,
Figure 3A). BDNF levels were higher in males [F(1, 45) = 8.6,
p < 0.01], and CSS F2 females had lower BDNF levels than
control F2 females (p = 0.03, Figure 3B). α-MSH levels were
higher in CSS F2 males compared to control F2 males (p < 0.01,
Figure 3C).

α1AGP levels were positively correlated with allogrooming in
all groups combined as well as specifically in female control and
CSS F2 animals (Table 1). GM-CSF and α-MSH were negatively
associated with allogrooming in males, and progesterone was
positively associated with allogrooming in all groups combined
(Table 1).

DISCUSSION

Recent interest in the role of the immune system in behavior
and the pathophysiology of stress associated psychiatric disorders
stimulated the present investigation of the effects of CSS on
peripheral immune factors and related hormones in the F2
offspring of CSS exposed dams. There is growing interest in the
interactions between the immune system and neurohormonal
signaling, and relevant behavioral models are needed to
determine the mechanisms of these interactions in the context
of disease pathology. The CSS paradigm had transgenerational
sex specific effects in the F2 generation on basal α1AGP, ICAM-
1, GM-CSF, progesterone, BDNF, and α-MSH. In contrast,
while there were overall sex differences in IL-18, TIMP-1, and
VEGF, these factors were not affected by CSS. Changes in
α1AGP, GM-CSF, progesterone, and α-MSHwere associated with
allogrooming in a social interaction test. While it is possible
that the social behavior testing had an effect on the immune
factor and hormone levels collected the next day, the data can be
considered basal in terms of the lack of any acute behavioral or
immune (LPS, infection, etc.) challenge prior to collection. The
basal state of the samples is supported by previously published
F2 adult corticosterone and prolactin levels from the animals
in the current study (Atkinson and Waddell, 1997; Babb et al.,
2014). The data support the hypothesis that social stress has
extensive sex specific transgenerational effects on the immune
and endocrine systems which are associated with changes in

FIGURE 3 | Mean ± SEM basal plasma levels of progesterone (A),

BDNF (B), and α-MSH (C) in the adult F2 male and female offspring of

control dams and dams exposed to chronic social stress during

lactation. *Denotes significant effect of CSS treatment, #denotes significant

effect of sex (p < 0.05).

social behavior. Given the design of the CSS paradigm, it is
unknown if these effects are due to early life stress exposure of
the F1 dams, early life stress exposure of the F2 animals, or a
combination. It is postulated that the changes in immune factors,
hormones, and social behavior may be the result of additive
epigenetic influences in successive generations (Lyall et al., 2014).

Alpha 1 acid glycoprotein (α1AGP), a major acute phase
reactant secreted into the plasma by the liver, is believed to
act as an anti-inflammatory and immunomodulatory agent
with increased plasma levels occurring during tissue injury,
inflammation and infection (Fournier et al., 2000). In male rats,
acute stress such as tail shock elevates α1AGP (Deak et al.,
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TABLE 1 | Pearson Correlation coefficient and p-values for immune targets and hormones and allogrooming behavior during a social interaction test for

factors significantly affected by chronic social stress in adult male and female F2 offspring of control (CON) and chronic social stress (CSS) dams.

Cytokine/Hormone Group Behavior r r2 p-value

α1AGP Male and female CON + CSS Allogrooming 0.32 0.10 0.03

α1AGP Female CON + CSS Allogrooming 0.42 0.18 0.04

α1AGP Male CON + CSS Allogrooming −0.19 0.04 0.38

ICAM-1 Male and female CON + CSS Allogrooming 0.11 0.01 0.43

ICAM-1 Female CON + CSS Allogrooming 0.22 0.05 0.29

ICAM-1 Male CON + CSS Allogrooming 0.09 0.01 0.69

GM CSF Male and female CON + CSS Allogrooming 0.02 0.003 0.91

GM CSF Female CON + CSS Allogrooming −0.15 0.02 0.47

GM CSF Male CON + CSS Allogrooming −0.41 0.17 0.05

BDNF Male and female CON + CSS Allogrooming −0.09 0.008 0.54

BDNF Female CON + CSS Allogrooming −0.001 0.000 0.99

BDNF Male CON + CSS Allogrooming −0.08 0.006 0.72

α-MSH Male and female CON + CSS Allogrooming −0.18 0.03 0.31

α-MSH Female CON + CSS Allogrooming −0.11 0.01 0.52

α-MSH Male CON + ECSS Allogrooming −0.42 0.17 0.04

Progesterone Male and female CON+CSS Allogrooming 0.32 0.10 0.03

Progesterone Female CON + CSS Allogrooming 0.05 0.003 0.79

Progesterone Male CON + CSS Allogrooming −0.10 0.009 0.66

Bold values highlight significant associations.

1997). In humans, α1AGP levels are associated with exposure
to psychological stress (Maes et al., 1997) and depression (Nieto
et al., 2000). The current data show decreased α1AGP in CSS
F2 females, and this attenuation is associated with a related
decrease in allogrooming that is driven by the effects of CSS
in females. These data indicate that general disruptions in the
inflammatory pathway due to early life stress, in either direction,
may be associated with behavioral effects. In support of this
hypothesis, the direction of changes in immune factors has
been linked to coping strategy in rodent models, where passive
coping is associated with pro-inflammatory processes, and active
coping and resistance to stress related pathology is associated
with inflammatory suppression (Finnell et al., 2015; Wood et al.,
2015). Given the available behavioral data from the CSS F2 adult
animals, it is difficult to speculate on their stress coping strategy
or resistance to stress related pathology. It is also possible that
there are sex specific α1AGP responses to stress in rats, which is
supported by the present data.

A member of the immunoglobulin superfamily of adhesion
receptors, intercellular adhesion molecule-1 (ICAM-1) is
involved the generation of the immune response and is a primary
marker of immune activation (Boyd et al., 1988), and plasma
concentration of ICAM-1 are a biomarker of infection and
prognosis in patients with various chronic inflammation-related
diseases (de Pablo et al., 2013). Similar to α1AGP, ICAM-1 levels
were decreased in CSS F2 females. This decrease in both pro
and anti-inflammatory factors suggests that CSS has a general
suppressive effect on the production of immune factors. While
there are not many studies on the effects of early life stress
specifically on ICAM-1, basal cell carcinoma patients that were
maltreated by their parents exhibited poor ICAM-1 responses
(Fagundes et al., 2012). A lack of significant association with

allogrooming indicates that it may not mediate allogrooming in
the CSS paradigm. Alternative roles for the CSS induced change
in ICAM-1 include the regulation of inflammatory responses
to disease related immune challenges, and ongoing CSS studies
are investigating the effects of CSS on responses to immune
challenges.

Granulocyte macrophage-colony stimulating factor (GM-
CSF) is a hematopoietic growth factor with pro-inflammatory
functions and mediates the adverse effects of social stress on
inflammatory pathways (Powell et al., 2013). This cytokine may
mediate global changes in inflammatory responses in stressed
animals, as exposure to repeated social stress prior to allergen
inhalation worsens airway inflammation in rodents, including
levels of GM-CSF (Bailey et al., 2009). In addition, resident
intruder stress and anhedonia have recently been associated with
elevated levels of GM-CSF in the locus coeruleus (Finnell et al.,
2015), and the current elevated basal levels in CSS F2 males
could represent a transgenerational behavioral effect of a similar
social stress through GM-CSF given that the F2 animals were not
directly exposed to CSS. Children with autism spectrum disorder
(ASD) exhibit a trend for elevated GM-CSF compared to healthy
controls (Ashwood et al., 2011), social deficits are reported in
ASD and in the CSS F2 animals (Babb et al., 2014), and early life
stress in mothers is associated with an increased risk for autism
in offspring (Roberts et al., 2013, 2014). Both animal and human
studies of GM-CSF indicate that it may be involved in the adverse
behavioral effects of social stress, but it is unknown if changes
in this cytokine mediate changes in F2 social behavior or are an
inflammatory indicator of exposure to social stress.

The matrix metalloproteinases and their inhibitors (tissue
inhibitors of metalloproteinases, TIMP) mediate the remodeling
of the pericellular environment and have been postulated to
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regulate methamphetamine induced sensitization and reward
through modulation of extracellular dopamine (Mizoguchi et al.,
2008). While we did not see effects of CSS on basal levels of
TIMP-1, increased levels in males may reflect sex-dependent
responses to stress and/or reward. There was also a sex difference
in basal VEGF, and while most of the focus on stress, depression,
and neuroplasticity has been directed toward BDNF, VEGF is also
a potent mediator of neuroplasticity (Duman and Monteggia,
2006; Pittenger and Duman, 2007). It is possible that there were
effects of the CSS on basal VEGF in the F2 animals at earlier
life history stages (infant, juvenile) that mediated alterations in
neural development only during those periods, or that there were
changes in central VEGF that were not reflected in peripheral
levels.

Behavioral research on progesterone has focused more on
parental behavior than adult social behavior, but progesterone
levels in marmosets have been associated with social grooming
patterns, similar to the present findings (Azevedo et al., 2001).
In addition, perinatal progesterone treatment in males has
significant effects on adult social behavior (Hull et al., 1980).
Immune studies of progesterone indicate that it inhibits both
central and peripheral inflammation (Tait et al., 2008; Giannoni
et al., 2011; Lei et al., 2014), and it is postulated that the
decrease in CSS F2 male progesterone mediates the increase in
GM-CSF and the decrease in social behavior. Based on earlier
reports of the inhibitory actions of progesterone on maternal
care (Bridges et al., 1978) and increased paternal behavior in
male progesterone receptor KO mice and male mice treated
with a progesterone antagonist (Schneider et al., 2003), future
studies should investigate the effects of CSS on progesterone, the
immune system, and maternal and paternal care.

The increased risk for psychiatric illness following exposure
to early life stress may be mediated by enduring sex dependent
changes in BDNF (Cirulli et al., 2009a,b). In mice, social
deprivation, which may be similar to the depressed maternal
care experienced by CSS F2 rats when young, decreases
BDNF levels in the brain and increases anxiety (Berry et al.,
2012). Exposure to low levels of maternal care in childhood
is associated with increased DNA methylation of the BDNF
and OXTR genes (Unternaehrer et al., 2015), and physical
neglect and child abuse are associated with decreased plasma
BDNF (Grassi-Oliveira et al., 2008; Elzinga et al., 2011). While
studies of depression support the hypothesis that increases
in inflammation result in decreased BDNF and attenuated
neuroplasticity (Calabrese et al., 2014), we report decreases in
both peripheral BDNF and inflammatory factors (although there
is a trend for elevated IL-6 in CSS F2 females). In addition,
although CSS decreased basal BDNF in F2 females, this change
was not correlated with the decrease in allogrooming, suggesting
that the difference in peripheral BDNF does not directly
mediate the change in allogrooming. It may be that peripheral
levels of BDNF do not reflect central levels that are more
directly involved in mediating neuroplasticity and regulating
behavior.

Alpha melanocyte stimulating hormone (α-MSH) mediates
the immune response through the downregulation of pro-
inflammatory cytokines, immunomodulatory cytokines, and

costimulatory molecules (Lipton and Catania, 1997; Luger et al.,
2003; Luger and Brzoska, 2007). This peptide, acting through
MC4 receptors, is also involved in the etiology of depression
and anxiety in animal models (Kokare et al., 2008, 2010; Liu
et al., 2013). The stress of social isolation decreases social
interaction and increases immobility in the forced swim test and
treatment with HS014, a selective MC4 antagonist, attenuates
depression symptoms (Kokare et al., 2010). Furthermore, HS014
has prophylactic actions on the adverse behavioral and neural
effects of stress on depression and anxiety behaviors (Serova
et al., 2013, 2014; Sabban et al., 2014). The elevated basal
levels of α-MSH in the F2 males following transgenerational
exposure to CSS may be adaptive in an inflammatory context by
preventing excessive inflammatory responses, yet they may also
increase susceptibility to stress induced depression and anxiety
and disrupt social behavior.

In conclusion, the present study reports on several
transgenerational treatment and sex dependent changes in the
immune and hormonal profiles of the adult F2 offspring of dams
exposed to CSS. Changes in α1AGP, GM-CSF, progesterone,
and α-MSH are associated with transgenerational social stress
induced decreases in allogrooming. These results support the
hypothesis that transgenerational social stress affects both the
immune system and social behavior, and also support previous
studies on the adverse effects of early life stress on immune
functioning and stress associated immunological disorders,
including the increasing prevalence of asthma. The immune
system may represent an important transgenerational etiological
factor in disorders which involve social and/or early life stress
associated changes in social behavior, such as depression,
anxiety, and autism, as well as comorbid immune disorders.
Future studies involving immune and/or endocrine assessments
and manipulations will address specific questions of function
and causation and may identify novel preventative measures
and treatments for the growing number of immune mediated
disorders.
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