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Over the last decade, numerous computational methods have been developed in order to
infer and model biological networks. Transcriptional networks in particular have attracted
significant attention due to their critical role in cell survival. The majority of network
inference methods use genome-wide experimental data to search for modules of genes
with coherent expression profiles and common regulators, often ignoring the multi-layer
structure of transcriptional cascades. Modeling methodologies on the other hand assume
a given network structure and vary significantly in their algorithmic approach, ranging from
over-simplified representations (e.g., Boolean networks) to detailed -but computationally
expensive-network simulations (e.g., with differential equations). In this work we use
Artificial Neural Networks (ANNs) to model transcriptional regulatory cascades that
emerge during the stress response in Saccharomyces cerevisiae and extend in three
layers. We confine the structure of the ANNs to match the structure of the biological
networks as determined by gene expression, DNA-protein interaction and experimental
evidence provided in publicly available databases. Trained ANNs are able to predict
the expression profile of 11 target genes across multiple experimental conditions with
a correlation coefficient >0.7. When time-dependent interactions between upstream
transcription factors (TFs) and their indirect targets are also included in the ANNs, accurate
predictions are achieved for 30/34 target genes. Moreover, heterodimer formation is taken
into account. We show that ANNs can be used to (1) accurately predict the expression of
downstream genes in a 3-layer transcriptional cascade based on the expression of their
indirect regulators and (2) infer the condition- and time-dependent activity of various TFs
as well as during heterodimer formation. We show that a three-layer regulatory cascade
whose structure is determined by co-expressed gene modules and their regulators can
successfully be modeled using ANNs with a similar configuration.

Keywords: Artificial Neural Networks, transcriptional regulatory networks, yeast stress response, three layers

regulatory cascades, asynchronous regulation, heterodimers

INTRODUCTION
Gene regulation is a fundamental process for the survival and
proliferation of any living cell and is tightly controlled during all
cellular states. Cells integrate a wide range of environmental sig-
nals in order to regulate their gene expression, which is primarily
controlled at the level of transcription initiation. Alterations in
the external environment affect the activities of specific proteins
known as transcription factors (TFs) which can bind to regulatory
regions of their target genes and inhibit or enable their transcrip-
tion. Gene regulation is a multi-layer hierarchical process (Yu and
Gerstein, 2006), where proteins regulate genes that produce other
proteins. This interacting machinery comprised of TFs and their
target genes can be represented as a directed graph thus forming
the transcriptional regulatory network. This is often said to rep-
resent the master control system of the cell that orchestrates the
differential expression of all genes (Yu et al., 2003; Ihmels et al.,
2004) and has received significant attention over the last decade

(Ihmels et al., 2004; Tanay et al., 2004; Bruggeman et al., 2008;
Petricka and Benfey, 2011).

The organization of regulatory networks reflects the organiza-
tion of the cellular machinery: it consists of functionally coherent
groups, the functional modules (Han, 2008), entities that have
been recognized as the basic structural unit in any biological
system (Hartwell et al., 1999). In the case of transcriptional regu-
latory networks, the functional modules are groups of genes that
are regulated in a coherent manner and thus behave similarly
under similar conditions.

The recent increase in the production and accessibility to
large-scale experimental data sets led to the development of
computational methods that make use of various algorithmic
procedures and integrate heterogeneous biological data aiming
to infer functional modules that reflect distinct biological entities
(Tanay et al., 2004; Fernández, 2007; Zhao et al., 2007; Bruggeman
et al., 2008; Han, 2008). The majority of these methods use
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expression data from microarray experiments to group genes
based on their expression profile, assuming that genes which
are co-expressed under certain conditions are likely to be co-
regulated and/or belong to the same biological pathway (Segal
et al., 2003). Module assignment using gene expression data pro-
vides information about the organization of gene activities in
different intracellular processes. However, it offers little or no
information about the type of regulation (e.g., positive or neg-
ative) exerted by various regulators onto the members of a given
module under different conditions. This limitation was first con-
fronted by Segal et al. (2003) who applied a probabilistic model
on gene expression data to identify the modules, their regulators
and the conditions under which this regulation takes place. Since
then, numerous studies incorporated heterogeneous experimen-
tal data such as motif information (Kundaje et al., 2005; Hu et al.,
2008; Lee et al., 2008), chromatin immunoprecipitation (ChiP-
chip) (Gao et al., 2004; Imoto et al., 2004; Xu et al., 2004; Youn
et al., 2010), and protein interaction data (Tornow and Mewes,
2003; Maraziotis et al., 2008) in order to infer gene functional
modules and associated networks.

Tools for inferring such networks include MA-networker (Gao
et al., 2004), COGRIM (Chen et al., 2007), ReMoDiscovery (Chen
et al., 2007), LeTICE (Youn et al., 2010), and GRAM (Bar-Joseph
et al., 2003), among others. These approaches identify direct reg-
ulatory interactions but are confined to a single level whereas it
has been shown that direct regulators form a bottleneck in the
hierarchical structure of the multi-layer regulatory network (Yu
et al., 2003). Furthermore, existing network-finding approaches
provide mostly qualitative (structural) correlations between reg-
ulators and target genes. Attempts to model genetic regulations
have been reported, although not very successful (Holter et al.,
2000; Liebermeister, 2002; Imoto et al., 2003; Yu et al., 2003;
Yu and Li, 2005; He and Zeng, 2006; Pournara and Wernisch,
2007; Wang and Li, 2012). Interestingly, quantitative correlations
between expression profiles of TFs and their direct targets were
possible when TFs were considered to act in a combinatorial man-
ner, each exerting its regulatory function with a different temporal
delay (Boone et al., 2007; He et al., 2007). Finally, networks iden-
tified based on expression information, such as frequently done
in existing approaches, cannot take into account TFs that are
constitutively expressed and yet exhibit a condition-specific regu-
latory action via the formation of heterodimers (Amoutzias et al.,
2008).

In this work, we address the abovementioned limitations by
constructing three-layer regulatory cascades having as basis not
a single component (gene) but a module of genes along with
its regulators, as identified by GRAM (Bar-Joseph et al., 2003),
one of the most cited module-finding algorithms (Youn et al.,
2010). We then use three-layer Artificial Neural Networks (ANNs)
to model transcriptional cascades in order to quantitatively pre-
dict the expression profile of any gene in a module, given the
expression of its indirect upstream regulators. Our models can
be extended to take into account TF dimer formation as well as
time-dependent combinatorial regulation that may be exerted by
multiple regulators.

Transcriptional regulation is particularly important under
conditions influencing the organism’s survival, such as severe

stress. Saccharomyces cerevisiae for example, is an organism whose
transcriptional profile under stress has been extensively studied
(Bammert and Fostel, 2000; Gasch et al., 2000; Rep et al., 2000;
Causton et al., 2001; Kwast et al., 2002), primarily due to the sim-
plicity of its genome and its worth as a biotechnological product
(Botstein et al., 1997). Thus, we apply our method to a publicly
available dataset concerning the response of S. cerevisiae cells to
various stress conditions.

MATERIALS AND METHODS
DATA ACQUISITION AND PRE-PROCESSING
Microarray gene expression data from S. cerevisiae cells in
response to various environmental stresses (Gasch et al., 2000)
were downloaded and used. The dataset comprised of measure-
ments for the expression of 6152 S. cerevisiae genes under 19
different conditions over several time points (173 experiments
in total) as well as over-expression and knockout experiments.
The stress response data included the following conditions:
(1) heat shock from 25◦C to 37◦C, (2) heat shock from vari-
ous temperatures to 37◦C, (3) steady-state temperature growth,
(4) temperature shift from 37◦C to 25◦C, (5) mild heat shock
at variable osmolarity, (6) response of mutant cells to heat
shock, (7) hydrogen peroxide treatment, (8) response of mutant
cells to H2O2 exposure, (9) menadione exposure, (10) diamide
treatment, (11) DTT exposure, (12) hyper-osmotic shock, (13)
hypo-osmotic shock, (14) amino acid starvation, (15) nitrogen
source depletion, (16) diauxic shift, (17) stationary phase, (18)
steady-state growth on alternative carbon sources, (19) steady-
state growth at constant temperatures, (20) over-expression
studies, (21) knockout experiments for several time points.
The dataset included normalized, background-corrected log2

Red/Green ratios. Normalization included correction of Cy3 and
Cy5 dye biases and background correction to correct for signal
intensities outside the spots. The data were log2 transformed to
avoid fractions in signal ratios. Although normalization repre-
sents an important step in microarray data analysis and pro-
cedure, in this case, since data were previously normalized, no
further normalization was performed. Since many—but not all—
experiments were performed in duplicates or triplicates, we used
the average expression value in our analysis to ensure equiva-
lent contribution of each data-point in the final analysis and also
to avoid having replicates of an experimental condition in both
the training and test datasets of the ANNs. Furthermore, in an
attempt to focus on responses specific to certain stress condi-
tions, we excluded the over-expression and knockout experiments
and divided the rest of the experiments in three main functional
categories as shown in Table 1.

A dataset containing genome-wide location analysis for the
binding of 106 transcriptional regulators to promoter sequences
across the S. cerevisiae genome (Lee et al., 2002) was also used
in the analysis. In the respective study, the authors used a myc
epitope tag for each TFs and performed a genome-wide loca-
tion analysis using microarrays to detect, through hybridization,
those promoter regions of the genome that were enriched in
epitope tags after chromatin immuno-precipitation experiments.
Binding data are represented as confidence values (p-values) for
each microarray spot.
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Table 1 | Stress conditions organized into three categories.

Category A (heat shock) Category B (starvation) Category C (oxidative and osmotic shock)

Heat shock from 25 to 37◦C Amino acid starvation H2O2 treatment

Various temperatures to 37◦C Nitrogen source depletion Menadione exposure

Steady-state temperature Diauxic shift Diamide treatment

Heat shock from 37 to 25◦C Stationary phase DTT exposure

Heat shock at variable osmolarity Steady-state on alternative carbon sources Hyper-osmotic shock

Constant temperature growth Hypo-osmotic shock

Category A includes experiments related to alterations in temperature; Category B includes experiments related to nutrient depletion; and Category C contains

experiments related to oxidative and osmotic shock.

Box 1. The GRAM algorithm. A heuristic algorithm that identi-
fies modules of co-expressed and co-regulated genes based on
expression and DNA-binding data. The algorithm first identifies a
core set of genes that are bound by the same set of regulators
based on a stringent criterion for the p-value binding. For this initial
set, the method finds those genes that share a similar expression
profile and forms a new core set for which the mean expression
profile is calculated. Now an extension step is performed. In this
step the algorithm searches for genes that are bound by a more
relaxed binding criterion and their expression profile is close to the
mean expression profile of the core set of genes. For these genes
a combined p-value is calculated based on the p-values of the reg-
ulators for every module. A gene is now added to the initial set if
its combined p-value is less than a more relaxed binding cutoff.

IDENTIFICATION OF GENE MODULES
In order to identify modules of genes that are co-regulated and co-
expressed under a set of conditions, we used the GRAM algorithm
(Bar-Joseph et al., 2003) (see Box 1 for a brief description). We
used the default settings of the algorithm and the pre-processing
option (row-wise normalization). Specifically: (1) a binding cut-
off p-value of 0.001, (2) rejection of a gene if more that 20% of
the expression or binding data are missing, and (3) the minimal
size of the initial core set of genes forming a module is equal to 3.
This first step resulted in a number of gene modules along with
their direct regulators which formed the middle-layer of the ANN
model.

BUILDING THE REGULATORY NETWORKS
For every GRAM-inferred gene module that is regulated by
at least two TFs, we searched for the proteins that regulate
these TFs using the YEASTRACT database (www.yeastract.com),
to identify the indirect TFs which formed the upper-layer (or
input-layer) of the ANN models. Since transcriptional regulation
requires the binding of a TF to the promoter region of a gene,
in addition to the manually curated bibliographic information, a
protein is assumed in this manuscript to transcriptionally regulate
the target gene that codes for a specific TF only if it has at least one
binding site in the region 1000 base-pairs upstream the promoter
of that gene. The region of 1000 base pairs was chosen as this is
generally considered the region most likely to contain TF binding
sites (Friberg et al., 2005). Binding site data were retrieved from
the SGD database (http://www.yeastgenome.org/).

Thus, we built three layer biological cascades (an example is
shown in Figure 1) in which the third (output) layer comprises

FIGURE 1 | Representative example of a regulatory cascade. The
regulatory cascade that is formed based on module 20 in Category A
(heat shock). The module, as derived from GRAM, consists of seven genes
(YLL006W, YDR043C, YML127W, YFL067W, YLL005C, YLL003W, and
YJL225C) which are regulated by the transcription factors FKH2 and NDD1.
While the biological cascade is common for all genes, a different ANN is
trained/validated/tested based on the expression of every target gene in
the module. Most of these genes are implicated in the stress response as
evidenced from their MIPS annotation (Mewes et al., 1997).

a gene in a module derived by GRAM, the second (middle) layer
consists of the TFs that regulate the module and the first (upper)
layer includes the TFs that regulate the second layer TFs.

MODELING AND QUANTITATIVE PREDICTION OF GENE EXPRESSION
Subsequently, we described quantitatively the uni-directional
dependencies among the upper-layer and the module output-
layer using a well-known machine-learning technique, namely
ANNs, which have been previously used to describe intercon-
nections between gene clusters (Huang et al., 2003), identify
biomarkers using gene expression data (Pal et al., 2007) and clas-
sify gene expression data (Sewak et al., 2009). Unlike previous
approaches where the structural characteristics of the ANNs were
chosen somehow arbitrarily (Huang et al., 2003), we confined the
structure of the ANN to match that of the biological network
as this is inferred from expression data, DNA-protein interac-
tion data and bibliographic information (see Figure 2A for an
illustration of our methodology).

Each node in the input and middle layers represents one TF
and thus the number of nodes in the ANNs equals the number of
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FIGURE 2 | Flow chart of the proposed method. (A) Left panel: Gene
expression data from microarray studies and DNA-binding data (ChIP-chip)
are used as input to the GRAM algorithm in order to identify gene
modules and their regulators. Middle panel: Bibliographical information
from public databases is used to add another layer of regulators and
build the three-layer regulatory cascade. Right panel: ANNs with the

same structure as the biological cascade are built and trained to predict
the expression of the target gene given the expression of the upper-layer
regulators. (B) The basic scheme was extended to include additional
biological aspects such as time-delays among the expression of a
transcription factor and the expression of the target gene and formation
of heterodimers.

TFs in the respective biological networks. Examples of such net-
works are shown in Figures 1, 5, 7, 9 in the Results section. The
activation functions in all ANNs are sigmoid-logarithmic in the
middle-layer nodes and linear in the output layer. The weights
and biases of the network are updated in every training epoch
according to the Levenberg–Marquardt optimization (Levenberg,
1944; Marquardt, 1963) implemented in the Neural Network
Toolbox in Matlab. For every ANN model the expression profile of
the upper-layer TFs is used as input to the model and the expres-
sion of the downstream gene is assessed as the output. For each
model, training is done using 50% of the experimental conditions
and the remaining 50% is used for validation (25%) and testing
(25%). Since genes in a module have slightly different expression
profiles the procedure of the training/validation/testing is com-
pleted independently for every gene. This procedure is repeated
100 times while the training/validation/test data sets are ran-
domly selected for each repetition. The correlation coefficient
between the model predictions for the expression of the tar-
get gene in the test set and the desired output (the actual
expression of the gene) is measured. The model’s performance
is assessed as the average correlation coefficient taken over the
test set for the 100 repetitions and it is considered good if it
is higher than 0.70, a threshold which is generally considered

stringent in biological simulations (Cohen et al., 2000; Luo et al.,
2007).

To assess the statistical significance of the models’ prediction
accuracy, all ANNs are also trained, validated and tested using
randomly shuffled data in the expression profile of the output
gene.

INCORPORATION OF TIME-DELAYS IN TF ACTIVITIES
It is well-known that TFs undergo a number of post-
transcriptional and post-translational modifications from the
moment they are expressed until they become a functional pro-
tein (Benayoun and Veitia, 2009). These modifications are likely
to require a significant amount of time causing a “delay” between
the expression of a TF and its effect on the expression of a targeted
gene. This is supported by previous work, where the expression
profiles of certain TFs correlated with the expression profiles of
their target genes only when activity delays were considered (Yu
et al., 2003; He and Zeng, 2006; Boone et al., 2007; He et al.,
2007). Based on the above, the issue of “timing” becomes even
more important for indirect regulatory interactions such as those
exerted by the upper-layer regulators in our model networks.
The time difference between the activity of a given TF and its
effect on the expression of a target gene is expected to depend
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on the environmental stress under study. For example while for
a heat shock condition gene expression data are measured over
a period of minutes or hours, for nitrogen depletion samples
these values are measured over a period of days. Thus, we allowed
combinatorial interactions among the time-dependent activities
of regulatory TFs that laid two layers upstream in the modeled
regulatory cascade and their target genes (see Figure 1—Timing
for a graphical illustration). For this reason we use the time-series
data of the stress-response dataset and shift the profiles of each TF
independently. We aim to identify the combination of the shifted
TF activities for which the expression of the target gene can be
predicted with the optimum accuracy.

Specifically, we first identify all possible combinations of TF
activities when their profiles are allowed to be shifted multiple
time steps. The only restriction is that a TF profile cannot be
shifted so that the TF appears to be activated after its target gene
is expressed. Also, the timing of the expression of every TF cannot
exceed the available experimental time points. Thus, the expres-
sion profile of every TF i in the data space is shifted ki time steps
backwards, where 0 < ki < n–1 (n is the total number of time-
steps for the condition that has the smallest number of time-steps
for this category). As a result, for every set of N TFs we create
n·N combinations of possible TF-activity profiles (for an illustra-
tive example see Figure 3 and Box 2). Every such combination is
then used as input in the ANNs and the network’s performance is
assessed as previously discussed.

INCORPORATION OF TF DIMERS
Over 6000 genes in the S. cerevisiae genome appear to be regu-
lated by roughly 200 identified TFs (Harbison et al., 2004). While

the set of regulators is relatively small, many of them interact
with each other in order to form new transcriptional regulators
(e.g., TF dimers). As reviewed by Amoutzias et al. (2008), these
heterodimers are unstable complexes able to form or decompose
according to the required conditions. Moreover, the genes that
correspond to each of the components of a heterodimer may

Box 2. A representative example of the TF-delay implementation.
Genes in module 20, Category A (Table 3) are directly regulated by
the TFs FKH2 and NDD1 and indirectly regulated by FHL1, FKH1,
CAD1 and SWI4. The “Heat shock” category includes the follow-
ing set of experiments: “Heat shock from 25 to 37◦C,” “Various
temperatures to 37◦C,” “Steady-state temperature,” “Heat shock
from 37 to 25◦C,” “Heat shock at variable osmolarity,” “Constant
temperature growth.” Of the above, sub-categories “Steady-state
temperature” and “Various temperatures to 37◦C” included only
one time point so they were excluded from time-shift analysis.
The remaining included 3–9 time points depending on the sub-
category. So, the minimum number of available time points is 3,
which means that there are two consecutive available steps (this
is mentioned as “MAX” in the table) and one non-consecutive.
More specifically, the experiment “29C to 33C” includes 3 time
points at which the gene expression was measured, namely at
5 min, at 15 min and at 30 min. The available time steps are there-
fore 5-to-15 min and 15-to-30 min as well as 5-to-30 min. For
simplicity we will consider a time delay step of 1 for all TFs. This
would mean that either (1) when the expression of the target gene
is measured at 15 min, the expression of the TFs is taken to be the
one measured at 5 min or (2) when the expression of the target
gene is measured at 30 min, the expression of the TFs is taken to
be the one measured at 15 min. The same logic applies for time
steps larger than one.

FIGURE 3 | Schematic example of how the TF-delay table is

constructed. Assume a category that consists of two conditions, with
n1 and n2 time points, respectively (black and white rectangles), and a
module that, for simplicity, is regulated by two upper-layer TFs (black
and gray circles). The condition with the smallest number of time points
is n1 so this will be the “leading” condition. Imagine that the target
gene is expressed at time point n1 = 4 (This ranges from 1 to 4,

since the expression profile of the gene is also shifted in time).
Every TF is allowed to be expressed at the time points 1, 2, 3, and 4
(k represents the steps that each TF is shifted). (A) Both TFs are
expressed at time point 1 (k = 0). (B) The first (black) TF is expressed
at time point 2 (k = 1) while the second (gray) at time point 1 (k = 0).
(C) The first (black) TF is expressed at time point 3 (k = 2) while the
second (gray) at time point 4 (k = 3).
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have different patterns of expression. It is possible that one of
them is constitutively expressed while its partner’s expression is
altered in a condition-specific manner. Such complex types of
regulatory interactions are generally ignored by most module
identification methods which focus on the detection of alter-
ations in gene expression in order to classify the genes and their
regulators. To address this limitation (Figure 2B—heterodimers),
we used protein-protein interaction data (Maslov and Ispolatov,
2007) and searched for possible interacting pairs of the identified
TFs in modules with a single regulator. Of the identified pairs we
only took into account those for which DNA binding data were
available (Lee et al., 2002). Before considering this protein as an
additional regulator we test whether it is constitutively expressed
in our dataset. This condition is satisfied if at least 95% of all
data points across all stress conditions in a certain category do
not exhibit more than a twofold change.

RESULTS
IDENTIFICATION OF TRANSCRIPTIONAL MODULES
Application of the GRAM algorithm on DNA binding data as
well as gene expression data from S. cerevisiae under stress con-
ditions that fall in three categories (1) heat shock, (2) starvation,
and (3) oxidative and osmotic stress resulted in the identification
of functional modules and their direct regulators. Genes in these
modules were grouped according to their expression profiles and
the commonality of their regulators. For each category, we iden-
tified 87–100 modules each of which is regulated by 1–3 TFs as
detailed in Table 2 and in Table S1. The majority of these mod-
ules contained a large number of genes that were regulated by a
single TF, suggesting a more general role of these modules that
spanned over multiple cellular processes. Since our goal was to
identify regulatory networks that were specific to stressful stim-
uli, we limited our analysis to the 69 modules that were regulated
by two or more TFs.

INFERENCE OF BIOLOGICAL NETWORKS
We next searched for the regulators of the TFs that regulate
the 69 modules, following the methodology depicted graph-
ically in Figure 2. Based on information from YEASTRACT
(www.yeastract.com), for the majority of our modules these reg-
ulators were either (1) plentiful (>15), (2) unknown, or (3) did
not have a binding site in the promoter region of the gene(s) they
regulate (see Methods). As a result, 51/69 modules were excluded
from further analysis, leaving a set of 18 modules to be used
for building three-layer regulatory cascades. The exclusion of the

majority of inferred modules was a result of multiple factors,
which, however, did not depend on the 3-layer cascade model
itself but on the lack of (unknown TFs or lack of a binding site)
or high complexity (too many TFs to find manually) of bio-
logical information. If all biological information was available,
simulation of all the 3-layer cascades would have been per-
formed. One representative example of such a cascade is shown
in Figure 1, which consists of any gene in module 20 (Table S1)
whose expression profile is modulated during heat shock (cat-
egory A), the FKH2 and NDD1 TFs that regulate this module
(according to GRAM) and the FHL1, FKH1, CAD1, and SWI4
TFs that regulate FKH2 and NDD1 (according to data from
YEASTRACT filtered by our binding criteria). Respective reg-
ulatory cascades for all analyzed modules can be found in the
Table S2.

MODELING OF BIOLOGICAL NETWORKS WITH ARTIFICIAL NEURAL
NETWORKS
Each two layer regulatory cascade was subsequently mapped to
a structurally constrained ANN in an effort to quantitatively
model the effect of upstream TFs on the expression profile
of genes that were two levels downstream in the cascade (see
Materials and Methods for details). A total of 70 three layer
cascades, corresponding to 70 genes contained in 18 modules
identified over all stress conditions were trained, validated and
tested. Using as input the expression of the upper level regu-
lators, the performance of each ANN model was evaluated by
measuring the correlation coefficient r (CC) between the model
output and the true expression profile of the target gene over
numerous stress conditions. This approach resulted in a rela-
tively small set (11/70) of ANN models with a CC > 0.7 (see
Figure 4 and Table S3). The reasons for this could be numerous,
ranging from limitations in the model selection to insufficient
biological information. In the following sections we address some
of these issues in order to improve the performance of our
method.

ASYNCHRONOUS NETWORKS
One possible limitation of our approach is the assumption that,
for a specific condition, the expression of a TF at a given
time point has an effect on the expression of its target gene
which is evident at the same time point. In other words, the
expression profiles of TFs and their targets were assumed to be
(relatively) synchronized (Note: Expression values in microar-
ray experiments were measured over distinct time steps in an

Table 2 | Information about the modules identified by GRAM.

Category A Category B Category C

Number of modules 99 100 87

Number of modules with one regulator 73 76 68

Number of modules with >2 regulators 26 24 19

Mean number of genes in modules with one regulator 24.6 22.63 15.45

Mean number of genes in modules with >2 regulators 10.5 11.58 8.47

This table gives information about the number of the genes in the modules as well as the number of their regulators.
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attempt to capture the gene expression changes during a spe-
cific response. However, it is possible that the cause (expression
of the TF) and effect (change in the target gene expression) are
evident in different sampling times mainly due to the various
post-transcriptional modifications that are necessary for the com-
plete activation of the TF). Moreover, in cases where more than
one TF regulated a given gene we assume that their effects on
gene expression were also synchronous. In reality, this is rarely
the case.

To address this problem we next investigated whether a time-
shift in the expression profile of each TF, independently of each
other, improved the model’s performance (see Materials and
Methods for details). Specifically, we trained/evaluated and tested
the same ANN models using as input the expression profiles
of upstream TFs, each of which was shifted one or more time
steps backwards in time. Every ANN model implementing a
combination of time-shifted TF activities was evaluated using
the CC, as previously described. As shown in Figure 4, when
a time-shifted (asynchronous) regulation was considered, ANN
models could successfully predict the expression profiles of target
genes in the majority of the simulated regulatory cascades. It is

important to note that usually more than one combinations lead
to accurate models (i.e., CC > 0.7). This is rather intuitive since
transcriptional regulation is critical for the cell’s survival and it
is often achieved via alternative pathways (Wagner and Wright,
2007).

A representative example of the improvement in ANN perfor-
mance via the incorporation of TF delays is shown in Table 3. The
table lists the correlation coefficient of the ANN models for three
target genes in the network of Figure 1, namely genes YDR043W,
YML127W, and YJL225C. “Synchronous” indicates the predic-
tion accuracy of the ANN model when no time-shifts in the
TF activities were considered while “Asynchronous” corresponds
to the ANN model that incorporates the optimal combination
of TF delays, namely the one leading to the highest CC. For
gene YDR043W for example, the effects of the TFs FHL1, FKH1,
CAD1, and SWI4 were evident in the expression of the target
gene after 0, 2, 0, and 1 time steps, respectively. The same TFs
appeared to regulate the other two genes in this module with
different time delays, indicating that the effect of the same TF
under the same conditions on the expression of its target was
gene-specific.

FIGURE 4 | Correlation coefficient (CC) distributions for Synchronous and Asynchronous ANNs. ANN models which consider asynchronous interactions
(white) achieve significantly higher performance (larger CC values) than synchronous ANNs (black).

Table 3 | Maximum correlation coefficients for three cascades modeled by synchronous or asynchronous ANNs.

Module 20 Correlation coefficient Transcription factor delays

Synchronous Asynchronous FHL1 FKH1 CAD1 SWI4 MAX

YDR043W 0.65 ± 0.11 0.86 ± 0.13 0 2 0 1 2

YML127W 0.73 ± 0.11 0.85 ± 0.11 0 2 1 1 2

YJL225C 0.48 ± 0.15 0.72 ± 0.14 0 0 0 1 2

In all cases, asynchronous ANNs achieve higher performance. The number of possible time-shifts for each TF depends on the number of experimental time-points

available for each condition. This number is indicated with MAX while the number of time points a transcription factor is expressed before the expression of the

target gene is referred to as transcription factor delays.
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Detailed information regarding the optimal time-shifted com-
binations of TFs for all simulated cascades can be found in
Table S4. It is striking that in the majority (30/34) of simu-
lated regulatory cascades there is a significant improvement in
the prediction accuracy of the ANN models, suggesting that the
transcriptional regulation of most downstream genes is likely
to result from of a time-dependent combinatorial activation of
upstream TFs.

INCORPORATION OF TF-DIMERS
An important limitation of the GRAM algorithm that may have
influenced the ANN models is the assumption that TFs reg-
ulating a given gene should be differentially expressed under
the various stress conditions. This assumption is frequently vio-
lated in cases where two TFs form a dimer in order to exert
their regulatory action. To address this issue, we also considered
constitutively expressed proteins that are found to interact with

already identified regulators. Two such proteins were found in our
dataset, namely PHO2 and HIR1, which are known to interact
with BAS1 and HIR2, respectively.

The TF BAS1 has been implicated in the biosynthesis of his-
tidine, purine and pyrimidine pathways (Tice-Baldwin et al.,
1989; Daignan-Fornier and Fink, 1992). According to GRAM,
it appeared as a unique regulator for 17 genes in Category A,
21 genes in Category B, and 13 genes in Category C. Moreover,
BAS1 is itself regulated by 9 TFs, according to the YEASTRACT
database. ANN simulation of the respective regulatory cascade
(shown in Figure 5A) showed that in Category A (heat shock)
the expression profiles of only 24% of the genes can be predicted
with a correlation coefficient above 0.7 while for the rest of the
genes in this category as well as genes in the other two categories
prediction accuracy was much lower (Figure 6A).

Based on experimental data for protein-protein interactions,
PHO2 interacts with BAS1 and is likely to act as a co-regulator

FIGURE 5 | Regulatory cascades containing the TF BAS1 as the

GRAM-identified regulator. (A) Regulatory cascade where only BAS1 is
considered as a regulator. (B) Regulatory cascade where BAS1 as well as

PHO2 are considered as regulators of the target gene. These cascades are
found in all three stress categories but correspond to different gene modules
as identified by the GRAM algorithm.
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FIGURE 6 | Pie charts showing the grouped correlation coefficients

(CC) of the ANN models in the three stress categories. (A)

Results correspond to genes in modules regulated by BAS1 alone.
Successful ANNs (CC > 0.7) are found only for stress conditions in

Category A (heat shock). (B) Results correspond to genes in
modules regulated by the BAS1-PHO2 dimer. In this case, there is a
significant increase in the correlation coefficient of ANNs over all
three stress categories.

as its presence is necessary in order for BAS1 to exert its regu-
latory action (Maslov and Ispolatov, 2007). In addition, PHO2
was constitutively expressed under both normal and stress con-
ditions in our dataset. Incorporation of both TFs in the ANN
model (cascade is illustrated in Figure 5B) significantly improved
the model performance, particularly for genes in Categories A
and B and less in Category C (see pie charts in Figure 6B).
Specifically in Category A, 41% of gene profiles could be pre-
dicted with high accuracy, while this number dropped to 32% and
8% for Categories B and C, respectively. Among the ANNs with
improved performance, the model corresponding to YOR224C
(RPB8) appeared in all three categories. RPB8 is part of the
RNA-polymerase III subunit (Archambault and Friesen, 1993;
Chédin et al., 1998; Geiduschek and Kassavetis, 2001) and at least
three other genes in the same module encode proteins related
to ribosomal components. There is supporting evidence for the
involvement of BAS1 and RNA-polymerase and ribosomal pro-
teins in other common regulatory pathways (Som et al., 2005;
Kresnowati et al., 2006), an indication that BAS1 is indeed a
necessary regulator in various aspects of the cellular machinery.

Another regulator, HIR2, was also identified by GRAM as a
unique regulator for 19 genes in Category A, 21 genes in Category

B and 5 genes in Category C. HIR2 was itself regulated by 5 TFs
as illustrated in Figure 7A. The ANN models that simulated this
cascade achieved high performance for 78% of the target genes in
Category A, but poor performance for the genes in the remaining
Categories (pie charts in Figure 8A).

According to experimental evidence, HIR2 acted as a co-
regulator of HIR1 for the transcription of histone genes
(Sherwood et al., 1993; Desilva et al., 1998). Given that HIR1
was constitutively expressed in over 95% of our stress conditions
and interacted with HIR2, a biological cascade that involved both
TFs as middle-layer regulators was built (Figure 7B). Simulation
of this cascade with ANNs resulted in high performance (CC >

0.7) for 89% (17/19) of the genes in Category A. A large frac-
tion (6/19) of the genes in this category is of unknown function,
while 4/19 genes have been associated with the ribosomal machin-
ery and the rest share various other functions. Performance in
Category B also improved with 9% of the ANNs achieving a CC
above 0.7 while in Category C, although the performance of all
ANNs was improved, no gene could be predicted with a CC >

0.7 (Figure 8B). The dramatic difference between ANN model
performance in the three categories could suggest that the forma-
tion of the heterodimer HIR2-HIR1 is condition-dependent, as is
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FIGURE 7 | Regulatory cascades containing the TF HIR2 as the

GRAM-identified regulator. (A) Regulatory cascade where only HIR2 is
considered as regulator. (B) Regulatory cascade where HIR2 and HIR1 are
considered as regulators of the target gene.

the case for the majority of the known heterodimers (Amoutzias
et al., 2008).

Finally, a special case of transcriptional regulators that are
known to have a key role in the stress response in S. cere-
visiae, MSN2 and MSN4 (Martinez-Pastor et al., 1996; Gasch
and Werner-Washburne, 2002), were included in our analysis. In
accordance to experimental findings (Haitani and Takagi, 2008),
MSN2 was constitutively expressed across all stress conditions in
our dataset; subsequently, the GRAM algorithm identified only
MSN4 as a transcriptional regulator for 24 genes in Category A,
24 genes in Category B and 16 genes in Category C (the regula-
tory cascade that includes MSN4 as a middle-layer regulator can
be seen in Figure 9A).

Considering the importance of both regulators and their ubiq-
uitous presence in stress response we built the regulatory cascade
illustrated in Figure 9B which includes both MSN2 and MSN4
as well as their direct regulators. Figure 10 illustrates the perfor-
mance of the ANNs in the three categories, grouped as models
with CC that exceeds the 0.7 threshold and those for which the
CC < 0.7 for MSN4 alone (Figure 10A) and MSN4 and MSN2
cascades (Figure 10B). ANN models that contained only MSN4
as a middle-layer regulator had a relatively good performance

in Category A and a poor performance in the remaining cate-
gories. ANNs that consider both MSN4 and MSN2 had a good
performance in all categories. Specifically, in category A (heat
shock) more than half of the gene expression profiles could be
predicted with high accuracy and it is important to note that
the average CC of these ANNs was 0.85. The very high per-
formance under heat shock (in both MSN4 alone and MSN2/4
models) could be related to the unique role of the MSN2/4 TFs
to stress responses associated with alterations in temperature.
Experimental evidence has shown that despite their overall func-
tion as stress response factors, they seem to be especially impli-
cated in pathways that are triggered during heat shock (Ernst
et al., 2007).

To ensure that improved ANN performance was not sim-
ply due to the addition of extra free parameters (namely the
extra weights between the second middle layer node and its
upper layer regulators as well as the weight between the output
gene and the added middle layer node), we replaced the PHO2
and HIR1 TFs, respectively, with five (each) randomly selected
TFs. All of the randomly selected replacements were regulated
by the same number of upper layer TFs as the replaced factor
to ensure the same degree of flexibility (same number of free
parameters/weights) in the resulting ANN models. Specifically,
the following pairs of second layer TFs were used: (a) BAS1-
YBR137W, (b) BAS1-SLY1, (c) BAS1-SAT4, (d) BAS1-CCS1, and
(e) BAS1-THR1 instead of the original BAS1-PHO2 dimer and
(a) HIR2-YDR249C, (b) HIR2-PMT1, (c) HIR2-YDL026W, (d)
HIR2-YJR085C, and (e) HIR2-HIS6 instead of the HIR2-HIR1
dimer. This procedure resulted in ten additional three-layer cas-
cades and a total of 10 × 86 (10 × 41 for each BAS1-pair and
10 × 45 for each HIR2-pair, see previous paragraphs) new ANN
models. In all cases the ANN models resulting from the randomly
selected TF pairs had poorer performance (fewer ANN mod-
els with CC > 0.7) than the respective ANNs corresponding to
the original dimers. Moreover, in several cases performance was
worse than the ANNs incorporating only one of the TFs (as
opposed to the dimer), indicating that improved performance
does not result from the added flexibility provided by the extra
free parameters.

STATISTICAL ASSESSMENT OF ANNs’ PERFORMANCE
To assess the accuracy of our ANN models in predicting the
expression profile of downstream genes we shuffled the expres-
sion values of each target gene and re-trained the models. We
found that for all ANNs with CC > 0.7, the correlation coef-
ficient for the shuffled data dropped dramatically, indicating
that the performance of our ANN models is far from random
chance (see Figure 11 for a detailed comparison). For the asyn-
chronous networks in particular, the ANN models corresponding
to the various combinations of time-shifted TF activities were
also simulated using 100 trials where the expression profile of
the target gene was randomly shuffled and the resulting CC was
recorded. In all cases, the CC of the optimal set of time-shifted
TF activities was found to be significantly higher than the max-
imum CC obtained by the shuffled ANNs, indicating that the
improved performance in asynchronous networks was not a result
of overfitting.
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FIGURE 8 | Pie charts that show the grouped correlation coefficients

(CC) of the ANN models in the three stress categories. (A) Results
correspond to genes in modules regulated by HIR2 alone. ANNs with
CC > 0.7 are only seen in Category A (heat shock). For Category C in

particular, the correlation coefficient for all genes is very low (CC < 0.5).
(B) Results correspond to genes in modules regulated by HIR2 and HIR1.
In this case the ANN performance is slightly improved in all three
categories.

DISCUSSION
In this work we introduced a semi-dynamic method for model-
ing the structure of three-layer transcriptional regulatory cascades
based on ANNs. The method calculates quantitatively the expres-
sion profiles of S. cerevisiae genes during various stress conditions,
based on the expression of their upstream regulators. S. cerevisiae
was selected because it is a well-studied organism with an impor-
tant biotechnological role (Botstein et al., 1997). The availability
of a plethora of expression studies concerning the response of
S. cerevisiae to different environmental changes (Bammert and
Fostel, 2000; Gasch et al., 2000; Rep et al., 2000; Causton et al.,
2001; Kwast et al., 2002) underlies the importance of this mech-
anism and provides the large amount of data required for a
quantitative approach like the one proposed here.

Our approach depends on the use of publicly available soft-
ware tools (e.g., GRAM or any other module finding tool) for
the identification of groups of genes which share common expres-
sion profile and a common set of regulators. Using these modules,
along with information regarding protein-DNA and protein-
protein interaction data, we extend the regulatory modules into

three-layer cascades by adding another level of regulation. These
cascades are then simulated using ANNs where the expression of
the upper level regulators is used to predict the expression of the
downstream target gene(s).

Initial use of the ANNs under the assumption that expression
profiles corresponding to regulators and regulated genes evolve in
synchrony over time and under various conditions, resulted in a
relatively poor outcome: only 11 out of 70 models had a high per-
formance (CC > 0.7). Incorporation of time-delays between the
profiles of regulators and those of regulated genes, which can vary
independently for each regulator, resulted in a massive increase in
the percentage of successful ANN models:

Thirty out of thirty four networks tested had a signifi-
cant improvement in their performance, validating the intuitive
assumption that a TF can be expressed several time steps before
its effect is evident in the expression of the target gene and that
regulators that target the same gene may exhibit their activity in
a combinatorial manner. Identification of the optimal combina-
tion of TF activities for which the expression of a downstream
target gene can be predicted with high accuracy leads to a working
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FIGURE 9 | Regulatory cascades containing the TF MSN4 as the GRAM-identified regulator. (A) Regulatory cascade where only MSN4 is considered as a
regulator. (B) Regulatory cascade where MSN4 and MSN2 are considered as regulators of the target gene.

hypothesis that describes not only the regulatory components
for this gene (network structure) but also their interaction over
time (network functionality over time). An important finding is
that for every regulatory cascade there is more than one optimal
combination of transcriptional activities, in agreement with the
observed flexibility of biological systems to overcome perturba-
tions that could hinder their regulatory program.

The method was also found to perform well in three cases
where known regulators, which are constitutively expressed
under stress conditions, were introduced in the middle layer.
Incorporation of protein interaction data as an indication of het-
erodimer formation to previously identified cascades resulted in
a significant improvement in the performance of ANN mod-
els. Specifically, we incorporated the interaction of BAS1 with
PHO2 and the interaction of HIR2 with HIR1. In the latter case,
model performance was condition-dependent with heat shock
and starvation categories having the highest performing models,
thus pinpointing to the specific stress conditions that favor the
formation of the given heterodimer.

Existing network inference approaches range in the field
between two extremes. Considering the gene as only existing in
two discrete situations that is on and off, as in Boolean approaches
(Bornholdt, 2008) or offering an analytical description of the gene
state using differential equations (Sakamoto and Iba, 2001). The
main limitations of these approaches is the assumption of binary
values for the expression of a gene and the requirement for a
large amount of parameter values that are not usually available
and therefore the restriction of the method to a very small por-
tion of the regulatory network, respectively. Bayesian networks
(BN) (Hecker et al., 2009) represent the regulatory interactions
by probability in a predefined graph and they are based on identi-
fying the conditional probabilities that best match the expression
data on this graph. Their main advantages include the offering
of a flexible framework for the combination of different types of
data and the ability to avoid over-fitting a model to the training
data.

Our method covers these advantages and overcomes the bot-
tleneck of the graph identification by restricting the model
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FIGURE 10 | Pie charts that show the grouped correlation coefficients

(CC) of the ANN models in the three stress categories. (A) Results
correspond to genes in modules regulated by MSN4 alone. ANNs with CC >

0.7 are only seen in Category A (heat shock) whereas no good predictions

were found in categories B and C. (B) Results that correspond to genes in
modules regulated by MSN4 and MSN2. In this case the ANN performance is
improved in all three categories, with Category A having the majority of the
successful ANNs, in agreement with experimental evidence.

FIGURE 11 | Correlation coefficients of the normal and shuffled data. Bars show the mean and standard deviation of the correlation coefficients achieved
by all ANN models when either the normal (white) or randomly shuffled (black) expression profiles for the target gene where used to train the models.

structure through the application of clustering methods and bib-
liography. We demonstrate that these models can capture simple
as well as more complicated aspects of biological regulation rang-
ing from semi-dynamic predictions of gene expression profiles
over multiple conditions to incorporation of additional types of

regulation. Although ANNs have been used in the past to model
simple regulatory cascades with moderate accuracy, they did not
reproduce the structure of biological networks which enforces
several constrains and did not extend to more than one level
of regulation (Hart et al., 2006). Our findings show that ANNs
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can be used to simulate indirect, time-dependent interactions
between transcriptional regulators and genes downstream in a
cascade as well as their evolution over multiple conditions and
time points.

In summary, we propose a quantitative method for model-
ing biological cascades based on the ANN formalism. Compared
to existing methods for network inference and parameter opti-
mization, the proposed scheme uses a combination of a data
driven process that identifies clusters of co-expressed and/or
co-regulated genes along with a knowledge—driven feature selec-
tion approach of previously identified protein-protein interac-
tions in order to reduce the dimensionality of the network
components.

Our method offers the algorithmic simplicity of the Boolean
network approach using real expression data and although the
simulation of these data lacks the analytical description offered
by differential equation methods, it can be applied in three layer
regulatory networks. Albeit our method was implemented using
S. cerevisiae data, it is readily applicable to any other organ-
ism and/or condition influencing gene transcription. While our
method is restricted to time-course gene expression data and
requires previous knowledge on gene regulatory interactions,
it can be used to predict the expression of downstream regu-
lated genes based on the expression of their regulators and can
predict the expression in time points that are not present in
the experimental dataset. Moreover, it could be used to iden-
tify the time dependencies of regulatory interactions and identify
the optimal timing of regulatory combinations. Finally, using our
method one could propose candidate co-regulatory pairs of TFs
(over a pool of available TFs) based on the increased perfor-
mance of the ANN for each pair as well as the condition under
which this pair is formed. Future work can address the limita-
tions of our approach regarding the identification of upstream
regulators, by incorporating an automated search method for
inferring these molecules and their interactions from public
databases.
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Table S1 | Functional modules. This table shows the genes in every

module identified by GRAM, grouped according to similarity in their

expression profiles.

Table S2 | Transcriptional regulatory networks. The genes in every

module are regulated by the 1st-layer regulators. Each 1st-layer

regulator is regulated by the 2nd-layer regulators that lie in the box on

the right.

Table S3 | Network performance. Average correlation coefficients and their

standard deviation for Synchronous and Asynchronous networks. The

correlation coefficients of corresponding shuffled networks along with the

p-values for the highest CC among Synchronous and Asynchronous

networks is also shown.

Table S4 | TF delays. Tables showing the steps of each TF delay in the

networks. MAX shows the maximum number of time-delays available for

the particular network.
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