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It is generally accepted that butterfly wing color-patterns have ecological and behavioral
functions that evolved through natural selection. However, particular wing color-patterns
may be produced physiologically in response to environmental stress, and they may lack
significant function.These patterns would represent an extreme expression of phenotypic
plasticity and can eventually be fixed genetically in a population. Here, three such cases in
butterflies are concisely reviewed, and their possible mechanisms of genetic assimilation
are discussed. First, a certain modified color-pattern of Vanessa indica induced by tem-
perature treatments resembles the natural color-patterns of its closely related species of
the genus Vanessa (sensu stricto). Second, a different type of color-pattern modification
can be induced in Vanessa cardui as a result of a general stress response. This modified
pattern is very similar to the natural color-pattern of its sister species Vanessa kershawi.
Third, a field observation was reported, together with experimental support, to show that
the color-pattern diversity of a regional population of Zizeeria maha increased at the north-
ern range margin of this species in response to temperature stress. In these three cases,
modified color-patterns are unlikely to have significant functions, and these cases suggest
that phenotypic plasticity plays an important role in butterfly wing color-pattern evolution.
A neutral or non-functional trait can be assimilated genetically if it is linked, like a parasitic
trait, with another functional trait. In addition, it is possible that environmental stress causes
epigenetic modifications of genes related to color-patterns and that their transgenerational
inheritance facilitates the process of genetic assimilation of a neutral or non-functional trait.
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INTRODUCTION
Butterfly wing color-patterns have long been appreciated for
their beauty and diversity by lepidopterists worldwide. Partly
for this reason, systematic classification has been well devel-
oped for this small group of Lepidoptera. Furthermore, lepi-
dopterists have long known that aberrant forms of wing color-
patterns are occasionally found spontaneously. Certain cases rep-
resent homeotic transformations or teratological abnormalities,
whereas others are gynandromorphs (for example, see Sibatani,
1980 for homeosis). However, a significant proportion of these
aberrant patterns are represented by globally simplified color-
patterns with elongated or fused elements. Moreover, it is note-
worthy that these organisms do not have significant abnormal-
ities in other parts of the body (for example, see Fujioka, 1975
and Russwurm, 1978 for many individuals of spontaneously
occurring aberrant types, and also see Sakaguti, 1979, 1981a
for discussion). In the late nineteenth century, European lepi-
dopterists, such as Standfuss, Dixey, and Merrifield, already knew
that similar phenotypes can be produced by artificial temper-
ature shocks (Sakaguti, 1981b). These phenotypes result from
extreme expressions of phenotypic plasticity. However, the biolog-
ical significance of this phenomenon remained elusive (Shapiro,
1984).

Nevertheless, Nijhout (1991) discussed the possible important
contribution of aberrant phenotypes to color-pattern evolution by
citing an interesting case of the form nigrosuffusa of Junonia coenia.
The form nigrosuffusa occurs as a natural population in southern
North America, and it is very similar to J. coenia individuals with a
temperature-shocked phenotype. Furthermore, it also resembles a
closely related species, J. genoveva. Nijhout (1991) argued that this
coincidence could reflect the developmental evolutionary mecha-
nisms of wing color-patterns. Nijhout (1984, 1991) also examined
color-pattern modifications induced by cold-shock in butterflies
from a developmental physiological point of view. In these two
studies, Nijhout (1984, 1991) provided starting points for both
the developmental physiology and the evolutionary biology of
butterfly color-pattern changes.

Subsequently, a coincidence between the temperature-induced
color-patterns of a given species, called the TS-type (TS for tem-
perature shock), and the natural color-patterns of closely related
species has been found in many instances (Otaki and Yamamoto,
2003, 2004a), suggesting that this phenomenon is widespread in
butterflies. We now know that physiologically induced patterns
can be assimilated genetically (Otaki et al., 2010), and this finding,
together with other experimental results (Otaki, 2008a), makes
us certain that phenotypic plasticity contributes significantly to
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the color-pattern evolution of butterflies. In addition to syn-
thetic compilations of possible cases of plasticity-related evolu-
tion (Schlichting and Smith, 2002; West-Eberhard, 2003; Badyaev,
2005), results that demonstrate a role of phenotypic plasticity and
genetic assimilation in evolution have also been reported recently
from field studies of different organisms (Aubret and Shine, 2009;
Buckley et al., 2010; Scoville and Pfrender, 2010; Muschick et al.,
2011).

In many cases, it appears that color-patterns have evolved as a
result of an environmental stress response. We have focused partic-
ularly on the genus Vanessa (Otaki and Yamamoto, 2004a,b; Otaki
et al., 2006; Otaki, 2007a, 2008a,b,c) and, to a lesser extent, on the
genus Junonia (Otaki et al., 2005; Otaki, 2007b, 2008a; Mahdi et al.,
2011). In addition, we recently discovered an intriguing field case
in which phenotypic plasticity in response to environmental stress
contributes to the color-pattern evolution of the pale grass blue,
Zizeeria maha (Otaki et al., 2010).

In this paper, we briefly review important information obtained
from these studies and specify the topics that must be fur-
ther examined to accurately understand this interesting and far-
reaching phenomenon in biology. The possible contribution of
epigenetic changes and their transgenerational inheritance to the
evolution of color-patterns is also discussed.

THREE CASES OF PLASTICITY-RELATED EVOLUTION
BIDIRECTIONAL EVOLUTION IN THE GENUS VANESSA
The first systematic study of the TS-type and its possible con-
tribution to evolution has been conducted in the genus Vanessa
(sensu stricto). The examination of the color-patterns of several
Vanessa species shows that the width of the orange area com-
pared with the entire wing area is dependent on the species. One
can linearly arrange Vanessa species from those with the narrow-
est orange area to those with the widest (Otaki and Yamamoto,
2004b). Subsequent molecular phylogenetic analysis revealed that
there are two Vanessa groups: the atalanta group and the indica
group (Otaki et al., 2006). This finding was also validated by a more
thorough molecular analysis of Vanessa (sensu lato; Wahlberg and
Rubinoff, 2011). Both the atalanta and indica groups show similar
increases and decreases in the orange area (Otaki and Yamamoto,
2004b; Otaki et al., 2006; Otaki, 2008c). This result means that the
increase and decrease in the orange area occurred independently
from the phylogeny and geographic locations within this genus.
These bidirectional color-pattern changes are not seen in other
groups of Vanessa (sensu lato), such as the Cynthia group and
Bassaris group, and the bidirectional changes are thus potentially
“programmed” to evolve with the emergence of the Vanessa (sensu
stricto) group.

In contrast, the increase and decrease of the orange area can
be induced experimentally by subjecting V. indica to tempera-
ture treatments (Otaki and Yamamoto, 2004a; Otaki, 2008b). It
is important to note that the color-patterns of the modified indi-
viduals resemble the non-treated natural color-patterns of other
related species of the indica group (Otaki, 2008b,c). Is this resem-
blance only a simple coincidence? Most species of the indica group,
except V. indica, inhabit the islands of Indonesia and are found in
relatively restricted mountainous areas, where the temperature is
relatively low or temperature fluctuations in a day are relatively

high. In contrast, V. indica is widely distributed in Asia. It has been
speculated that the ancestral species of the Indonesian Vanessa
were exposed to a natural“temperature treatment,”showing color-
pattern modifications as a side-effect, and subsequently adapted
to those environments (Otaki, 2008c). A similar hypothesis can be
proposed in the atalanta group, in which V. tameamea is endemic
to mountainous areas of the Hawaiian islands, whereas its sister V.
atalanta is widely distributed in Europe and North America (Otaki
et al., 2006; Otaki, 2008c).

The Vanessa case is highly informative in that there may be an
environmental role in the color-pattern evolution of nymphalid
butterflies beyond Vanessa. A distinct feature of the TS-type mod-
ifications is a simplified overall color-pattern, especially a compro-
mised eyespot and parafocal element (Nijhout, 1984; Otaki, 1998,
2009; Otaki and Yamamoto, 2004a). Similar phenotypes can be
observed to occur relatively widely in the natural color-patterns of
nymphalid butterflies (Figure 1).

EVOLUTION OF VANESSA CARDUI AND VANESSA KERSHAWI
The TS-type modifications can be induced not only by temper-
ature conditions but also by certain chemicals, such as sodium
tungstate (Otaki, 1998) and dextran sulfate (Serfas and Carroll,
2005). However, it is important to stress that the TS-type does not

FIGURE 1 | Examples of nymphalid butterflies that exhibit three

features of theTS-type modifications: (1) the merging of the border

ocellus (BO) with the parafocal element (PFE) that accompanies the

dislocation of the PFE and the miniaturization of the BO; (2) the

triangular PFE that points at the focus of the BO; and (3) the

simplification of the overall color-pattern on the wings and the

blurring of elemental boundaries. In the hindwing of Apatura metis, one
BO is clearly identifiable in a wing compartment where the PFE and the
submarginal band (SMB) are also clearly observed. In the adjacent
compartments, the BOs are compromised and merge with the PFEs. In
Doxocopa seraphina, a similar merging of the BO and the PFE is observed
both on the dorsal side and on the ventral side of the fore- and hindwings.
In the hindwing, the PFEs are triangular. In addition, the overall
color-patterns are relatively simple. In Euphaedra cyanea, the BO and the
PFE are not distinguishable. This species shows further simplified
color-patterns with blurred elemental boundaries or non-existent elements
throughout the wings.
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result from a teratological response (Otaki, 2008a). Indeed, the TS-
type modifications are independent of general stress response and
ecdysteroid effects (Otaki et al., 2005). A different type of color-
pattern modification can be induced by a general stress response
(Otaki et al., 2005).

Here, a color-pattern comparison between the cosmopolitan V.
cardui and the Australian V. kershawi is rewarding. Molecular phy-
logenetic analyses confirmed that they are sister species (Wahlberg
et al., 2005; Wahlberg and Rubinoff, 2011). They have very sim-
ilar life histories. However, it is important to note that the latter
tends to prefer a “stressful” arid environment. When V. cardui is
experimentally exposed to chemical stress, it produces all of the
traits that are unique to V. kershawi (Otaki, 2007a). It is probable
that the ancestral species of both V. cardui and V. kershawi had
similar phenotypic plasticity in response to environmental stress.
It was proposed that an extreme expression of this ancestral phe-
notypic plasticity was assimilated genetically during the process of
adaptation to a stressful environment (Otaki, 2007a).

Many similar cases of color-pattern evolution and speciation in
butterflies are expected. Here, we indicate one other possible case
of stress-induced modifications and speciation: a pair of Japanese
Neope butterflies, Neope goschkevitschii, and N. niphonica, found
in mainland Japan. Experimental validation is required to clarify
the relationships between these two species.

THE PALE GRASS BLUE ZIZEERIA MAHA AT THE NORTHERN RANGE
MARGIN
These Vanessa cases are remarkable. However, an entire historical
reconstruction is difficult, if not impossible, because their specia-
tion process occurred long ago. If these cases can be generalized,
favorable opportunities may arise to observe such an evolution-
ary process in the field in real time. The pale grass blue Z. maha
in Fukaura, Japan, may provide a good model of such processes
(Buckley et al., 2010; Otaki et al., 2010). This small butterfly has
expanded the margin of its range to the north. It is probable that
this range expansion is a result of global warming. This process
exposed the species to severe cold temperatures. At the north-
ern margin of the range, more than 15% of all individuals had
color-patterns similar, if not identical, to the TS-type, although the
severity varied among individuals (Otaki et al., 2010; Figure 2).
For unknown reasons, three different modification types were
observed simultaneously: the reduction type, the inward type, and
the outward type. The TS-type outbreak lasted a few years and
spanned at least 10 generations. It is probable that the TS-type
modifications were genetically assimilated in the population at
that time.

After a rearing system was established for this species (Hiyama
et al., 2010), this genetic assimilation process was reproduced in a
laboratory experiment (Otaki et al., 2010). Although the natural
population later became nearly extinct, it is remarkable that the
modified individuals strongly resemble other lycaenid species that
inhabit relatively cold areas (Otaki and Yamamoto, 2003; Otaki
et al., 2010; Figure 3). The modified color-patterns observed in this
population were very similar to those seen in Maculinea species
that live in high mountainous areas (Otaki and Yamamoto, 2003),
and the sexually dimorphic response to cold-shock parallels the
sexually dimorphic color-patterns of Lycaena dispar.

FIGURE 2 | Zizeeria maha individuals with modified color-patterns in

Fukaura, Aomori, Japan in 2002. Pictures taken in the field (top) and
specimens of the three modification types (bottom) are shown. The
normal-type individual was obtained from Hiratsuka, Kanagawa, Japan.
Original photographs courtesy of Tadashi Kudo.

FIGURE 3 | Various color-patterns of lycaenid species that resemble the

modified color-patterns of Zizeeria maha. (A) Lycaena heteronea, which
resembles the reduction type. (B) Maculinea teleius, which resembles the
normal-type. (C) M. arionides, which resembles the outward type. (D,E)

L. dispar, male and female. The male resembles the reduction type,
whereas the female resembles the outward type.

SIDE-EFFECT MODEL AND EPIGENETIC INHERITANCE
SIDE-EFFECTS ALLOW NON-FUNCTIONAL OR NEUTRAL TRAITS TO BE
ASSIMILATED GENETICALLY
There are several possible mechanistic explanations for these
plasticity-oriented evolutionary cases. The so-called “side-effect
model” was proposed to explain the evolution of Vanessa (Otaki,
2008c). This model first makes the reasonable assumption that
Vanessa is a group of species that favor a temperate environment
and are not highly resistant to temperature shock. In addition,
it is assumed that the ancestral species of the group had rela-
tively high vagility, similar to that of V. indica and V. atalanta.
Due to its vagility, the ancestral species can expand its range
margin to tropical areas, but the temperature of these areas is
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too high to allow the next generation of the species to be pro-
duced. However, even in tropical regions, the species can live
in mountainous areas where relatively low temperatures occur.
There, large daily temperature fluctuations serve as natural cold-
shocks. Natural selection operates to favor cold resistance in
the isolated Vanessa populations. Color-pattern changes accom-
pany this increase in cold resistance. However, the changed color
traits have no functional relationship to cold resistance. Thus,
color-pattern modifications are an opportunistic side-effect of
cold resistance, i.e., color-pattern changes or new color-pattern
traits are “parasitic” to cold resistance (Otaki, 2008c). Specifi-
cally, because the color-pattern changes are induced by a humoral
factor in the hemolymph known as cold-shock hormone (CSH;
Mahdi et al., 2010, 2011), the ability to efficiently secrete CSH
into the hemolymph may be directly related to cold resistance
and may be opportunistically linked to color-pattern modifi-
cations. As a result, neutral or non-functional color-patterns
may be fixed in a population through a process of genetic
assimilation.

To support this model, studies of the relationship of temper-
ature to Vanessa’s life history, behavior, and physiology must be
conducted. Further clear identification of the CSH is required.
Hopefully, the genetic assimilation of the plastic phenotype will
be reproduced in the laboratory, although rearing Vanessa for gen-
erations in an artificial environment would be relatively difficult
from a technical perspective.

A fundamentally similar history may be hypothesized in the
case of V. cardui and V. kershawi, although different molecular
pathways may be involved in the color-pattern modifications of
these species. It is probable that the common ancestor had color-
patterns and phenotypic plasticity similar to those of V. cardui, a
cosmopolitan species. As this ancestral species invaded a relatively
arid environment, stress resistance developed over the generations
through natural selection. As a side-effect, color-pattern modifi-
cations occurred and were eventually genetically assimilated in the
population.

Similarly, in the case of Z. maha, the northward migration
selected for cold resistance. As a side-effect, the color-patterns were
modified at the previous northern margin of the range even before
the population reached the Fukaura area. Although the modified
traits were not well assimilated in the population at the previ-
ous northern margin of the range, a small number of individuals
migrated farther to the north and established a regional popula-
tion in the Fukaura area. It is probable that this population was
genetically unstable and that this instability produced an outbreak
of unstable TS-type modifications.

EPIGENETIC TRAITS COULD FACILITATE STRESS ADAPTATION
The proposed opportunistic link between stress resistance and
color-patterns has not yet been demonstrated. If there is no
such link, it would be difficult for the modified color-patterns
to evolve by natural selection because it is probable that they
are functionally neutral at best. It is even more probable that
these color-patterns are selectively inferior to the normal pat-
terns. An alternative explanation is that stress-induced traits in
a given generation are heritable in the next generation. These
two explanations are not mutually exclusive. It is possible that

the transgenerational effect of epigenetic traits could involve the
three cases discussed above. In Drosophila, epigenetic changes
are mediated by the formation of a heritable heterochromatin
in response to temperature stress (Seong et al., 2011). Given the
prevalence of epigenetic modifications (Jablonka and Raz, 2009),
similar molecular mechanisms can be envisioned in butterflies.
Other mechanisms of epigenetic changes, such as DNA methyla-
tion, histone modifications, and regulation by non-coding RNAs,
could also occur.

However, epigenetic changes induced by temperature shock do
not persist for many generations in Drosophila (Seong et al., 2011).
To establish a new trait in a population, a mechanism should exist
to genetically fix such a new trait into the DNA sequences. If the
cold-shock resistance itself is epigenetically inherited, this form
of inheritance allows the population to develop resistance rela-
tively rapidly and results in a higher probability of survival and
of avoidance of extinction for the population. This process fur-
nishes an opportunity for the natural selection of stress-induced
phenotypes, because the operation of natural selection requires a
relatively high number of generations. This process could even-
tually cause the assimilation of a new trait in the population and
could ultimately promote speciation.

It is important to emphasize that the new trait discussed
above need not be a functional trait. It can be neutral or non-
functional (Otaki, 2008c). Neutral or non-functional traits will
create opportunities for subsequent functional evolution. If all
traits were fully functional, subsequent evolution would only dam-
age functional traits, leading to the deterioration of the species.
In this sense, neutral or non-functional traits have an evolu-
tionary “function” as a source of opportunities for subsequent
evolution and speciation. This concept is similar to the idea that
neutral mutations “function” by furnishing a foundation for sub-
sequent evolutionary adaptation at the molecular level (Wagner,
2008).

CONCLUDING REMARKS
The three cases of evolution presented in this paper involve coping
with environmental stress and the emergence of extreme pheno-
types. The coincidence between physiologically induced pheno-
types in a species and the normal phenotypes of related species
that live in“stressful”environments is striking. These cases demon-
strate the involvement of phenotypic plasticity in evolution. Exper-
imental demonstration and field observation are further required
to convincingly demonstrate the roles of phenotypic plasticity and
environmental stress in the color-pattern evolution and specia-
tion of butterflies. Theoretical frameworks are also expected to
emerge from these considerations (Behera and Nanjundiah, 2004;
Lande, 2009; Danchin et al., 2011; Espinosa-Soto et al., 2011; Fierst,
2011).

We do not yet accurately know how plastic phenotypes are
genetically assimilated in a given butterfly population to produce
an independent species, nor do we know the possible roles of epige-
netic inheritance in the evolution of butterfly color-patterns. The
active role of phenotypic plasticity in evolution is a concept that
has gained popularity relatively recently in biology (Pigliucci and
Murren, 2003; Pigliucci et al., 2006; Pfennig et al., 2010) despite its
original formulation in the 1940s (Waddington, 1942). Epigenetic
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inheritance is also a relatively new field of biology. Considering that
the integration of evolutionary biology and genetics (or the inte-
gration of phenotypic biology and genotypic biology) was fruitful
in the past, a similar yet higher-level integration of the evolution-
ary roles of phenotypic plasticity and molecular epigenetics is now
opening up a very fruitful and attractive field of biology.
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