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Environmental exposures vary by timing, severity, and frequency and may have a number
of deleterious effects throughout the life course. The period of in utero development, for
example, is one of the most crucial stages of development during which adverse envi-
ronmental exposures can both alter the growth and development of the fetus as well as
lead to aberrant fetal programming, increasing disease risk. During fetal development and
beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influ-
ence health, development, and survival. Recent research in environmental epigenetics
has investigated the roles of environmental exposures in influencing epigenetic modes
of gene regulation during pregnancy and at various stages of life. Many relatively com-
mon environmental exposures, such as cigarette smoking, alcohol consumption, and drug
use, may have consequences for the expression and function of non-coding RNA (ncRNA),
important post-transcriptional regulators of gene expression. A number of ncRNA have
been discovered, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and long
non-coding RNA (long ncRNA). The best-characterized species of ncRNA are miRNA, the
mature forms of which are ∼22 nucleotides in length and capable of post-transcriptionally
regulating target mRNA utilizing mechanisms based largely on the degree of complemen-
tarity between miRNA and target mRNA. Because miRNA can still negatively regulate
gene expression when imperfectly base-paired with a target mRNA, a single miRNA can
have a large number of potential mRNA targets and can regulate many different biological
processes critical for health and development. The following review analyzes the current
literature detailing links between cigarette smoke exposure and aberrant expression and
function of ncRNA, assesses how such alterations may have consequences throughout
the life course, and proposes future directions for this intriguing field of research.
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GENE–ENVIRONMENT INTERACTIONS AND
ENVIRONMENTAL EXPOSURES
The interaction of genes and the environment, often hypothesized
to be through epigenetic mechanisms, modulates an organism’s
reproductive fitness, response to external stimuli, and health.
Throughout the life course, a number of exposures can influence
an individual’s development, health, and overall quality of life.
Environmental exposures vary by timing, severity, and frequency
and may have a number of deleterious effects throughout the life
course. The period of in utero development, for example, is a cru-
cial stage during which adverse environmental exposures can both
alter the growth and development of the fetus as well as lead to
aberrant fetal programming, increasing disease risk. During fetal
development and beyond, the plethora of exposures, including
nutrients, drugs, stress, and trauma, influence health, develop-
ment, and survival. Recent research in environmental epigenetics
has investigated the roles of environmental exposures in influenc-
ing epigenetic modes of gene regulation (Reamon-Buettner et al.,
2008), and a special focus of this work has been on determin-
ing the effects of cigarette smoking on epigenetic mechanisms,

such as non-coding RNA (ncRNA), and resulting downstream
consequences as a result of this harmful exposure.

CIGARETTE SMOKING
One of the most common, potentially hazardous environmental
exposures that negatively influences health and development is
cigarette smoke exposure. The CDC has reported that almost 21%
of adults in the United States smoked cigarettes in 2009, a num-
ber equaling ∼46 million people (CDC, 2010). In contrast to the
number of studies reporting a decrease in the overall prevalence
of smoking in women in the United States in the past 20 years,
other reports have found that the prevalence of smoking in young
pregnant women has increased (Jaakkola et al., 2001; CDC, 2004;
Mohsin and Bauman, 2005). Conservative estimates report that
12–15% of women smoke while pregnant (Cnattingius, 2004;
Goodwin et al., 2007), and it is likely that far greater numbers
are exposed to secondhand (or passive) cigarette smoke during
various periods of their pregnancies. Exposure to maternal ciga-
rette smoking while in utero is associated with an increased risk
for respiratory disease (Cook and Strachan, 1999), an increased
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risk for cancer later in life (Doherty et al., 2009), and a number
of deleterious neurobehavioral outcomes in infancy and beyond
(Olds et al., 1994; Huijbregts et al., 2007; Knopik, 2009; Kiechl-
Kohlendorfer et al., 2010). When one combines these estimates of
babies who experienced in utero exposure to cigarette smoke with
the numbers of adults who smoke cigarettes, one realizes that the
number of individuals exposed to cigarette smoke during at least
one period of their lives is quite large and far greater than what
might be expected at first consideration.

Previous work has found over 4,000 chemicals in a cigarette,
including nicotine, benzo[a]pyrene, and carbon monoxide, and
more than 40 of these chemicals have been established as known
carcinogens (Thielen et al., 2008). Cigarette smoking has been
linked to a number of diseases and disabling conditions, includ-
ing heart disease and lung diseases (CDC, 2008). Furthermore, for
every individual who dies from a disease associated with smok-
ing, 20 more people battle at least one major illness attributable
to smoking (CDC, 2003). Several studies have singled out tobacco
use as the world’s leading preventable cause of death (CDC, 2002,
2003, 2008). By some estimates, up to five million deaths world-
wide can be attributed to smoking and current trend data predicts
that tobacco use will lead to more than eight million deaths a
year by 2030 (WHO, 2008). In the USA, tobacco use has been
attributed to 20% of deaths per year which equates to ∼443,000
deaths annually, and ∼49,000 of these have been attributed to
secondhand smoke exposure (CDC, 2008). On average, smokers
die 13–14 years earlier than non-smokers (CDC, 2002), suggest-
ing that cigarette smoking and cigarette smoke exposure leads to
increased morbidity and mortality.

Recent research has broadened investigations of the effects
of cigarette smoke exposure into determining the effects of not
only primary (or “mainstream”) cigarette smoke but also envi-
ronmental (also called “secondhand,” “passive,” or “sidestream”)
cigarette smoke. Sidestream cigarette smoke comprises the major
component of environmental cigarette smoke and is defined as
smoke which goes into the air directly from a burning cigarette (as
opposed to smoke which is directly inhaled (“mainstream”smoke)
from the burning cigarette; NIOSH, 1991). A variety of studies
have suggested that components of sidestream or environmental
cigarette smoke (ECS) differ from those in mainstream smoke in
both component type and concentration, with some investigators
concluding that ECS may be as harmful or even more harmful than
mainstream smoke (Schick and Glantz, 2005). Work is ongoing to
investigate the potentially harmful effects of both mainstream and
sidestream cigarette smoke.

Taken collectively, these data suggest that cigarette smoking and
cigarette smoke exposure throughout the life course is one of the
most common hazardous exposures, and more recently, work has
suggested that epigenetic mechanisms may be especially responsive
to environmental exposures such as cigarette smoke.

EPIGENETICS: MODE BY WHICH ENVIRONMENTAL
EXPOSURES INFLUENCE HEALTH OUTCOMES
By definition, epigenetics is the field of research which studies
changes in gene expression not caused by changes in the sequence
of DNA (Bird, 2007). The emergence of a subfield of epigenet-
ics, called “environmental epigenetics” (Reamon-Buettner et al.,

2008), focuses on studying modes of epigenetic regulation with the
greater understanding that environmental exposures may affect
such modes of epigenetic regulation as well. Throughout the
life course, epigenetic mechanisms may be the mode by which
environmental exposures influence the development, health, and
survival of the individual. Research in both model systems and
human cohorts has suggested that a variety of environmental
exposures have consequences for gene expression through epi-
genetic modes of gene regulation. Particular focus has been placed
on four modes of epigenetic regulation, namely DNA methy-
lation, imprinting, histone modifications, and ncRNA-mediated
gene regulation (Crane-Godreau et al., 2009). While the study of
DNA methylation remains the most widely studied mode of epi-
genetic regulation, the study of ncRNA-mediated gene regulation
has gained significant attention over the past two decades.

NON-CODING RNA
Since the earliest discoveries of RNA as a product of the transcrip-
tion of DNA, many have hypothesized that RNA may not only act
as the intermediate step on the pathway to protein but may also
have a degree of regulatory activity itself. Of the species of ncRNA,
the three best-characterized forms are microRNA (miRNA), Piwi-
interacting RNA (piRNA), and long non-coding RNA (long
ncRNA), with miRNA garnering especially great attention.

microRNA
In the early 1990s, two small regulatory RNAs, known as lin-4 and
let-7 were shown to control the timing of larval development in C.
elegans (Lee et al., 1993; Reinhart et al., 2000). These small ncRNAs,
initially called “lin-4 and let-7 RNAs,” have since been determined
to be members of a class of endogenous RNAs found in a number
of species, including worms, flies, and mammals and since have
been renamed “microRNAs (miRNAs)” (Lagos-Quintana et al.,
2001; Lau et al., 2001; Lee and Ambros, 2001). Additional stud-
ies suggested that these small ncRNAs capable of gene regulation
are found in plants, mammals, green algae, and viruses (Griffiths-
Jones et al., 2008). Depending on the species and particular form
of ncRNA, names of these small ncRNA vary. miRNA are a dis-
tinct class of ncRNA and differ from other species of ncRNA in
both how they are formed as well as their particular mechanism of
action. miRNA are formed from precursor transcripts which fold
back on themselves, forming hairpin structures.

As reviewed previously (Maccani and Marsit, 2009), miRNA
are initially transcribed by RNA Polymerase II as part of longer
transcripts termed primary miRNAs (pri-miRNAs) which include
5′ caps and 3′ poly(A) tails (Lee et al., 2002; Smalheiser, 2003; Cai
et al., 2004). A hairpin is then formed from the miRNA portion
of the pri-miRNA (Lee et al., 2002). The double-stranded RNA
(dsRNA)-RNA-specific ribonuclease Drosha then digests the pri-
miRNA and releases the hairpin which, post-Drosha processing,
is referred to as a precursor-miRNA (pre-miRNA; Lee et al., 2003)
and is ∼70–75 nucleotides in length (Lee et al., 2003; Yi et al.,
2003). pre-miRNA is subsequently exported from the nucleus to
the cytoplasm by a complex containing Exportin-5 (Exp-5;Yi et al.,
2003; Lund et al., 2004) and in the cytoplasm, is cleaved by Dicer
(Lee et al., 2003; Yi et al., 2003) into a dsRNA with short 3′ over-
hangs at the ends (Lund et al., 2004). After cleavage by Dicer, the
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Dicer-processed dsRNA must separate into two strands, and the
single-stranded mature miRNA has to associate with the RNA-
induced silencing complex (RISC). The RISC traffics the mature
miRNA to its mRNA target where it effectively silences it (Hut-
vagner and Zamore, 2002). Additionally, work has revealed that
determination of the active strand in the post-Dicer-processed
dsRNA is directly related to the stability of dsRNA ends (Khvorova
et al., 2003; Schwarz et al., 2003); more specifically, the strand with
a less-stable base pairing of the two to four nucleotides at the 5′
end of the duplex tends to associate with the RISC and becomes
the active miRNA which can be trafficked to its mRNA target to
effectively post-transcriptionally silence that target (Schwarz et al.,
2003). miRNA biosynthesis, as well as the post-transcriptional
silencing of target mRNA, is summarized in Figure 1.

Work has suggested that miRNA regulate gene expression post-
transcriptionally by base pairing to a target mRNA. The specific
mechanism of miRNA-mediated gene regulation depends on a
variety of factors, the most important of which appears to be
the degree of complementarity between the miRNA sequence
and the target mRNA sequence (Lagos-Quintana et al., 2001)

FIGURE 1 | Summary of miRNA biosynthesis and post-transcriptional

silencing of target mRNA.

As described above, the mature miRNA’s active strand associates
with the Argonaute protein of the RISC and the RISC traffics
the miRNA to its target mRNA (Hutvagner and Zamore, 2002;
Mourelatos et al., 2002) where it post-transcriptionally regulates
gene expression. Generally, a miRNA with perfect complementar-
ity to the sequence of its target mRNA will lead to degradation
of the mRNA transcript by a mechanism of Argonaute-catalyzed
mRNA cleavage (Hutvagner and Zamore, 2002; Song et al., 2004;
Yekta et al., 2004). A miRNA with imperfect sequence comple-
mentarity to its target mRNA will result in repression of trans-
lation of the target mRNA by blocking or altering the function
of translational machinery (Lagos-Quintana et al., 2001) through
mechanisms including the inhibition of translation initiation and
poly(A) shortening (Filipowicz et al., 2008). Other observations
have even suggested that miRNA can utilize a combination of both
translational repression and mRNA degradation as the mechanism
for their post-transcriptional gene regulation (Lim et al., 2005).
Since partial or imperfect complementarity of a miRNA to a target
mRNA can lead to translational repression which can effectively
silence a gene, a single miRNA has the capability of regulating a
large number of genes (Du and Zamore, 2007). By their mecha-
nisms of negative regulation, miRNA have been shown to exhibit
tissue-specific expression and function and play a role in regulating
a wide range of biological processes, including differentiation, pro-
liferation, apoptosis, and stress responses (Crane-Godreau et al.,
2009).

PIWI-INTERACTING RNA
Another class of ncRNA that has recently been discovered is the
class of piRNA. Compared to the miRNA and Argonaute protein
complex, piRNAs associate with PIWI proteins to form RNA–
protein complexes capable of gene regulation (Thomson and Lin,
2009). Several thousand piRNA, ∼24–32 nucleotides in length,
have been discovered in zebrafish, Drosophila, and mammals. The
majority of piRNA seem to be generated from a relatively small
number of long single-stranded RNA precursors which are fre-
quently encoded in repetitive intergenic sequences. PIWI proteins,
and seemingly the piRNA which associate with them, are impor-
tant for ensuring a number of key processes during germline
development, including germline determination, spermiogenesis,
and the silencing of transposons (Thomson and Lin, 2009). In
mammals, piRNA have been detected in testes and ovaries but
data suggest they may only be required for proper development in
males (Aravin et al., 2006; Siomi et al., 2011).

In contrast with the relatively advanced understanding of the
biogenesis of miRNA, the biogenesis of piRNA is not well under-
stood. Recent work has suggested that in the case of pachytene
piRNA, piRNA whose expression and function are important
during the pachytene phase of meiosis, piRNA precursors are
transcribed in a type of primary processing pathway (Brennecke
et al., 2007; Seto et al., 2007; Aravin et al., 2008). Other work
has suggested a type of “ping–pong” mechanism of biogenesis in
which primary piRNA identify their mRNA targets and result in
PIWI protein recruitment. This leads to the cleavage of the pri-
mary transcript at a location 10 nucleotides from the 5′ end of
the primary piRNA, ultimately producing the secondary piRNA
(Brennecke et al., 2007). Current data suggest that one or both of
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these proposed mechanisms explains the biogenesis of piRNA in
a species-specific fashion with some degree of conservation across
species (Faehnle and Joshua-Tor, 2007; Das et al., 2008; Klattenhoff
and Theurkauf, 2008; Unhavaithaya et al., 2009).

In terms of biological importance, piRNA have been implicated
in the silencing of transposons, and many piRNA are antisense to
sequences of transposons (Malone and Hannon, 2009). In mam-
mals, piRNA have been suggested to be most essential during
embryonic development (Aravin et al., 2008), and in many species,
data reveal that piRNA are required for spermatogenesis (Grim-
son et al., 2008). A more detailed characterization of both the
biogenesis and mechanisms of action of piRNA will be valuable in
further revealing how these small, but important, ncRNA function
to regulate key periods of development.

LONG ncRNA
Long non-coding RNAs are longer than 200 nucleotides, and this
characterization distinguishes long ncRNA from other forms of
ncRNA, such as miRNA or piRNA. As has been described above,
many forms of small ncRNA, such as miRNA or piRNA, show rel-
atively strong conservation across species (Bentwich et al., 2005);
long ncRNA, however, have been shown to lack such relatively
strong conservation, leading to conclusions by early investigations
that such long ncRNA were non-functional (Brosius, 2005; Struhl,
2007), theories which have been largely dismissed following sub-
sequent analyses. Even two of the most well-characterized long
ncRNA, Air and Xist, exhibit relatively poor conservation (Nes-
terova et al., 2001) but their roles are crucial to an organism’s
survival. As of late 2011, well over 100 long ncRNA have been char-
acterized and annotated on lncRNAdb, a database which provides
annotations of eukaryotic long ncRNA (Amaral et al., 2011).

One of the most well-characterized long ncRNAs is Xist (Wutz,
2007),and Xist has been shown to play a key role in X-chromosome
inactivation in female placental mammals (Wutz, 2007). During
the period of embryonic stem cell differentiation, Xist is expressed
from the future inactive X chromosome and coats what then
becomes the inactive X chromosome. Following expression of
Xist, irreversible chromatin modifications including loss of histone
(H3K9) acetylation and H3K4 methylation and establishment of
repressive H4 hypoacetylation and H3K27 trimethylation which,
along with other modifications, lead to the silencing of X-linked
genes (Morey et al., 2004; Wutz, 2007). Collectively, the long
ncRNA “Xist” and other ncRNAs expressed from Xist loci effec-
tively allow only one X chromosome to be active in female placental
mammals.

Research focused on understanding the roles of long ncRNA
in health and disease is ongoing. Work to determine associations
of dysregulated expression of long ncRNA with various tumors,
as well as tumor differentiation, continues and will elucidate these
important relationships (Pibouin et al., 2002; Reis et al., 2004; Fu
et al., 2006; Lin et al., 2007). Specific roles of long ncRNA in driving
or preventing tumorigenesis, however, have been largely undeter-
mined. Future work focusing on enhanced understanding of how
these long ncRNA are involved in regulating key cell processes
throughout the life course, as well as how these long ncRNA are
responsive to environmental exposures, such as cigarette smoke,
will be key to better elucidating the function of long ncRNA.

CIGARETTE SMOKE-ASSOCIATED EFFECTS ON ncRNA
The influence of cigarette smoking and the effects of components
of cigarette smoke on miRNA expression and function have been
the most heavily studied aspects of research motivated to char-
acterize the effects of cigarette smoke exposure on ncRNA. As of
manuscript preparation, no studies have been published assessing
associations of cigarette smoking or direct effects of components
of cigarette smoke on piRNA, and relatively few studies have inves-
tigated the influence of smoke exposure on dysregulating long
ncRNA expression. Since exposure to mainstream and sidestream
cigarette smoke remains relatively common and potentially haz-
ardous, investigations into effects on miRNA, piRNA, and long
ncRNA may be crucial to elucidating currently poorly under-
stood mechanisms. Such understanding may further explain how
components of cigarette smoke may be mediating their effects
through piRNA, long ncRNA, and other less-characterized species
of ncRNA.

MATERNAL CIGARETTE SMOKING DURING PREGNANCY AND
ABERRANT EXPRESSION OF PLACENTAL miRNA
During fetal development, the placenta is of utmost importance
to ensuring the proper growth and development of the fetus;
it provides the fetus with nutrients, aids in the elimination of
waste products, and protects the fetus from a variety of envi-
ronmental toxicants (Crane-Godreau et al., 2009; Maccani et al.,
2010). Recently, Maccani et al. (2010) used a candidate miRNA
approach to investigate how maternal cigarette smoking during
pregnancy might be associated with differential expression of
miRNA in the placenta. Maccani and colleagues’ data suggested
that maternal cigarette smoking during pregnancy is associated
with the downregulation of miR-16, miR-21, and miR-146a. In an
attempt to further explore which components of cigarette smoke
might modulate specific miRNA, Maccani and colleagues exposed
three human placental cell lines from different stages of placental
development to nicotine and benzo[a]pyrene, two components
of cigarette smoke, and assessed candidate miRNA expression.
The three human placental cell lines used were first trimester
villous 3A cells, first trimester extravillous HTR8 cells, and the
third trimester extravillous TCL-1 cells; the three cell lines repre-
sent different periods and aspects of placental development and
were selected to further investigate how different components of
cigarette smoke might dysregulate miRNA expression in differ-
ent placental cell types (Maccani et al., 2010). Data suggested that
miR-146a was downregulated in TCL-1 cells treated with nicotine
and benzo[a]pyrene, suggesting that this particular miRNA may
be particularly sensitive to agents of cellular stress and to these two
components of cigarette smoke (Maccani et al., 2010; Maccani and
Marsit, 2011).

As has been reviewed elsewhere (Maccani and Marsit, 2011),
Maccani and colleagues’ observations were limited by a rela-
tively small set of samples (n = 25) and a lack of data regard-
ing the duration of cigarette smoking during pregnancy or fre-
quency of use, as well as more extensive environmental exposure
information. Despite these limitations, Maccani and colleagues’
findings comprise an important first step in investigating asso-
ciations between maternal cigarette smoking during pregnancy
and miRNA expression in the placenta. Future work is needed to
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investigate associations between maternal cigarette smoking dur-
ing pregnancy and aberrant miRNA expression in a larger cohort
of samples with more extensive exposure information (Maccani
et al., 2010; Maccani and Marsit, 2011).

CIGARETTE SMOKING AND ABERRANT EXPRESSION OF LUNG miRNA
Xi et al. (2010) investigated how cigarette smoke condensate (CSC)
alters miRNA expression and function in normal human respira-
tory epithelial cells and lung cancer cells. For their experiments,
Xi and colleagues prepared CSC from Kentucky Reference 3R4F
research blend cigarettes (Liu et al., 2010) and resuspended the
condensate at a concentration of 1 mg tar/mL in RPMI. They
found that exposure of cells to this CSC increased the expres-
sion of miR-31 in both normal respiratory epithelial cells and
in lung cancer cells (Xi et al., 2010). Further results suggested
that overexpression of miR-31 led to increased proliferation and
tumorigenicity in lung cancer cells, whereas knockdown of miR-31
expression significantly inhibited growth of lung cancer cells (Xi
et al., 2010). These findings suggest that miR-31 is both responsive
to cigarette smoke exposure in normal respiratory epithelia and
lung cancer cells and may play a role as an oncomir, or a miRNA
whose expression and function may promote the development of
cancer, in the pathway leading to carcinogenesis in the lung (Xi
et al., 2010).

CIGARETTE SMOKING AND DYSREGULATED miRNA EXPRESSION IN
HUMAN AIRWAY EPITHELIUM
Schembri et al. (2009) investigated whole-genome miRNA expres-
sion in bronchial airway epithelium from current or never smokers
(n = 20). They found that 28 miRNA were differentially expressed
and a majority of these differentially expressed miRNA were
downregulated in the airway epithelium of smokers. Furthermore,
they investigated one candidate miRNA shown to be dysregulated
due to smoke exposure, miR-218, by exposing primary bronchial
epithelial cells to CSC, finding that such exposure downregulates
miR-218 expression levels (Schembri et al., 2009). While Schembri
and colleagues’ sample set was limited in size, their work com-
prised an important first step in determining how miRNA may be a
mechanism by which smoking dysregulates bronchial airway gene
expression, potentially leading to downstream smoking-associated
disease risk.

ENVIRONMENTAL CIGARETTE SMOKE AND ABERRANT EXPRESSION
OF miRNA
While a number of studies have focused on the influences of
primary cigarette smoking on miRNA expression and function,
work is also being done to characterize the effects of ECS (also
called “passive,” “secondhand,” or “sidestream” cigarette smoke)
on miRNA expression. Three studies characterizing the effects of
ECS on miRNA expression in the lung and liver were conducted
by Izzotti et al. (2009, 2010a,b).

Izzotti et al. (2009) investigated the effects of ECS exposure
on miRNA expression in the lungs of rats exposed to ECS for
28 days. They found that the most greatly downregulated miRNA
belonged to miRNA families previously shown to regulate a num-
ber of key biological processes, including stress response, prolif-
eration, angiogenesis, apoptosis, and others. Furthermore, they

found that ECS exposure resulted in the upregulation of 2.9% of
genes and 9.7% of proteins in the same tissue, suggesting that the
ECS exposure-induced downregulation of miRNA may, in part,
be leading to the increased protein levels of genes whose mRNA
would have otherwise been targeted for post-transcriptional
regulation.

In their two 2010 studies, Izzotti and colleagues exposed either
neonatal mice (Izzotti et al., 2010b) or rats (Izzotti et al., 2010a)
to ECS but also to chemopreventive agents and measured miRNA
expression in the lung and the liver following exposure. Their data
suggested that ECS dysregulated miRNA expression in lung and
had a variety of mixed effects in liver. Phenethyl isothiocyanate and
budesonide exposure was observed to protect the lung from ECS-
induced dysregulated miRNA expression but had adverse effects in
the liver (Izzotti et al., 2010b). Exposure to chemopreventive agents
N -acetylcysteine, oltipraz, indole-3-carbinol, 5-6-benzoflavone,
and phenethyl isothiocyanate (as single exposures or in combi-
nations) were shown to attenuate alterations in lung attributed
to ECS (Izzotti et al., 2010a). Collectively, their findings further
underscore the utility of miRNA profiles in various tissues as
potential key tools for analyzing both protective and adverse effects
of chemopreventive agents in mitigating the effects of exposure to
ECS. Future work utilizing bioinformatically informed target pre-
diction approaches may prove essential to better characterizing
potential pathways dysregulated by aberrant miRNA expression
and respective target mRNA expression resulting from ECS. Future
investigations into the molecular mechanisms by which ECS elic-
its downstream effects will be important for both understanding
the effects of this potentially hazardous exposure as well as design-
ing novel therapeutics to treat and improve outcome following
exposure.

Cigarette smoke exposure-associated dysregulation of long ncRNA
Investigations into cigarette smoke exposure-associated dysregula-
tion of miRNA have been relatively extensive compared to the few
studies analyzing such alterations of long ncRNA. Silva et al. (2010)
used whole-genome tiling arrays to investigate the upregulation of
non-coding transcripts greater than 300 nucleotides in length in
normal human bronchial epithelial cells (NHBE) exposed to the
tobacco carcinogen nicotine-derived nitrosamine ketone (NNK),
a component of tobacco smoke which can result in DNA dam-
age. They found 12 long stress-induced non-coding transcripts
(LSINCTs) which were upregulated in NHBE cells exposed to
NNK. Follow-up analysis showed that several of these transcripts
exhibit increased expression in many lung cancer and breast cancer
cell lines. Analysis is ongoing to better characterize the functional
aspects of these LSINCTs dysregulated by NNK. Other investiga-
tions have included using RNA-Seq technology to explore effects
of smoking and lung cancer on the transcriptome of the airway
(Beane et al., 2011) and characterizing the dysregulated monoal-
lelic expression of the H19 gene in cigarette smokers’ airway
epithelium (Kaplan et al., 2003). These investigations all provide
important first steps in characterizing the potential impacts of cig-
arette smoke exposure on long ncRNA; more extensive research
will need to be conducted in the future to more comprehensively
describe the effects of cigarette smoke exposure on long ncRNA in
a variety of tissues.
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CONCLUSION AND FUTURE DIRECTIONS
Taken collectively, the body of literature describing our under-
standing of the effects of cigarette smoke on ncRNA expression
and function is very much in its infancy. Studies to date have
been relatively small in scope, have considered a relatively lim-
ited number of target tissues (i.e., placenta, lung, liver, and airway
epithelial cells), and examined various types of cigarette smoke
exposure (e.g., primary, passive/secondhand, and prenatal). While
the variety in exposure types is informative and provides prelimi-
nary results, the relatively small sample sizes and limited number of
studies overall make it clear that there is much more to be done in
order to more definitively elucidate the effects of cigarette smoke
(of any type) on ncRNA expression and the later downstream
effects on behavioral health and other medical conditions.

The possible influence of epigenetic modification, including
ncRNA expression, due to exposure to cigarette smoke of any
kind (i.e., passive or secondhand, primary, or during pregnancy)
on behavioral health and other medical conditions is manifold.
As outlined above, the three best-characterized forms of ncRNA
are microRNA (miRNA), piRNA, and long ncRNA, with miRNA
garnering particularly great attention. In fact, at the time of the
preparation of this review, there were virtually no published data
on exposure-associated alterations to piRNA and relatively few
studies on cigarette smoke-associated alterations to long ncRNA.
Thus, unanswered questions include, but are not limited to, (i)
the effects of cigarette smoke on piRNA and long ncRNA in
multiple tissues, in animals and in humans, (ii) the effects of
cigarette smoke on miRNA in the brain which might alter crit-
ical neurobehavioral circuitry in the developing brain or the adult
brain, (iii) the influence of smoke exposure on ncRNA in asthma,
lung cancer or other medical outcomes, and (iv) intergenerational
transmission of smoking-related ncRNA changes (i.e., grandma-
ternal smoking influences which may affect germline cells and
those epigenetic changes which may escape reprogramming dur-
ing development). Use of animal models in mutually informative
translational research (especially in inbred lines where genetic
background is held constant) may further triangulate our abil-
ity as a field to investigate these issues (Knopik et al., Under
Review).

It is clear, even from the relative paucity of research in this
area, that ncRNA are biologically relevant and play an important
role in the disease process. ncRNA alterations may also provide
valuable information about therapeutic interventions. Yet, how
do we align this information with the current state of science?
One part of this answer lies in the research or clinical question
of interest. If the question is whether cigarette smoke exposure,
whether mainstream or sidestream, alters ncRNA expression and
leads to the development of cancer cells, then the tissues of inter-
est may indeed be relatively easily accessible. Animal models can
be used to investigate ncRNA alterations in multiple tissues of
interest, such as the lung, the esophagus, salivary glands, and blad-
der, but as with all model systems, consideration must be taken
in study design regarding differential degrees of conservation of
particular ncRNA across species. These preclinical models can
be examined alongside human data, where biopsies of particu-
lar tissues may be available. However, if the outcome of interest
is behavioral or psychiatric in nature (e.g., addiction, executive

function, impulsive behavior, response to stress), the approach is
less clear. Ideally, to consider the role of cigarette smoke expo-
sure and ncRNA alterations on subsequent behavior, one would
want to examine brain tissue. In humans, this is unavailable unless
one considers post-mortem tissue; however, even then there is
then the question of whether such investigations might be con-
founded due to potential ncRNA alterations associated with cause
of death. There is considerable debate about the utility of blood
as a biomarker for gene expression in brain and other tissues
(Tsuang et al., 2005; Tian et al., 2009; Shivapurkar and Gazdar,
2010; Kukreja et al., 2011). In the search for a biomarker with
clinical utility, blood does have certain advantages. Blood is an
accessible tissue that can be relatively easily obtained, and while
not a perfect representation of what might be expressed in brain,
it can provide useful information for screening purposes. In either
scenario, whether the health outcome is more psychological or
somatic in nature, an additional question lies in what aspect of
cigarette smoke leads to epigenetic alterations: more specifically,
is it nicotine or one of the 4000+ other xenobiotics (e.g., foreign
substances) found in cigarette smoke – or one of the multitude of
complex mixtures of these xenobiotics – which are most respon-
sible for leading to epigenetic alterations? Carefully examining
this piece of the equation will also be key to developing a bet-
ter understanding of how components of cigarette smoke alter
ncRNA expression and function, but also the utility of using such
cigarette smoke-modulated ncRNA in diagnostic and therapeutic
interventions.

In summary, increasing attention to the study of ncRNA and to
“environmental epigenetics” (Reamon-Buettner et al., 2008) has
inspired more researchers to embark on work to better under-
stand how environmental exposures, such as cigarette smoke,affect
ncRNA expression and function. Recommendations for future
research include using both human cohorts and model systems
to more comprehensively determine how the type, timing, fre-
quency, duration, and degree of cigarette smoke exposure may
alter miRNA, piRNA, and long ncRNA expression and func-
tion in a variety of tissues, thereby having the power to alter
a number of health and developmental processes. The relative
dearth of data demonstrating the effects of cigarette smoke on
piRNA and relatively limited number of studies investigating the
impact of cigarette smoke on long ncRNA underscore the need
for future research to better describe such potentially hazardous
effects of cigarette smoke on these two species of ncRNA and
the processes they regulate. Hypothesis-generating approaches,
such as microarray technology, when used in tandem with gold-
standard validation approaches, such as Real-Time PCR, will be
important for developing more agnostic study designs for discov-
ering how ncRNA individually and collectively may be responsive
to cigarette smoke exposure. Use of target prediction strategies
combining in silico target prediction analysis with empirical tar-
get prediction confirmation (i.e., via Western blot) will enable
researchers to better streamline their efforts to discover currently
unknown targets of miRNA. Tools for predicting potential tar-
gets of piRNA and long ncRNA remain in early development and
such bioinformatic tools will prove especially useful for further
determining the functions of piRNA and long ncRNA, espe-
cially in the context of harmful environmental exposures. This
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will not only enhance understanding of how these harmful expo-
sures impact health but may suggest the utility of ncRNA as both
therapeutic targets and biomarkers for determining treatment effi-
cacy. Together, these advances will be crucial for determining
how alterations to the expression and function of ncRNA may
be important modes by which environmental exposures, such as

cigarette smoke, influence health outcomes throughout the life
course.
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