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There is growing evidence that much more of the genome than previously thought is
required to explain the heritability of complex phenotypes. Recent studies have demon-
strated that numerous common variants from across the genome explain portions of
genetic variability, spawning various avenues of research directed at explaining the remain-
ing heritability. This polygenic structure is also the motivation for the growing application
of pathway and gene set enrichment techniques, which have yielded promising results.
These findings suggest that the coordination of genes in pathways that are known to occur
at the gene regulatory level also can be detected at the population level. Although genes
in these networks interact in complex ways, most population studies have focused on the
additive contribution of common variants and the potential of rare variants to explain addi-
tional variation. In this brief review, we discuss the potential to explain additional genetic
variation through the agglomeration of multiple gene–gene interactions as well as main
effects of common variants in terms of a network paradigm. Just as is the case for single-
locus contributions, we expect each gene–gene interaction edge in the network to have
a small effect, but these effects may be reinforced through hubs and other connectivity
structures in the network. We discuss some of the opportunities and challenges of net-
work methods for analyzing genome-wide association studies (GWAS) such as the study
of hubs and motifs, and integrating other types of variation and environmental interactions.
Such network approaches may unveil hidden variation in GWAS, improve understanding of
mechanisms of disease, and possibly fit into a network paradigm of evolutionary genetics.
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INTRODUCTION
It has long been appreciated that the regulation of biological
processes involves a complex orchestration of genes in networks.
However, typical analytic frameworks for genome-wide associa-
tion studies (GWAS) have assumed a simplified genetic architec-
ture, largely considering independent additive contributions to
genetic risk. While recent studies have supported a large contri-
bution of additive genetic variance to complex traits (Yang et al.,
2010; Lee et al., 2011a), “missing heritability” remains, which has
led to a range of potential explanations (Eichler et al., 2010). One
such explanation is the existence of epistatic (gene by gene) effects,
which are, in fact, not precluded even in the presence of sizeable
additive genetic variance (Hill et al., 2008). In this opinion and
review, we propose that there is room for additional mining of
datasets generated in the GWAS era using a paradigm of networks
that aggregate gene–gene interactions and main effects. We argue
that network approaches may have utility not only for discovery,
but also for further characterizing relationships with genetic effects
that may have been identified through standard analytic means.

The recognition that numerous genetic variants may act in con-
cert to modulate disease susceptibility has led to the development
of gene set enrichment and pathway approaches (Torkamani et al.,
2008; Shi et al., 2009; Liu et al., 2010). The small but consistent

effect of many SNPs in gene sets suggests evidence at the popula-
tion level of the coordination of genes known to interact through
particular biological pathways. Gene set enrichment approaches
are able to identify these coordination effects despite typically rely-
ing on small effect single-marker association evidence. Gene–gene
interaction effects also show small effect sizes, but evidence for
coordination from main effects suggests that the aggregation of
gene–gene interactions and main effects in epistasis networks may
lead to even more consistent pathway enrichment.

Epistasis networks may also be used to test the hypothesis of
a network paradigm of evolution and disease susceptibility. A
recent study comparing the connectivity changes of Arabidop-
sis networks following gene duplication events suggests a possible
model of evolution acting at the level of the interactome network
(Dreze et al., 2011). These studies suggest improved understand-
ing of disease susceptibility may be achieved by conceptualizing the
genotype to phenotype mapping as a network of coupled gene–
gene interactions and main effects. We refer to these as genetic
association interaction networks (GAIN) or epistasis networks;
however, the networks we describe model main effects as well as
epistasis.

In a recent GAIN analysis of a study of the immune response
to smallpox vaccine, we identified a new association in the RXRA
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gene reflecting a large number of gene–gene interactions (Davis
et al., 2010). We refer to such findings colloquially as“Kevin Bacon”
variants in Figure 1 after the ability to connect other actors to him
in a few jumps in a network constructed by shared movie credit.
Such variants may be important to a phenotype, not because of
their individual effect, but because of their overall influence in
modulating the effect of other variants. Another analogy from
popular culture is Lady Gaga, who has over one million Twitter
followers. Even a small perturbation from such a node may have a
large downstream effect due to a cascade through the subnetworks
of followers.

Returning to acting as an analogy, “Marlon Brando” vari-
ants (the usual target of the GWAS approach) may or may
not have a large network centrality, but are deemed important
because of their individual (main) effect. Examples of “Mar-
lon Brando” variants could include the CYP2C9 and VKOR1C
polymorphisms involved in warfarin metabolism (Limdi et al.,
2010), the wealth of human leukocyte antigen (HLA) alleles
associated with immunologic phenotypes (Lechler and War-
rens, 2000; Blackwell et al., 2009), or APOL1 variants associ-
ated with kidney disease in African-Americans (Genovese et al.,
2010). While the majority of variants identified to date do not
exhibit such individually strong effects, most are only likely
in linkage disequilibrium (LD) with causal alleles; given that

FIGURE 1 | Epistasis network from a hypothetical GWAS. Edges
represent small gene–gene interactions between SNPs. Gray nodes and
edges have weaker interactions. Circle nodes represent SNPs that do not
have a significant main effect. The diamond nodes represent significant
main effect association. The size of the node is proportional to its number of
connections. The Brando node would be easily found by a standard
single-locus statistic, but the Kevin Bacon node would only be revealed by
an epistasis network approach due to its many small gene–gene
interactions. The epistasis network may also be useful for identifying new
mechanisms for known effects, such as the connection of the Brando node
to the pathway represented by the subnetwork below it.

the GWAS approach relies upon tagSNPs to efficiently span
the entire genome. Thus, there is an expectation that addi-
tional Brando SNPs (presumably functional variants tied to more
penetrant phenotypic effects) will be found by fine-mapping
experiments (such as the Immunochip for autoimmune dis-
orders (Trynka et al., 2011), trans-racial mapping (Rosenberg
et al., 2010; Teo et al., 2010), and through the proliferation of
next-generation sequencing. Recent studies incorporating next-
generation sequencing in age-related macular degeneration (Ray-
chaudhuri et al., 2011) and inflammatory bowel disease (Rivas
et al., 2011) have provided initial evidence consistent with this
expectation.

However, when considering the issue of the “missing heri-
tability,” it is important to remember that causal variants are
expected to occur at lower frequencies compared to the tagSNPs
that have been identified thus far (Visscher et al., 2011). There-
fore, the existence of stronger effects will be offset to an unknown
extent by a lower prevalence of causal alleles, potentially restrict-
ing the total variability that will be explained at the popula-
tion level. It seems unlikely that identifying less frequent, causal
alleles will immediately fill the missing heritability void, sug-
gesting that complementary approaches, such as understanding
variation in a network context, could have important implica-
tions in biological mechanistic research and translational med-
icine. For example, even for well-known genetic factors such
as HLA, there is a growing recognition of epistatic consider-
ations, such as the interplay between HLA class I polymor-
phisms and the killer cell immunoglobulin receptor (KIR) gene
complex within the context of infectious disease, autoimmune
disorders, cancer, and bone marrow transplantation outcomes
(Kulkarni et al., 2008; Cooley et al., 2010). Thus, network analy-
sis is not restricted to discovery. Even in cases where there are
known genetic effects, network analysis provides an opportu-
nity to more fully characterize the genetic etiology by identi-
fying the full network of interactions with known susceptibility
variants.

NETWORK APPROACHES FOR GWAS
The focus of this review is on empirical network approaches,
where connections are based on gene–gene interactions (epista-
sis) estimated from GWAS data. However, we pause to mention
prior knowledge networks (PKNs), such as ingenuity pathway
analysis (www.ingenuity.com), which represent the most popu-
lar network analysis approach applied to GWAS to date (Burgner
et al., 2009). Similar to gene set enrichment approaches, PKNs typ-
ically utilize statistical measures of marginal association to select
genes to include in a putative network, with connections then
constructed from various knowledge bases including protein–
protein interactions (PPIs), co-occurrence in literature mining,
or co-expression in microarray experiments. For example, the
approach in (Lee et al., 2011b) uses evidence from PKNs based
on selected candidate pathways combined with odds ratios from
GWAS in order to boost the importance of neglected genes.
Prior knowledge based strategies have also been used to focus
searches for epistatic effects in multiple sclerosis (Bush et al.,
2011) and bipolar disorder (Moskvina et al., 2011). Interestingly,
Moskvina et al. (2011) found that a prioritization strategy did
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not lead to an enrichment of replicable statistical interactions,
suggesting a large risk of false positive associations. These con-
trasting results could reflect the issue that connections are typi-
cally defined independently of the environmental/disease context;
leading to differences in performance as a function of the par-
ticular trait under study. While the knowledge bases for PKNs
are constantly improving in quality and scope, there is likely a
need for empirical network approaches that are able to account
for the conditional dependence of gene connections on the
specific disease under study. For example, in studies of infec-
tion or vaccination, it is reasonable to hypothesize that genetic
effects in networks may be dependent on the particular antigenic
perturbation.

There has been a growth in the use of pathway-based
approaches to GWAS to shed light on biological processes and
identify new candidate disease genes. These approaches identify
enriched pathways from a broader set of significant genes rather
than focus only on a few of the most significant SNPs. For example,
pathway-based approaches and pathway clustering have identi-
fied important processes in breast cancer (Torkamani et al., 2008;
Menashe et al., 2010) and in the diseases from the WTCCC GWAS
(Torkamani et al., 2008). However, these approaches rank genes
based on single-marker association evidence. We propose that
such pathway-based approaches to GWAS may benefit from the
prioritization of genes based on the aggregation of gene–gene
interactions as well as single-locus effects. A data-driven epistasis
network approach may increase the discovery of enriched disease-
specific pathways and new candidate gene targets in GWAS over
single-locus prioritization alone. Using gene–gene interaction net-
works in this way may require some modifications to pathway
analysis because enrichment scores typically rely on permutation
to determine the statistical significance of enrichment, and data-
driven networks are much more computationally intensive than
single-locus calculations.

DATA-DRIVEN EPISTASIS NETWORKS
Previous data-driven network approaches for GWAS have used
Shannon information theory for epistasis calculations and net-
work construction (Jakulin and Bratko, 2004; Moore et al., 2006;
McKinney et al., 2009; Davis et al., 2010). However, casting the
network in the widely used statistical framework of a general lin-
ear model (GLM) has some advantages over information theory.
For example, use of a GLM framework provides the flexibility
to handle environmental covariates, longitudinal data, missing
data, censoring, and cluster structure (e.g., family studies) through
the inclusion of appropriate random effects. As an example, we
present a likelihood ratio test of association between disease and
a genetic locus, allowing for the possibility that the genetic effect
may be modified by another genetic factor. This illustration is for
case–control data, but it is straightforward to develop similar tests
for non-dichotomous phenotypes and other designs (e.g., family
studies).

1n
Pr (D = 1|G1, G2)

Pr (D = 0|G1, G2)
= bb + b1G1 + b2G2 + b12G1G2 (1)

The coefficient bb gives the baseline risk of disease and coef-
ficients b1 and b2 correct for main effects in the interaction

regression model. For defining gene–gene edge weights b12 in
the GAIN matrix, we are interested in the b12 regression coef-
ficients that are statistically different from zero. The statistical
framework also allows false discovery rate (FDR) procedures to
be applied to correct for multiple gene–gene hypotheses. FDR
would be a more computationally efficient procedure than the
permutation approached used in McKinney et al. (2009) to reduce
false interaction information-based edges. The diagonal element
bii of the GAIN is simply the main effect regression coefficient
without interactions. Additional terms may be added to the regres-
sion equation to define interactions between other factors, such as
environment or gene expression, to create a heterogeneous net-
work or to correct for these factors. Heterogeneous interaction
networks represent an important frontier in genetics because they
may improve our understanding of the interplay between genetic
and environmental modifiers of susceptibility.

INFLUENTIAL SNPS IN NETWORKS
Once an epistasis graph like Figure 1 is calculated, one may iden-
tify the most influential or central SNPs or other factors in the
network. Such SNP hubs in the disease-specific network may be
potential targets for therapy or diagnostics, and the rankings may
be used for a more sensitive pathway enrichment analysis. Vari-
ous measures of node centrality have been proposed, with one of
the most powerful and computationally tractable being eigenvec-
tor centrality – the basis of Google’s PageRank (Page et al., 1999).
Eigenvector centrality calculates the steady state eigenvector of a
Markov transition matrix whose elements represent the proba-
bility to move from one node to another. We recently designed
a transition matrix method based on the main effects and inter-
actions in GAIN and an eigenvector centrality algorithm we call
SNPrank (Davis et al., 2010). In a disease risk interaction network,
the network is specific to the disease (context sensitive), and each
node and edge contains information about disease risk.

The SNPrank transition matrix T (Eq. 2) is constructed from
the GAIN network B, with elements bij. The diagonal of B
captures main (Brando) effects, while the off diagonals repre-
sent gene–gene and/or gene-environment interactions (Bacon)
effects. The factors dj (the node degree) and Tr(B) (the trace
of B) normalize T to a stochastic matrix. The elements of
B could be calculated using approaches such as information
theory or from coefficients of statistical models. Simple recur-
sion is used to compute T ’s steady-state eigenvector, whose
elements are the rankings of each node. The interaction term
bij in Eq. (2) also includes self-interactions or main effects
when i = j. In contrast, Google’s PageRank does not permit self-
interactions because this would represent a website including
links to itself and would artificially inflate the site’s impor-
tance. Eq. (2) includes a parameter γ, typically chosen close to
1 so that the main effect is not overwhelmed by the poten-
tially large number of gene–gene interactions a SNP may have.
We find γ in the range [0.8, 0.9] gives the highest internal
consistency of the SNPrank scores, which we estimate by split-
ting data randomly into halves and calculating the Kendall Tau
(Kendall, 1938) rank correlation of the SNPranks. We typically
set γ to 0.85; however, γ = 1 is also a reasonable simplifica-
tion to Eq. (2). The parameter γ can also be used to blend
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prior knowledge from canonical pathways or protein–protein
interactions.

tij =

⎧⎪⎪⎨
⎪⎪⎩

γ
bij

dj
+ (1 − γ)

Tr(B)
diag(B)iδij , dj �= 0

diag(B)iδij

Tr(B)
, dj = 0.

(2)

A helpful way to conceptualize the way the algorithm scores
the importance of genes is to think of the SNPrank centrality
algorithm as simulating ants that follow paths through the net-
work that have the most disease risk information, either due to
gene–gene interactions or main effects encoded in the edges and
nodes of the network. More pheromones are deposited at more fre-
quently visited genetic or environmental nodes, and the amount
of pheromone is proportional to the rank score of the node. The
steady state eigenvector, v (eigenvalue λ = 1), of the SNPrank tran-
sition matrix is given by Tv = v, where the elements of v are the
SNPrank score of each SNP. The elements of v represent a proba-
bility field, and, thus, it is possible to use quantile plots and similar
approaches to identify SNPs with SNPranks that deviate from a
uniform probability distribution. One can also see from the eigen-
value equation that the SNPrank importance of the ith SNP, vi, is
influenced by the entire network:

vi =
N∑

j=1

tij vj . (3)

In other words, the SNPrank of the ith SNP is a function of
all interaction coefficients bij (j �= i), the main effect (self interac-
tion), bii, of the ith SNP, and the recursively estimated importance
of each SNP vj (j �= i). This approach does not include pure higher
order interactions, like three-way etc. but when ranking an indi-
vidual SNP, this approach models the interaction with every other
SNP in the network and the SNP’s main effect.

POWER AND VALIDATION OF NETWORKS
An important point for future research is the extent to which
network approaches offer improved statistical power to detect
complex genetic effects. In the case of PKNs, power critically
depends on the extent to which a particular dataset fits with
the current state of biological knowledge. Similar to a correctly
constructed informative prior distribution in Bayesian modeling,
PKNs will have an advantage in situations where the data is con-
gruent with prior expectations. In contrast, the power for empirical
approaches like SNPrank is somewhat less clear. Much of this is
due to limitations in simulation methodology, as it is currently
difficult to generate datasets with a complex and “realistic” latent
structure. While some inroads have been made (Himmelstein et al.,
2011), because approaches to characterize complex effects are in
their infancy, it is also not clear what constitutes a realistic level
of complexity. Therefore, it is imperative that advancements in
network methodologies be pursued in tandem with research into
appropriate simulation frameworks. We do note, however, that
approaches like SNPrank operate on network representation typ-
ically defined in a pair-wise fashion. Therefore, they implicitly
inherit some of the features of the approach used to construct

this pair-wise representation, whether based on information the-
ory, statistical modeling, or other approaches (Cordell, 2009). The
power of network approaches thus could be improved by finding
the best approach or combination of approaches for detecting pair-
wise interactions (Ritchie et al., 2001; Fan et al., 2011). In addition
to this inheritance, SNPrank may also boost power to detect asso-
ciations by aggregating numerous interactions and main effects
(Selinger-Leneman et al., 2003).

Other statistical challenges include replication of network mod-
els and the effect of LD. Strategies for replication of a single SNP
are well accepted (Kraft et al., 2009), but the replication strategy
for a network is less obvious because of the complex entanglement
of all SNPs in the network. One level of replication would be to
test for replication of a gene set in an independent cohort based on
gene set enrichment from the network prioritization. LD is another
area that requires further investigation because the common strat-
egy of LD pruning could run the risk of excluding interactions.
Finally, both of these issues simultaneously become pertinent
within the context of comparisons across racial/ethnic populations
(Teo et al., 2010) as differential patterns of LD could complicate
the interpretation of edges connecting specific haplotype tagging
variants.

CONCLUSION
Pathway and gene set enrichment approaches have demonstrated
the utility of aggregating information from many moderate-sized
single-locus effects. While such approaches assume implicitly that
the targeted genetic architecture reflects a complex interacting sys-
tem, the prioritization of genes for enrichment typically relies on
single-locus effects. We propose network models of GWAS data,
built up from many single-locus and gene–gene interactions. We
anticipate systems level network approaches to GWAS will reveal
new mechanisms and improve our understanding of the complex
relationship between genotypes and phenotypes. However, there
are numerous statistical and bioinformatics challenges that remain
to be addressed to realize this systems level understanding.

The two network approaches for GWAS discussed in this brief
review – prior knowledge and gene–gene interaction – each have
their own advantages. PKNs are able to leverage information from
different scales, such as PPI or gene co-expression, though these
data sources may lack specificity to the disease under study. Speci-
ficity could be achieved by calculating the interaction between
genes conditional on the phenotype at hand. Thus, the best
approach may be to integrate prior knowledge with epistasis net-
works, perhaps through a Bayesian formalism. As the biological
connections of PKNs and canonical pathways continue to improve
in specificity, the integration of these networks with new interac-
tions discovered in empirical networks will likely be a powerful
combination.

Previous data-driven epistasis networks have modeled inter-
actions with Shannon information theory measures because of
the computational efficiency and power to detect interactions. An
advantage of regression-based empirical networks is the ability
to incorporate variation from other data types (gene expression,
methylation,copy number), covariates,and environmental factors.
Another open question is how much of the missing heritability is
explained by network/epistatic effects. Answering such questions
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will require the development of statistical models that provide
a coherent predictive mechanism based on a highly interacting
network.

There is also a methodological need for tools to construct and
understand features of empirical networks, such as subnetwork
motifs, hubs, and node degree distributions. One well-studied
degree distribution is the power law, which corresponds to the
notion of a small world network (Bassett and Bullmore, 2006). It
remains to be seen whether the degree distribution of epistasis net-
works exhibits a power law and how LD would affect the degree
distribution. A power law edge distribution of small world net-
works implies that most nodes have a small number of edges, but
there are a few nodes with a large number of connections (hubs).
The small world property allows one to traverse from one node
to any other in relatively few steps and the network is robust to
random attack or mutation. However, a targeted intervention of a
hub could have a strong therapeutic effect.

The need for the application and development of algorithms
for characterizing networks is not unique to genomics. The impor-
tance of network concepts and algorithms is recognized through-
out biology, notably in neuroscience where there is current interest
in resting-state functional connectivity networks from fMRI data

(Braun et al., 2011). Thus, there is an opportunity to adapt meth-
ods and integrate data from other domains for genomic data.
Both data from brain connectivity and gene network analysis
for other genomic data seem to exhibit characteristics of small
world networks (Barabasi and Oltvai, 2004), and it will be impor-
tant to determine whether this is also reflected in the structure of
GWAS data.

Evolution occurs in the context of a complex network of inter-
connected genes and pathways. We are in the early stages of under-
standing how the network of epistatic and main effects synthesizes
with biological networks and pathways. Knowledge of hubs, cen-
tralities and other properties of disease risk epistasis networks
provide a new path toward identifying critical nodes in the net-
work that may act as therapeutic targets or disease risk predictors.
And a data-driven interaction network paradigm of GWAS and
deeper sequencing may lead to new insights into the mechanisms
of evolution and complexity.
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