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In the last few years we have witnessed tremendous progress in detecting associations
between genetic variations and complex traits. While genome-wide association studies
have been able to discover genomic regions that may influence many common human dis-
eases, these discoveries created an urgent need for methods that extend the knowledge
of genotype-phenotype relationships to the level of the molecular mechanisms behind
them. To address this emerging need, computational approaches increasingly utilize a
pathway-centric perspective.These new methods often utilize known or predicted interac-
tions between genes and/or gene products. In this review, we survey recently developed
network based methods that attempt to bridge the genotype-phenotype gap. We note that
although these methods help narrow the gap between genotype and phenotype relation-
ships, these approaches alone cannot provide the precise details of underlying mechanisms
and current research is still far from closing the gap.
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INTRODUCTION
The rapidly decreasing cost of genome-wide profiling and
whole-genome sequencing stimulated an enormous amount
of progress in mapping complex traits in humans and
model organisms (Stranger et al., 2011). As of 2011, the
NHGRI Catalog of Published Genome-Wide Association Studies
(www.genome.gov/gwastudies) contained data from more than
a thousand GWAS publications. However uncovering genotype-
phenotype association is only the first step and such associa-
tions do not typically provide the explanation of the molecu-
lar mechanism behind the relationship. In addition, identified
associations explain only a limited amount of heritability (Viss-
cher et al., 2008; Witte, 2010), suggesting that the picture is
far from complete at the level of association identification. The
potential impact of rare variants (Visscher et al., 2008; Cir-
ulli and Goldstein, 2010) and epistatic interactions (Cordell,
2009) complicates the inference of the underlying mechanisms
even further. Indeed, in complex diseases various combinations
of genomic perturbations often lead to the same organismal
level phenotype. Therefore many of complex diseases are now
commonly thought of as diseases of pathways (Califano et al.,
2012). In the context of the above mentioned challenges, a
pathway-centric perspective is fundamental to the understand-
ing of the mechanisms of complex diseases and the identifi-
cation of potential drug targets. However, this view exposes
several computational and algorithmic challenges including (i)
how to identify such dysregulated pathways, (ii) how to con-
nect them to the genetic causes, and (iii) how to leverage the
pathway-centric view to capture differences between different
disease subtypes.

In this review we survey the recent progress in network
based approaches to address the above challenges. Many of these
approaches start by replacing the organismal level phenotype, such
as a disease, with molecular level phenotypes, such as gene expres-
sion. Thus we start by describing approaches that uncover the
relation between organismal level phenotypes and molecular, net-
work level phenotypes. Genes whose expression is often perturbed
in concert with perturbation of an organismal level phenotype are
not uniformly distributed in the network but rather form pheno-
typic modules (Figure 1). Thus, we subsequently describe network
based approaches focused on identification of such phenotypic
modules, their roles in different disease subtypes, and their ability
to explain the heterogeneity of complex diseases. Next we switch
from the phenotype-centric point of view to a more genotype
centric perspective. It has been observed that genes that have
aberrations associated with a given disease tend to belong non-
randomly to subnetworks of the interaction network, which we
refer to as genotypic modules. We then describe new algorithms
to identify such modules. Finally, we discuss the approaches that
combine these genotypic and phenotypic centered view-points
and use molecular networks to model information flow from a
genotype to correlated molecular phenotype, attempting in this
way to bridge the gap between them. We conclude the review with a
discussion of the power and limitations of the current approaches.

PHENOTYPIC MODULES
Organismal level phenotypes such as diseases are always related
to some molecular level changes, the so called molecular pheno-
types. These include, for example, the over- or under expression of
particular genes (Figure 1). Therefore one of the first steps toward

www.frontiersin.org May 2013 | Volume 3 | Article 227 | 1

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/10.3389/fgene.2012.00227/abstract
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/10.3389/fgene.2012.00227/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Yoo-AhKim&UID=56230
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=TeresaPrzytycka&UID=48908
mailto:przytyck@ncbi.nlm.nih.gov
http://www.genome.gov/gwastudies
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Kim and Przytycka Bridging the gap between genotype and phenotype

FIGURE 1 | Organismal/molecular phenotype, genotype, and
genotypic/phenotypic modules. Phenotypic modules can be identified by
overlaying gene expression on an interaction network and searching for

subnetworks/modules in which genes are differentially expressed or
interactions are perturbed. Mapping genes residing in altered genomic
regions to an interaction network allows for detecting genotypic modules.

understanding how organismal level phenotypic variants arise is
to identify the molecular level phenotypes that accompany them.
In the last decade gene expression emerged as a molecular level
trait that can ultimately be used as such a molecular phenotype
and be utilized for disease classification, identifying drug targets,
and inferring interactions between genes. Systematically analyzing
gene expression changes in different conditions and in the context
of their molecular interactions usually leads to more robust and
easier to interpret results than focusing on individual genes. More-
over, we do not know the function of most genes and, even when
the function is known, many genes are pleiotropic and their func-
tion can only be interpreted in a context dependent way. Therefore
recent methods, building on the observation that a molecular per-
turbation typically affects whole modules and not just individual
genes, focus on identifying phenotypic modules – clusters of genes
or pathways – significantly enriched with genes whose expression
changes are correlated with phenotypic changes. An additional
benefit of a module based approach is that the increased statistical
power allows the identification a perturbed module even if the
perturbation of each individual gene in the module might not be
statistically significant. Finally, most phenotypes are complex and
can emerge in many different ways. Thus, although we eventually
would like to understand the subtle differences among individuals,
the first line of attack is to capture the molecular pathways whose
dysregulation is common across various disease cases.

IDENTIFYING PHENOTYPE RELATED GENES AND MODULES
One of the first network based methods to capture the impact
of perturbation experiments on a gene network was proposed in
the work of Ideker et al. (2002). Aiming to identify regulatory
and signaling pathways, they integrated yeast protein–protein and
protein-DNA interactions with gene expression changes measured
in response to perturbations of the yeast galactose utilization path-
way. Then they used simulated annealing to search for “active sub-
networks” – sets of connected genes with significantly differential
expression (Figure 1). Using this algorithm (jActiveModules,

available as a cytoscape plugin), they were able to identify sev-
eral subnetworks enriched with well-known regulatory and sig-
naling pathways. This study provided a proof of concept for
subsequent network based approaches. Compared to clustering
methods based exclusively on gene expression data, one of the ben-
efits of integrative network based approaches is that subnetworks
identified by such methods can include genes that are not necessar-
ily differentially expressed but still play an important role within
a module by mediating a connection between genes with signifi-
cant expression changes. For example, they were able to identify
several genes connected by a common transcription factor, which
only shows moderate changes in its gene expression level and thus
would have been difficult to identify without context dependent
methods.

The“active subnetworks”approach identifies modules contain-
ing differentially expressed genes without otherwise quantifying
the relationships between the genes or their expression. However
similarity between expression patterns may be important to iden-
tify functional modules. For example, if the expression changes
of two neighboring nodes are correlated with each other, this
might suggest that the two genes have related functional roles.
To utilize this information, Ulitsky et al. (2010) developed the
MATISSE algorithm to identify Jointly Active Connected Subnet-
works (JACS) which are connected subnetworks with high average
internal expression similarity (Ulitsky and Shamir, 2007). Com-
puting the weight between each pair of genes based on expression
similarity (e.g., the Pearson correlation) and gene specific confi-
dence level that a gene is transcriptionally regulated under a given
condition, they identified a set of connected genes with heavy
weight in the osmotic shock response network in yeast and the
human cell cycle network. A variant of this approach was subse-
quently used to identify regulatory networks defining phenotypic
classes of human cell lines (Müller et al., 2008).

Analyzing subnetwork expression pattern also proved helpful
for predicting genes contributing to the emergence of cancer. The
IDEA (Interactome Dysregulation Enrichment Analysis) method
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is one such approach introduced by Mani et al. (2008). Unlike
approaches that identify perturbed subnetworks by looking at dys-
regulated nodes, the IDEA method focuses on the identification of
perturbed network edges. Specifically, using a combined interac-
tion network [PPI, transitional, signaling, posttranslational modi-
fications predicted by Modulator Inference by Network Dynamics
(MINDy); Wang et al., 2006] as the underlying network, they
searched for the edges connecting genes which in the disease state
show loss or gain of expression correlation. They stipulated that
genes enriched with adjacency to such perturbed edges are likely
to play important roles in cancer and in this way identified several
cancer related genes. Using this approach, they identified BCL2
as the gene adjacent to the largest number of dysregulated edges
in FL lymphoma. This analysis also identified the SMAD1 gene,
which could not be detected by differential expression analysis.
Analysis of other cancer types also supported the utility of the
method. Notably, MINDy (Wang et al., 2006), the posttransla-
tional modification prediction algorithm used in that study as
one of the sources for constructing the underlying network, pro-
vides an important step toward addressing another challenge in
network analysis. Namely, MINDy tests whether the conditional
mutual information, between a transcriptional factor TF and a tar-
get t, is non-constant as a function of a modulator M. In that case,
M is inferred as a candidate posttranslational modulator of the
TF. This approach has been subsequently used to produce the first
genome-wide map of the interface between signaling and tran-
scriptional regulatory programs in human B cells (Wang et al.,
2009).

Another challenge that only recently started to be addressed
is the issue of tissue specificity and cell-to-cell communication.
Tissue specific gene expression can be used to understand the tis-
sue specificity of networks. In a recent study, Keller et al. (2008)
analyzed gene expression data in six different mouse tissues from
an obesity-induced diabetes-resistant and a diabetes-susceptible
strain before and after the onset of diabetes, and identified co-
expression modules within and between tissues. The emergence
of the between-tissue modules provides evidence for intercellu-
lar communication. In addition, they found that the cell cycle
regulatory module in islets predicts diabetes susceptibility.

CLASSIFICATION BASED ON PHENOTYPIC MODULES
Differentially expressed modules have been successfully used for
disease classification (Tan et al., 1996; Ideker et al., 2002; Chuang
et al., 2007; Lee et al., 2008a; Dao et al., 2010). In their pioneer-
ing work, Chuang et al. (2007) utilized protein–protein interac-
tion networks to improve the classification power of metastasis
in breast cancer. Specifically, they identified connected subnet-
works in which the expression patterns of genes significantly differ
between the two cancer types. To select such subnetworks, they
first defined network activity score based on the aggregate value
of a differential expression measure of all genes in the subnet-
work. Comparing the vectors of activity scores between samples
of different types (metastatic or non-metastatic) allowed them to
identify subnetworks whose activity discriminates the two cancer
types. They searched for subnetworks with high discriminative
power in a greedy manner. Importantly, the identified subnet-
works can be considered to be potential markers. As in the case

of single gene disease markers, a network marker will distinguish
some but not all disease cases and multiple subnetworks might be
necessary.

The approach of Chuang et al. (2007) provided the proof of
principle for the utility of network based methods in disease clas-
sification and stimulated further research in this direction. Other
approaches suggested later differ mostly in how the candidate
network markers are identified and how the final set of classify-
ing subnetworks is selected from this candidate set. For example,
instead of protein–protein interaction network, Lee et al. (2008a)
utilized curated path ways as the underlying network.

More recently, Dao et al. (2010, 2011) developed an alter-
native network based approach for the classification of cancer
subtypes. They utilized an edge weighted PPI network based on the
confidence score of each interaction, and searched subnetworks
with sufficient edge weights (Dao et al., 2010). They additionally
required all genes in a network marker to be consistently differ-
entially expressed in a certain minimal number of samples. Their
subsequent improvement included a more advanced, graph color
coding based algorithmic approach for selecting optimally dis-
criminative set network markers (Dao et al., 2011). Using it to
predict drug responses to cancer treatment, they found that the
algorithm not only provided better and more stable predictive
power but also was able to obtain more reproducible markers
compared to the previous methods.

In a different study, Chowdhury and Koyuturk (2010) devel-
oped a set cover based algorithm (see also subsection Disease
Heterogeneity and Network Cover) for the purpose of cancer
classification, and in a follow-up study they used the mutual infor-
mation between the gene expression levels and disease phenotypes
to measure how informative a subnetwork is for classification.
To select the most informative subnetwork markers they used
a bottom-up enumeration approach to exhaustively search all
possible subnetworks.

DISEASE HETEROGENEITY AND NETWORK COVER
Most observed organism-level phenotypes arise in a heteroge-
neous way. Diseases such as autism, cancer, or diabetes are now
seen as a spectrum of related disorders that manifest themselves
in a similar fashion. Despite the differences, such disorders are
expected to share some common molecular level features whose
identification should be helpful for understanding the disease. Set
cover approaches have been found to be useful in capturing het-
erogeneity among patients in complex diseases (Chowdhury and
Koyuturk, 2010; Ulitsky et al., 2010; Kim et al., 2011a). In these
approaches a gene is considered to cover a disease sample if it is
differentially expressed in the sample. Given gene expression pro-
files, a set cover method selects a subset of genes, so that each gene
is covering a group of patient samples and so that the genes in the
selected set also satisfy other conditions including, for example,
minimization of the number of selected genes. The main idea is
that selected genes will collectively represent the heterogeneous
disease cases. Building on this intuition and aiming to detect
dysregulated pathways in complex diseases, Ulitsky et al. (2010)
extended the set cover technique by integrating expression data
and interaction networks. Their method, named DEGAS (de novo
discovery of dysregulated pathways) searches for a smallest set of
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genes forming a connected subnetwork so that each disease sam-
ple is covered by certain minimal number of genes from this set.
This way they find a connected subnetwork collectively covering
all the disease samples. They utilized this algorithm to identify
significantly differentially expressed subnetworks in Huntington
disease as well as breast cancer studies. Finally, Chowdhury et al.
(2011) and Chowdhury and Koyuturk (2010) developed a net-
work cover based algorithm for disease/control classification. The
algorithm starts from a node and greedily extends the subnetwork
to find the smallest connected set of genes (called “coordinately
dysregulated subnetwork”) that are collectively and consistently
differentially expressed in (thus covering) all disease samples.
Among the subnetworks for all seed genes, they selected the
markers of the most discriminative potential based on mutual
information.

GENOTYPIC MODULES
In the previous section, we discussed approaches that identify phe-
notypic modules – subnetworks whose expression changes are
correlated with phenotypic changes. In this section, we turn our
attention to the genetic causes of perturbations and subnetworks
defined by these causes. Recent studies suggested that genomic
alterations in complex diseases, such as cancer and neurological
disorders, are significantly heterogeneous. However, it has been
proposed that the mutated or altered genes may belong to the same
pathways, collectively dysregulating these pathways. For example
recent large scale studies in sporadic autism showed that 39% (49
of 126) of the most severe or disruptive de novo mutations map
to a highly interconnected β-catenin/chromatin remodeling pro-
tein network (O’Roak et al., 2012). This hypothesis has led to the
emergence of approaches to detect disease associated pathways
(Bergholdt et al., 2007; Gilman et al., 2011; Rossin et al., 2011;
Vandin et al., 2011) which focus on identification of genotypic
modules – subnetworks that are enriched with genes having dis-
ease associated genetic alterations (Figure 2). In the case of cancer,
this methodology is typically applied to the somatic cell mutations
which are the most direct triggers of the disease.

Typically, searching for genotypic modules starts with the iden-
tification of genomic regions that are frequently altered in a disease
of interest and mapping the genes residing in the altered regions
to a network. Next, modules enriched with the genetically altered
genes are identified. Genotypic modules are defined based on net-
work topology and possibly other information such as known
functional relationships between the genes, but unlike pheno-
typic modules, they do not assume that molecular phenotype
data such gene expression is available. Several different ways to
score the modules utilizing their connectivity and similarity have
been proposed. An important challenge in such approaches is to
develop rigorous statistical tests to evaluate the significance of the
subnetworks.

Vandin et al. (2011) introduced a computational framework,
called “HOTNET,” to identify subnetwork in which genes are
mutated in a significant number of patients. To this end, they mea-
sured the “influence” between two genes using a diffusion process
(Qi et al., 2008) in a protein interaction network. Then they used
this measure to construct a weighted “influence graph” between
mutated genes. Then they identified a significant subnetwork of
fixed size covering a maximum number of disease cases. Finally,
they employed a rigorous two-stage multiple hypothesis testing
correction method to control the false discovery rate (FDR) for
the identified subnetworks. The method was applied to ovarian
cancer analysis in TCGA (the cancer genome atlas) and identi-
fied the NOTCH signaling pathway which is indeed known to be
significantly mutated in cancer samples (Bell et al., 2011).

The NETBAG (NETwork Based Analysis of Genetic associa-
tions) method is a related method that has been developed by
Gilman et al. and applied to identify a biological subnetwork
affected by rare de novo copy number variations (CNVs) in autism
(Gilman et al., 2011; Levy et al., 2011). Due to their rarity, new
(de novo) germline variations (as opposed to inherited variations)
are often not statistically significant and require an integrated net-
work based approach to understand their functional impacts. In
the NETBAG method, a background network is constructed so
that edges are assigned the likelihood odd ratio for contributing

FIGURE 2 | (A) In eQTL analysis, gene expression is treated as a
quantitative phenotype and genetic loci controlling the phenotypic
changes can be identified based on correlations between the
genomic variations and expression profiles from the same set of

samples. (B) A current flow network algorithm can be used to
prioritize the candidate disease causing genes in the genomic region
and uncover molecular mechanism behind the relationship
simultaneously.
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to the same genetic phenotype. The likelihoods were computed
using a naïve Bayesian approach (similar to the method used to
build functional networks; Lee et al., 2004, 2008b) based on various
descriptors of protein function such as GO annotations, protein–
protein interactions, sequence homology, etc. Genes with CNV
were then mapped to the likelihood network and connected clus-
ters of such genes were identified. A greedy growth algorithm was
used to find the cluster with maximal score which was computed
as direct multiplication of the likelihoods. The significance of a
cluster score was estimated by the distribution of maximal scores
for clusters obtained from randomized data. Applying the method
to a rare de novo CNV dataset from Autism samples (Levy et al.,
2011), they identified a CNV affected subnetwork, which is signif-
icantly enriched with synaptogenesis and axon guidance related
GO terms.

Rossin et al. (2011) proposed another approach to identify
genotypic modules, which is the basis for the DAPPLE (Disease
Association Protein–Protein Link Evaluator) algorithm. They con-
sidered all proteins that are encoded by genes in the genomic
region of interest and connected those proteins based on pro-
tein interaction data. They identified direct and indirect subnet-
works: a direct subnetwork only consists of genes in the regions
with genomic variants and direct interactions between them. In
an indirect subnetwork, they allowed genes to be connected via
common interactors, therefore being at most two hop neighbors
in the protein interaction network. To evaluate if the result-
ing subnetwork has properties different from a random subnet-
work they computed subnetwork scores based on several variants
of connectivities, i.e., the number of edges in the network or
the average degrees of common interactors. The significance of
the network was estimated via a permutation test where ran-
dom networks are generated by shuffling node labels among
the same degree nodes. Applying the method to the genomic
regions known to be associated with Rheumatoid Arthritis (RA)
and Crohn’s disease (CD) from previous GWAS studies, they
found that the identified subnetworks have significantly more con-
nected. Scoring individual genes based on their connectivity scores
and the permutation method, they further proceeded to nomi-
nate high scoring genes from associated regions as candidates for
influencing disease risk and found significant differences in the
expression between the nominated genes and the remainder of
genes.

FROM GENOTYPE TO PHENOTYPE
The approaches discussed in the previous sections dealt with
modules of genes associated with either phenotypic or genotypic
differences. While both are helpful for predicting dysregulated
modules, a more effective way to understand disease mechanisms
is by combining both genotypic and phenotypic data. A useful link
between the two can be provided by expression quantitative trait
loci (eQTL) analysis (Stranger et al., 2005, 2007) – a technique in
which gene expression level is treated as a quantitative phenotype
and genetic loci controlling the phenotypic changes are identified
by comparing gene expression and genotypic data from the same
set of samples and determining the associations between them.
However eQTL analysis alone does not provide the underlying
molecular mechanism through which the information on genetic

alteration is propagated. Consequently several methods have been
proposed to fill this gap.

DISEASE ASSOCIATED MODULES USING EXPRESSION, GENOTYPE,
AND OTHER DATA
One way to start bridging the gap between genotype and phe-
notype is to link genetic variations or genotypic modules to
phenotypic modules. One simple approach is to identify disease
associated phenotypic modules and identify the eQTL associations
of the module members (Chen et al., 2008; Kang et al., 2012).
Using the approach, Chen et al. (2008) elucidated modules that
are perturbed by susceptibility loci that in turn lead to a disease.
Specifically they started by constructing co-expression networks
for liver and adipose tissues collected from a segregating mouse
population in the B×H cross. They found that sub-networks
were enriched for a number of biological processes such as insulin
signaling, inflammation, muscle-related processes as well as with
genes that are perturbed by specific genetic loci. They also estab-
lished that one subnetwork, which was macrophage-enriched, was
likely to have causal relationship with metabolic traits.

An important challenge in modeling genotype-gene expression
relations is posed by the fact that the observed variations in expres-
sion might reflect a composite effect of many genetic variations. To
model such joint transcriptional effects of copy number aberra-
tions on target mRNA expression, Jörnsten et al. (2011) developed
a computational framework, named EPoC (Endogenous Pertur-
bation analysis of Cancer). Given two matrices, ∆X and ∆Y, CNA
(Copy Number Alteration), and mRNA profiles of disease samples,
they represented the transcriptional effects as

∆Y = G∆X + Γ

where G= {gij} indicates the effects of CNA of gene j to the tran-
scription of gene i. The matrix G is obtained by solving the linear
equations using a Lasso method. G can be seen as a CNA-driven
network defining the transcriptional effects between genes. The
optimal network size (number of non-zero entries controlled by
the lasso penalty) is estimated by comparing network consistency
in terms of Kendall’s W or by optimizing mRNA prediction. Once
the size of the network is estimated, the final network is computed
by repeating the estimation and validation process via pseudo-
bootstrapping and retaining interactions appearing with at least
20% frequency. Applying the method to glioblastoma data in
TCGA, they not only found that some nodes emerging as net-
work hubs are oncogenes and tumor suppressors with frequent
copy number alterations, but also identified several other genes not
previously known to be associated with glioblastoma but whose
casualty to the disease is consistent with other evidence. Sub-
sequently, they obtained prognostic scores using Singular Value
Decomposition (SVD) of the network and showed that the scores
successfully predict the survival time of patients whereas the tran-
scriptional network or standard SVD from either mRNA or CNA
profiles alone fails to predict patient survival effectively.

Several groups proposed alternative methods to identify co-
expressed groups of genes and regulating loci at the same time.
For example, Zhang et al. (2010) proposed a method based on a
Bayesian partitioning approach where they used a Markov chain
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Monte Carlo (MCMC) strategy to identify groups of genes and
their regulating loci simultaneously.

Another promising technique that allows for identifying mod-
ules together with their regulators has been pioneered by Segal
et al. (2003). The goal of their approach is to identify coherently
expressed modules and their regulatory programs. A regulatory
program has the form of a decision tree with regulators in deci-
sion nodes so that the states of the regulators on the path from the
root to a leaf (a module) determine the expression of the genes
in a module. The number of inferred regulators (the nodes in the
decision tree modeling the regulatory program) is typically small
since the method attempts to capture the most influential regu-
lators for the whole module. The modules and their regulatory
programs are obtained through an iterative refinement process. In
their first related method, Segal et al. considered a predefined set of
putative regulators including transcription factors. This method
has been later extended to include regulatory genetic variations
and disease phenotypes (Lee et al., 2006, 2009a; Chen et al., 2009;
Akavia et al., 2010; Kreimer et al., 2012). In particular, in the
CONEXIC algorithm, genetic alterations, such as CNVs or muta-
tions, were included as possible regulators and were tested whether
gene expression in a module is switched from normal to the level
characteristic to the disease state (Akavia et al., 2010).

The above approaches constructed modules using expression
and genomic profile without taking advantage of interdependence
between the data. In contrast, Kim and Xing proposed a statis-
tical framework called graph-guided fused lasso (GFlasso) for
QTL(Quantitative Trait Locus) analysis to identify genetic vari-
ations associated with multiple correlated traits simultaneously
(Kim and Xing, 2009). They first constructed a Quantitative Trait
Network (QTN) where each node represents a trait and edges
correspond to the correlations between traits. For example, in the
case of organismal phenotype, the weight might be correlated with
height. For molecular phenotypes such as gene expression, this
correlation could mean correlation in gene expression. For a given
trait vector y, and genotype matrix X, the linear regression model
is formulated as

y = Xβ+ ∈

where β and ∈ are the regression coefficient and error vector,
respectively.

When applied to association studies with multiple traits, the
basic Lasso method computes the regression coefficients by adding
the L1 norm of coefficients (lasso penalty) to the residual sum
of squares, which removes weak associations and provides sparse
associations. In GFLasso, an additional penalty term is further
added to ensure that two highly correlated phenotypes have associ-
ations with the same genomic variations. Namely, the penalty was
added when two correlated traits have differences in regression
coefficients, which presumably increases the power of detecting
causal genomic variants to correlated traits. In this way, GFLasso
associates traits with genotypic variations so that related traits
are mapped preferentially to the same genotypic variations. That
is, for a connected group of co-expressed genes a preference will
be given to associations of these genes with a common genetic
variation.

IDENTIFYING CAUSAL GENES AND PATHWAYS USING INFORMATION
FLOW
Although the approaches discussed above connected genotypic
variation with phenotypic data, only few attempted to uncover
intermediate genes that might mediate this relationship. For exam-
ple, in the CONEXIC method mentioned above, transcription
factors were identified as intermediate regulatory genes to comple-
ment genetic variations in the decision tree (Akavia et al., 2010).
However, can a longer sequence of information flow be identi-
fied? To address this question, Zhu et al. (2008) combined multiple
types of molecular data, including genotypic variations, expression
variations, transcription factor binding, and physical interaction
data and reconstructed a causal network. In short, Bayesian net-
works are directed acyclic graphs, where edges are defined by the
conditional probability that represents the state of a node when
the states of its parents are given. The reconstruction algorithm
takes genetic data as the source of perturbation. Protein–protein
interactions together with transcription factor binding data were
used as prior evidence of a regulatory relationship. Specifically,
protein interaction data was utilized to identify complexes that
are co-regulated by a given transcription factor(s). To evaluate
the results, the authors compared the set of the genes that could
be reached from putative regulators in the genetic loci following
directed links with the set of genes associated with the given loci in
eQTL analysis. The intersection was significant in most cases, pro-
viding a proof of principle that such causal networks can provide
cues on information propagation from genotype to phenotype.

An alternative approach is to utilize information flow where one
can consider genotypic variation as the “source” of perturbation
and genes with phenotypic changes as the target of a perturbation
pathway. Information flow in the biological network has been used
in previous studies for predicting protein functions, prioritizing
candidate disease genes, and finding network centralities (Nabieva
et al., 2005; Newman, 2005; Tu et al., 2006; Stojmirovic and Yu,
2007; Köhler et al., 2008; Suthram et al., 2008; Zotenko et al., 2008;
Lee et al., 2009b; Missiuro et al., 2009; Yeger-Lotem et al., 2009;
Vanunu and Sharan, 2010). In particular, a flow based approach
can be used to augment network information to eQTL analysis,
helping identify causal genes in genomic regions and understand
the propagation of information signals from causal genes to their
target genes. The simplest approaches would be to test if there is
a path in the interaction network that connects a mutated gene
to its putative target. The distance between the putative cause and
target genes could be used to score the strength of the relationship.
However, such approach would ignore the fact that the expression
of all genes in all samples have known and thus could be used to
guide the information flow. Specifically, we can use the expression
data to assign weights to edges so that some edges are more likely
to be used by the information flow than other.

We review here two different types of network flow approaches
that can model such system – current flow network and mini-
mum cost network flow. In current flow approaches, the network
is modeled to mimic the behavior of current in an electronic cir-
cuit and a resistance is associated with each edge while network
flow approaches resemble water finding paths through pipes and
therefore associate capacities and weights with edges representing
respectively the maximum amount of flow and the cost of sending
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flow through an edge. Both approaches have been successfully
applied to uncover molecular mechanisms connecting two differ-
ent types of data. It is worth noting, as pointed out below, that
the current flow network provides an efficient framework equiv-
alent to a random walk which is also often used for modeling
information flow in biological networks.

In the context of connecting genetic perturbations to expres-
sion changes, Tu et al. (2006) proposed a random walk approach
to infer causal genes and underlying causal paths over a mole-
cular interaction network. They applied the method to the data
obtained from yeast knock-out experiments. Given the expression
profile of a target gene gt and an associated eQTL region, a number
of random walks are repeatedly started from gt and the likelihood
of a gene in the eQTL region to be causal is estimated by the num-
ber of times that the random walker arrives at the gene. Assuming
that the activities of genes on a pathway are correlated with the
expression level of the target gene, the weight of a gene g in the
network is defined to be the absolute value of the Pearson’s cor-
relation coefficient between the expression values of g and gt, and
the transition probability of a random walk is computed based on
the weights.

Using the analogy between random walks and current flow
networks, Suthram et al. (2008) developed a method called eQED
where they integrated eQTL analysis with molecular interaction
information modeled as a current flow network. Specifically, each
edge (u, v) is assigned the resistance that is inversely proportional
to (|corr(u, gt)|+ |corr(v, gt)|)/2 where corr(x, y) denotes Pearson’s
correlation coefficient of the gene expression levels of gene x and y.
They further considered the directions of links in molecular net-
works (e.g., TF-DNA interactions) and formulated the problem
as a linear programming, for which the optimal solution can be
efficiently computed.

We employed the circuit flow approach to identify causal genes
and dysregulated pathways in Glioma, utilizing human interac-
tion networks (Kim et al., 2011a,b). For a given target gene, an
eQTL analysis typically finds multiple associated regions and sim-
ply applying a more stringent p-value cutoff may eliminate many
true causal genes. Moreover, each region can contain dozens of
candidate causal genes. Among these genes, we would like to iden-
tify the ones whose alterations are most likely to cause abnormal
expression for a given target gene (Figure 2).

To identify potential causal genes in glioma we utilized CNVs
in cancer tissues and gene expression profiles of the same set of
patients. We first compared the gene expression levels in cancer
patients to non-tumor cases and selected a set of differentially
expressed genes as target genes using a set cover algorithm. Per-
forming eQTL analysis, chromosomal regions where CNVs corre-
lated with the gene expression changes were identified. Next we
used the current flow algorithm to identify potential causal genes
in the associated region. More specifically, for each selected tar-
get gene and an associated region, we created a circuit network
where the target gene is a source of the current flow and the can-
didate genes residing in the region are included as the sinks. We
computed the amount of current entering the candidate genes in
the network and estimated an empirical p-value for each pair of
a target and a causal gene, utilizing a permutation test, for which
we ran the current flow algorithm for random networks, which

we generated in a degree preserving way and all edges retained the
same resistance.

Considering the genes that received a significant amount of
current, we identified putative causal gene in Glioblastoma. In
addition, by taking into account the amount of current going
through intermediate nodes, we were also able to uncover com-
monly dysregulated pathways including Insulin Receptor signaling
pathways and RAS signaling. Several hub nodes on the identified
pathways such as EGFR were known to be important players in
Glioma or more generally in cancer. Compared to simple genome-
wide association studies which only identify putative associations
between causal loci and target genes, the current flow based
method provides increased power in predicting causal disease
genes and uncovering dysregulated.

Yeger-Lotem et al. (2009) developed a minimum cost network
flow based method named ResponseNet to uncover molecular
mechanisms for responses to increased expression level of alpha-
synuclein, a protein implicated in neurodegenerative disorders
such as Parkinson’s disease. A minimum cost network flow is
defined in a network with a source and a sink, and the goal is
to minimize the total cost while sending flow from the source
to the sink without violating the capacity constraints. To model
the information propagation using a minimum cost network flow,
Yeger-Lotem et al. (2009) first selected genetic hits which modify
α-syn toxicity and connect them to the source of flow. Differently
expressed genes are linked to the sink of network flow. The cost
of an edge is computed based on the probability that the two end-
points interact in a response pathway, which is estimated based on
experimental evidences. A constant negative cost is assigned to the
links from the source. The capacity for a link from a target node
to the sink is computed based on its transcript level while uni-
form capacity is assigned to all other links. Given the flow solution
with minimum cost, a response network was predicted by ranking
nodes in decreasing order of total incoming flows.

CONCLUSION
The ever-new discoveries of associations between genetic varia-
tions and complex traits such as common human diseases, posed
a key question – how can we close the gap in genotype-phenotype
relationships. To answer this challenging question, a number of
computational network based approaches have been developed
as surveyed in this review. Focusing on groups of related genes
leads to increased statistical power and enhances interpretabil-
ity of the results. Through these method several new insights have
been obtained including the involvement of macrophages in meta-
bolic diseases (Chen et al., 2008) and the regulation of protein
trafficking in melanoma (Akavia et al., 2010). Network and/or
module based approaches also proved to be powerful in pinpoint-
ing disease causing genes, many of which, for example Ppm1l for
metabolic syndrome or TBC1D16 and RAB27A for melanoma
(Akavia et al., 2010), have been confirmed experimentally while
others are supported by literature evidences.

One of the biggest challenges in understanding complex dis-
eases relates to the fact that such diseases are highly heterogeneous.
Therefore, in addition to being able to discover what individual
disease cases have in common, we need to understand the differ-
ences between different disease subclasses. In this review, we have
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FIGURE 3 | Miró’s depiction of the Sorgh’s painting provides a good
analogy for the relation between computationally inferred subnetworks
and true biological pathways. Such subnetworks provide somewhat
distorted depiction of real relationships within the cell and while general
components are distinguishable, much of the details are inaccurate. For

example, Kim et al. (2011a) identified EGFR signaling as one of the
subnetworks dysregulated in Glioma. However, if we compare the topology
of the retrieved pathway with the topology inferred using laborious small
scale experiments, we usually find that the topology of inferred subnetwork is
distorted relative to the real pathway.

discussed several network based approaches for supervised disease
classification.

Finally, to fully understand a disease, we need to grasp the
precise molecular mechanism behind it. The understanding of
the mechanistic processes is ultimately necessary for guiding a
rational design of drug therapies. While current network based
approaches have certainly helped to understand the landscape
of cellular level changes that accompany phenotypic changes,
most of the results are of impressionist-type landscape, painted
with the broad strokes of dysregulated pathways and groups of
genes rather than with the precise and detailed molecular mech-
anisms. While the approaches that rely on physical interactions,
such as the current flow approach, may be, in theory, the clos-
est to explanatory details, they are also limited by incompleteness
and inaccuracy of physical interaction data. Perhaps a good anal-
ogy is Miró’s interpretation of Sorgh’s painting “The Lute Player”
(Figure 3). While some components (like the dog or the lute)
are strong and clear despite some inaccuracy, others are less so.
In fact much of what we can recognize or interpret in Miró’s
painting depends on our knowledge of Sorgh’s original painting.

This, in some sense, is also true for the interpretation of biologi-
cal results obtained by computational network based approaches.
They require some reference points such as GO categories, KEGG
pathways, knowledge of a function of at least some genes, etc.
for the interpretation of the results. For example, such a network
based method could identify perturbation of known biological
pathways such as EGFR signaling. However, if we compare the
topology of such a pathway retrieved by these methods with “gold
standard” knowledge obtained through many years of targeted,
small scale experiments, we typically find that the topology of
the inferred subnetwork is quite distorted relative to this gold
standard.

These issues notwithstanding, current computational tech-
niques with no doubt have made significant progress toward pin-
pointing commonly dysregulated pathways, disease classification,
and identification of disease associated genes.
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