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Protein functional annotation consists in associating proteins with textual descriptors
elucidating their biological roles. The bulk of annotation is done via automated procedures
that ultimately rely on annotation transfer. Despite a large number of existing protein
annotation procedures the ever growing protein space is never completely annotated.
One of the facets of annotation incompleteness derives from annotation uncertainty.
Often when protein function cannot be predicted with enough specificity it is instead
conservatively annotated with more generic terms. In a scenario of protein families
or functionally related (or even dissimilar) sets this leads to a more difficult task of
using annotations to compare the extent of functional relatedness among all family or
set members. However, we postulate that identifying sub-sets of functionally coherent
proteins annotated at a very specific level, can help the annotation extension of other
incompletely annotated proteins within the same family or functionally related set. As
an example we analyse the status of annotation of a set of CAZy families belonging to
the Polysaccharide Lyase class. We show that through the use of visualization methods
and semantic similarity based metrics it is possible to identify families and respective
annotation terms within them that are suitable for possible annotation extension. Based
on our analysis we then propose a semi-automatic methodology leading to the extension
of single annotation terms within these partially annotated protein sets or families.

Keywords: functional annotation, annotation extension, protein annotation coherence, annotation metrics, gene
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1. INTRODUCTION
The continuous development of high-throughput methodologies
for biological molecule sequencing has led to an increase in the
amount of raw biological data in need of further processing. The
sequencing of a new biological molecule is normally followed by
a functional annotation process that aims to provide functional
descriptors elucidating its biological role. Functional annota-
tions can be derived from either experimental determination
or prediction. Generically, given supporting evidence, functional
descriptors are assigned (with varying degrees of confidence) to
their corresponding biomolecules. In fact, a functional annota-
tion can be represented as the pair of a biomolecule (identifier)
and corresponding functional descriptor.

Among biomolecules, proteins are of particular interest given
their participation in practically every process occurring within
living cells. Their functions can range from structural or mechan-
ical support to the catalysis of vital metabolic biochemical reac-
tions. Furthermore, their functional specification is very broad
and can range from descriptors on general participation in bio-
logical processes, such as responses to oxidative stress, up to more
specific descriptors, such as catalysis of particular biochemical
reactions. It would be desirable to determine protein function via
accurate and comprehensive chemical characterizations, if possi-
ble by experimental assessment, however, this process is expensive
and time consuming. Instead, the most commonplace approach is

the use of any of the several function prediction methodologies,
relying on techniques ranging from sequence homology detection
to text mining of the scientific literature. Most of these method-
ologies also rely heavily on computational power and can range
from partial to full automation, thus enabling them to handle
the barrage of biological sequence data currently being made
available.

Proteins are commonly grouped into evolutionarily related
groups known as protein families. Within a family each protein
shares homology with all the other proteins, i.e., it descends from
a common ancestor and usually retains significant sequence sim-
ilarity. In turn that often (but not always) translates into similar
three-dimensional structures and functions. Although sequence
similarity alone is not sufficient to conclude protein homol-
ogy, it nevertheless provides a reasonable cornerstone for many
sequence alignment methods. Similarly, homology also does not
guarantee functional similarity among proteins but provides a
good starting point and is commonly used in several functional
annotation methods. Hence, it is typically advantageous to group
proteins into homologous families because of the potentially
shared functions.

The emergence of biological ontologies and most notably the
Gene Ontology (GO) (Ashburner et al., 2000) has greatly bene-
fited the annotation efforts by providing a structured and con-
trolled vocabulary of terms for the description of gene products.
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This standardization of human-readable functional descriptors
also enables machine-readability thus being particularly useful
in automated procedures. This in turn leads to an ever increas-
ing availability and quality of protein annotations. The increasing
popularity of GO terms for protein annotation has also led to
the development of several associated semantic similarity based
metrics that compare proteins based on their functions instead
of their sequence or structure. GO semantic similarity can then
be defined as the closeness in meaning between two terms or
two sets of terms annotating two proteins. Under the assumption
that when functional descriptors of two proteins are similar so
are their functions, semantic similarity is then also referred to as
functional similarity. However, caution must be exerted during the
interpretation of annotation similarities since there are still issues
that GO inherently does not solve, for instance, annotation bias
and annotation incompleteness.

The functional descriptions of GO, given its ongoing and
asymmetric growth, span a range of specificities (Alterovitz et al.,
2010). Coupled with that, protein prediction methods assign
either more specific or more generic annotation terms depend-
ing on the uncertainty level of the predictions being made.
When comparing proteins annotated at different levels of com-
pleteness low semantic similarity values may then be reported.
Therefore, the metrics used either have to account for these issues
or adequate care must be taken when interpreting results.

The development of functional similarity metrics able to
explicitly gauge the state of annotation incompleteness within a
set of functionally related proteins is much required. We further
postulate that by implementing these kind of metrics, we can
identify functionally coherent sub-sets of proteins with a greater
degree of annotation “completeness.” Using these identified sub-
sets as specific function knowledgebases we can potentiate the
annotation extension of the remaining members in a functionally
related set that is still incompletely annotated, ultimately lead-
ing to a greater degree of annotation completeness for a given
functionally related protein set.

2. THEORY
2.1. GENE ONTOLOGY
The GO consortium provides a structured and controlled vocab-
ulary for the description of molecular phenomena in which
proteins (and or gene products) are involved. Within each GO
aspect the biological phenomena are described at different levels,
thus this vocabulary is divided into three orthogonal ontology
aspects that describe gene products in terms of their associated
biological processes, cellular components and molecular func-
tions (Ashburner et al., 2000). The biological process aspect of
GO describes activities of sets of proteins interacting and involved
in cellular processes, such as metabolism or signal transduction.
The cellular localizations (such as the Golgi complex or the ribo-
some), where these processes take place are described by the
cellular component aspect of the ontology. On the other hand,
each protein can, independent of the surrounding environment,
perform catalytic or binding elementary molecular activities thus
being described by the molecular function aspect of the ontol-
ogy. Structurally each ontology aspect is organized as a Directed
Acyclic Graph (DAG), where each node represents a term and

edges represent a relationship between those terms. Each term
is identified by an alphanumeric code (e.g., GO:0001170) and
its textual descriptors, including its name, definition, and syn-
onyms if available. Currently, the existing relationships between
GO terms can be of three types: is_a, part_of and regulates.
While is_a and part_of relations are only established within each
individual ontology aspect, regulates relations can occur across
aspects.

Proteins and other gene products are not actually part of
GO which includes only terms that describe them. Nevertheless,
the GO Consortium, via the Gene Ontology Annotation (GOA)
project (Barrell et al., 2009), does provide annotations, such as
previously defined as being the associations between gene prod-
ucts and the GO terms that functionally describe them. In order
to fully describe a protein function any number of GO terms can
be used to annotate the protein. Additionally, GO follows the true
path rule which states that “the pathway from a child term all the
way up to its top-level parent(s) must always be true”, thus as can
be seen in Figure 1 any protein annotated to the term polysac-
charide binding is also automatically annotated to its two parent
terms: carbohydrate binding and pattern binding. In turn these
two sibling terms are children of the term binding, a direct child
of the root term molecular_function. Furthermore, each annota-
tion linking a GO term to a protein is given an evidence code
(ECO), which is an acronym identifying the type of evidence that
supports that annotation, e.g., the IDA code (Inferred by Direct
Assay) is assigned to annotations that are supported by that type
of experiment.

2.2. PROTEIN GO ANNOTATION
Functional annotation is an essential step in the path of pro-
viding proteins their biological contexts and therefore facilitates

FIGURE 1 | Sub-graph of the GO molecular function ontology aspect

depicting only is_a relationships.
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knowledge exchange within the scientific community. Several
methodologies exist for protein annotation but generally they can
be divided into three major approaches: manual annotation (or
curation), automatic annotation and the hybrid approach, semi-
automatic annotation. Despite manual annotations produced by
expert curators typically being of an higher quality level, this
annotation approach does not scale up to the output of the high-
throughput sequencing projects. Therefore, the bulk of protein
annotations are produced via automated procedures. These typ-
ically rely on methods for transferring annotation terms from
previously annotated protein sources to other unannotated (or
incompletely annotated) proteins.

Using a controlled vocabulary like GO for protein annotation
instead of free-text annotation solves several issues mostly com-
mon to many early annotation systems. Among those issues are
the lack of annotation interoperability due to researcher subjec-
tivity, the lack of vocabulary uniformity and problems arising
from different scopes in function definitions. The scope of anno-
tation can range from gene identification, cellular component
specification and description of molecular interactions up to
regulatory interactions between components of whole biological
systems. This could present itself as an issue during the annota-
tion process but is dealt with by the GO structure, where these
scopes are divided into three orthogonal ontology aspects: cellu-
lar component, molecular function, and biological process. However,
GO does not solve all annotation issues and even introduces new
ones. The GO ontology aspects themselves are a product of mostly
manual curation and their growth is linked to research bias, thus
some parts of the ontology are more developed (have terms for
more specific functions) than others (Pesquita and Couto, 2012).
This is a source of incompleteness for annotation by limiting the
maximum functional specificity that can be attributed to pro-
teins. However, despite the availability of specific terms some
annotation methodologies (mostly automatic) are unable to use
them to annotate proteins with an high degree of confidence.
Hence, this leads to a similar type of annotation incomplete-
ness. On the other hand, a conservative annotation behavior
may be desirable in order to mitigate possible annotation error
propagation.

Typically, the automatic protein annotation systems do not
actually produce de novo functional annotation terms. Instead,
these systems commonly rely on methods for transferring anno-
tation terms from previously annotated protein sources to other
unannotated (or incompletely annotated) proteins. Thus, the
typical workflow of an automatic annotation system includes a
first stage where potential functional peers are identified. A sec-
ond stage then involves the actual annotation transfer where
functional terms are extracted from the functional peers and asso-
ciated to the previously incompletely annotated or unannotated
proteins.

The automatic procedures used for protein annotation can
be divided into sequence-based approaches and structure-based
approaches. Although three dimensional structure of proteins is
generally more conserved than its sequence, the wider availabil-
ity of sequence data over structural data allows for potentially
greater annotation coverage with the former. Still, proteins with
similar sequences typically possess evolutionary proximity, and to

FIGURE 2 | Common approaches in sequence-based functional

annotation systems.

some extent, function conservation thus providing good approx-
imations. In a similar sense, structure-based approaches can also
compare protein structures in order to obtain similarity scores,
but further details on structure-based approaches are out of the
scope of this topic (see more at Sleater and Walsh, 2010).

The sequence-based approaches can still be further sub-
divided, as depicted in Figure 2, into three specific methodol-
ogy types: homology-based, motif-based and genomic context
strategies. Among the existing functional annotation systems
the homology-based methodology is perhaps the most preva-
lent methodology. This type of methodology generally makes
use of sequence alignment algorithms, such as the ubiquitous
BLAST (Altschul et al., 1997), to compare unannotated query
proteins against annotated sequences in a database. The under-
lying assumption is that similar sequences are most likely to
have evolved from a common ancestor and thus retained simi-
lar functions. However, high sequence similarity does not always
mean functional similarity (Rost, 2002) so annotation systems
also employ additional techniques to handle known caveats. An
example of a system using this approach is Blast2GO (Götz et al.,
2008) where homologous sequences are retrieved from significant
BLAST results under a given expectation value (e-value) thresh-
old. In order to handle the possibility of annotation of short
sequence matches with low e-values filtering by minimal align-
ment length (hsp-length) is allowed. An alternative to querying
unannotated sequences against databases of annotated sequences,
is to query them instead against known recurring patterns of
motifs known to be associated with particular functions. This
is the so-called sequence motif-based methodology where an
annotation system uses either the patterns, rules and profiles
of PROSITE (Sigrist et al., 2010), the fingerprints in PRINTS
(Attwood, 2003), the family profiles from ProDom (Bru et al.,
2005), the Hidden Markov Models (HMMs) from Pfam databases
(Finn et al., 2010) or any other sequence motif type in order to
perform functional inference.

Other alternative annotation strategies can be categorized
under the denomination of genomic context strategies. These
strategies subsume the gene neighborhood, gene clustering,
Rosetta stone and phylogenetic profiles methods, which operate
by identifying pairs of non-homologous proteins that co-evolve.
Evolutionary pressure originates pairs of proteins that func-
tionally collaborate and that: (i) are coded nearby in multiple
genomes, (the gene neighborhood method); (ii) are components
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of an operon in prokaryotes, (the gene cluster method); (iii) can
be fused into a single protein in some organisms, (the Rosetta
stone method); (iv) are regularly both present or both absent
within genomes, (the phylogenetic profiles method) (Bowers
et al., 2004). Protein-protein interactions and gene expression
data from microarray experiments have also been used as part of
the functional peers identification methodology in some anno-
tation systems. These genomic context methods can be used on
annotation systems either individually or conjointly. Overbeek
et al. (1999) apply the gene clustering method on their system
to infer functional coupling in prokaryotic genomes. Zheng et al.
(2002) also uses a clustering method but applied on phyloge-
netic profiles. Using microarray mouse expression data for nearly
40,000 known and predicted mRNAs in 55 mouse tissues Zhang
et al. (2004) were able to show that quantitative transcriptional
co-expression is a powerful predictor of gene function. On the
other hand, the Prolinks (Bowers et al., 2004) database uses the
four genomic methods described above in combination to infer
functional linkage between proteins through the identification of
co-evolved pairs of non-homologous proteins. Similarly Phydbac
(Enault et al., 2005), a gene function predictor system specialized
in bacterial genomes also uses genomic context strategies in its
workflow. Protein associations are generated by a combination
of the phylogenetic profiles, the gene cluster and Rosetta stone
methods. Both Deng et al. (2002) and Letovsky and Kasif (2003)
employ the theory of Markov random fields to infer a protein’s
functions using protein-protein interaction data and the func-
tional annotations of a protein’s interaction partners. Chua et al.
(2006) also developed a method for predicting protein function
based on protein-protein interaction data, the difference being
that in this case transitive relations are also considered for the
predictions.

Prediction and assignment of protein function is seldom done
in a deterministic way. While some general functions can be
assigned deterministically to sequences, as protein function speci-
ficity rises the uncertainty of predicting an exact assignment does
also. Thus, following the identification of functional peers it is
common for annotation systems to employ an additional stage
where term selection and transfer occurs. A confidence mea-
sure is usually associated with these term transfers, which often
derives directly from probabilistic features from either statisti-
cal or machine learning methods employed for term selection,
or alternatively, arbitrary empirical confidence measures from
rule-based term selection methods. The methodologies used at
the annotation transfer stage can be roughly grouped into three
types: rule-based transfer, statistical transfer and machine learn-
ing transfer. One example of a rule-based methodology for anno-
tation transfer occurs in the previously mentioned Blast2GO
annotation system. There, for each candidate GO term, the high-
est similarity weighted by their ECO is considered. In addition
the level of abstraction is also considered through the use of a
rule counting the total number of GO terms unified at a given
node weighted by a user set factor that controls the possibility
and strength of abstraction. In the end, the annotation rule will
only transfer the lowest terms in each branch that surpass an user
defined threshold (Götz et al., 2008). A statistical-based anno-
tation transfer methodology is used for example on the GOtcha

(Martin et al., 2004) annotation system. GOtcha calculates prob-
abilities for each term and its set of ancestors which allows some
functions for a given sequence to be assigned with more confi-
dence than others. Those probabilities are derived from two scores
based on the expectation scores of pairwise matches between
query sequences and database sequences and also the annotation
distribution within each aspect of the GO ontology. On the other
hand, the GOPET (Vinayagam et al., 2006) annotation system
uses yet another type of approach: machine learning. In this sys-
tem, GO terms associated to the retrieved homolog sequences are
used in conjunction with several elaborate attributes, including
sequence similarity measures, such as e-value, bit-score, iden-
tity, coverage score, and alignment length. Further attributes use
GO-term frequency, GO term relationships between homolog
sequences, the level of annotation within the GO hierarchy and
homolog annotation quality which is calculated based on the
ECO provided by the gene association tables of the GO mapped
sequence databases. These attributes are used as training instances
for support vector machines (SVM) which are then used to assign
GO term annotation to the previously unannotated sequences.

2.3. SEMANTIC SIMILARITY
In the context of ontology, semantic similarity can be defined as
the closeness in meaning between two ontology terms or two sets
of terms annotating two entities represented by a given metric.
Typically, the semantic similarity between two proteins annotated
with GO terms is also called functional similarity, since it presents
a measure of how similar the protein functions are.

Semantic similarity measures for comparing terms in an ontol-
ogy typically rely on two main approaches: edge-based and node-
based. Edge-based approaches in their most simple form rely on
counting the number of edges between two terms on the ontol-
ogy graph, which conveys a distance measure that can easily be
converted to a similarity measure (Rada et al., 1989). Thus, the
shorter the distance between two terms, the more similar they
are. Different edges can have different associated semantic values
leading to more sophisticated metrics. On the other hand node-
based approaches can be better suited for ontologies such as GO,
where nodes and edges are not uniformly distributed. A com-
monly used node property is the information content (IC), which
is a frequency-based measure of how specific a term is within a
given corpus (Resnik, 1995). Conveniently, the GOA project pro-
vides a suitable body of GO annotations that can used as a corpus.
The IC of term can then be given by Equation 1.

IC(t) = −log2f (t) (1)

In Equation 1 f (t) is the probability of annotation of term t.
Consequently, terms annotating many proteins will score a low
IC, while specific terms annotating only a few proteins will score
an high IC. Additionally, the IC values can be normalized in order
to provide a more intuitive meaning.

GO-based semantic similarity for proteins is given by the
comparison of the sets of GO terms annotating each protein
being compared within each GO ontology aspect. Two main
approaches, pairwise and groupwise (Pesquita et al., 2009) are
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typically used for this purpose. Pairwise approaches use seman-
tic similarities between the GO terms annotating each protein,
the semantic similarities are calculated for all possible pairs of
terms between each set. Common among these approaches are
variations such as the all pairs technique, where every pairwise
combination is considered or the best pairs technique where only
the best-matching pair for each term is considered. Global func-
tional similarity scores between the actual proteins are usually
obtained by averaging, summing or selecting the maximum of the
pairwise similarity scores. For more on ontology-based semantic
similarity check reviews by Pesquita et al. (2009) and Gan et al.
(2013).

Several assessment studies have employed the developed
semantic similarity measures for GO terms. There is no best mea-
sure for comparing terms, proteins or other gene products, it
always depends on which specific task they are being used for.
Lord et al. (2003) were among the first to assess the perfor-
mance of different semantic similarity measures in the context
of GO. For that purpose they adapted and tested three measures:
Resnik’s (Resnik, 1995), Lin’s (Lin, 1998), and Jiang and Conrath’s
(Jiang and Conrath, 1997) that were originally developed for
the WordNet (Miller, 1995) taxonomy, a lexical database for the
English language. These adapted measures were tested against
sequence similarity using the average combination approach.
Later, Pesquita et al. (2008) also tested several measures against
sequence similarity and found simGIC to provide overall better
results. In contrast, Guo et al. (2006) found simUI to be the weak-
est measure when evaluated for its ability to characterize human
regulatory pathways, while it was found to perform fairly well
when evaluated against sequence similarity in the assessment by
Pesquita et al. (2008).

2.4. TERM ENRICHMENT
Among the analysis operations involving GO terms, term enrich-
ment analysis is one the most commonly used. Micro-array
experiments often output lists which can represent hundred or
thousands of genes found to be differentially regulated for a given
condition under study. The purpose of term enrichment analysis
is then to abstract from the individual genes and focus instead on
a representative set of activity terms that summarize the partic-
ular biological activity differential, characteristic of the condition
being studied. Those differentials (typically enrichment, although
it can also be depletion) can be quantitatively measured resorting
to commonly used statistical tests for this effect, such as the Fisher
exact test, the Chi-squared test, the Hypergeometric distribution
and Binomial distribution.

Huang et al. (2009) collected and reviewed 68 bioinformatic
enrichment tools categorizing them into three different classes,
singular enrichment analysis (SEA), gene set enrichment analy-
sis (GSEA) and modular enrichment analysis (MEA). Common
to these three categories is the computation of p-values which
for SEA is done for each term in a list of pre-selected genes
deemed of interest, whereas GSEA needs no pre-selection and
has experimental values integrated directly into p-value calcula-
tion. On the other hand MEA is similar to SEA but addition-
ally factors term-term and gene-gene relations into the p-value
calculations.

However, and despite the number of available enrichment
tools there are still several unaddressed issues, even if we disre-
gard issues stemming from experimental design and execution.
These originate from variations in the sizes of the lists of genes,
dependencies among genes or terms, annotation incompleteness
and overall heterogeneity regarding specificity of annotation. And
while the MEA methods try to address and even take advantage
of the possible dependencies between genes or terms, issues per-
taining to heterogeneous term availability or annotation distribu-
tion can still cause several problems and are still not optimally
addressed.

3. DISCUSSION
3.1. CASE STUDY
Consider, as case-study, the CAZy database (www.cazy.org)
that describes the families of structurally-related catalytic
and carbohydrate-binding modules (or functional domains)
of enzymes that degrade, modify, or create glycosidic bonds
(Cantarel et al., 2009). Its maintenance is done by a small team of
curators that uses semi-automatic methods to keep it up-to-date.
Even with part of the procedure being automatic there is still a
large workload of manual curation that has to be performed by
the specialized curators. Recently, the CAZy database has shifted
from a schema where function was attributed to the complete
enzyme sequence to a schema where function may be assigned
just to the segment of the sequence involved in each function, the
functional module. So far the CAZy families have been function-
ally annotated with Enzyme Commission (EC) numbers (Webb
and NC-ICBMB, 1992). The EC number is a numerical classi-
fication for enzymes, based on the reactions they catalyze. The
module-centric organization schema of the database can be com-
plemented in such a way that functions, enzymatic or not, may
be directly assigned to a specific segment of a sequence. In sum-
mary, CAZy is a curated knowledgebase of functionally related
protein (module) families and despite not making use of GO as
primary annotation system it still requires annotations with high
specificity in order to achieve better characterization. Therefore,
the CAZy families are good candidates for performing annotation
coherence assessments and annotation extension studies.

The Polysaccharide Lyases (PL) are a group of enzymes that
cleave uronic acid-containing polysaccharide chains via a β-
elimination mechanism to generate an unsaturated hexenuronic
acid residue and a new reducing end. Within the CAZy database
these enzymes are classified into families and subfamilies based on
amino acid sequence similarities, intended to reflect their struc-
tural features (Lombard et al., 2010). A quick assessment of the
GO annotation status of these PL families was done using two
simple naive metrics, GOscore and GOoccurence (Bastos et al.,
2011) described by Equation 2 and Equation 3, respectively.

GOscore(fam) = MAXterm ∈ fam
[
freqfam(term)xIC(term)

]
(2)

GOoccurence(fam) = AVGterm ∈ fam
[
freqfam (term)

]
(3)

Fundamentally, the GOscore metric is an indicator of the max-
imum IC expressed by the annotations of a family as conveyed
through the most predominant and most informative term anno-
tating a given family. On the other hand, the GOoccurrence
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metric expresses annotation coherence by averaging the frequency
of all terms annotating one family. Hence, a family will report
maximum functional annotation coherence (GOoccurrence = 1)
when all terms are shared by all proteins in a given family. It
should be noted that when applying this metric to sets of fami-
lies of multifunctional proteins misinterpretations can be made if
the multiple functions are not evenly shared and annotated within
the protein set or family being measured.

3.2. RESULTS
The incompleteness of annotation over a given protein space may
lead to erroneous interpretations regarding functional coherence
of that space. As mentioned previously we applied two annota-
tion metrics, GOscore and GOoccurence to the PL families of the
CAZy database. The results for both metrics are shown in Table 1
with the respective number of annotated proteins for each fam-
ily. Upon inspection of the obtained GOoccurrence values, the
families PL5, PL15, PL16, PL17, PL20 stand out as being the per-
fectly coherent families in terms of annotation (GOoccurrence =
1). Further and closer inspection of the actual annotation dis-
tribution within those families reveals that families PL5, PL16,
PL17 are functionally mono-specific. This means that, for each of
those families, there is only a single and common (known) molec-
ular function activity performed by their proteins. Additionally,
the reported GOscores for these families are also fairly high and
thus indicate that they are annotated with functionally specific
terms. Regarding families PL15 and PL20 they present decep-
tively high GOoccurrence values but these can be dismissed on
account of the low number of annotated proteins (3 and 1,
respectively) in those families. Given their low statistical support
these two families are unsuitable for further analysis. Moreover,
the only functional annotation in these two families is the lyase
activity term. Considering their low IC (0.202) the functional
information provided by these families is therefore also of little
informative value.

In turn, family PL22, despite appearing to be mono-specific,
nonetheless has a GOoccurrence score of 0.880. This is in fact due
to the penalization inflicted by 7 out of 29 proteins annotated pro-
teins not being annotated with the most specific term oligogalac-
turonide lyase activity. Instead those 7 proteins are only annotated
with lyase activity, an ancestor term of oligogalacturonide lyase
activity. So, in this family, despite being mono-specific, it provides
a clear case of annotation incompleteness that could lead to mis-
interpretations if we were to rely on coherence metrics alone. On
the other hand, these annotations could be potentially extended
to the oligogalacturonide lyase activity term. For instance, using all
the proteins annotated to this term to create multiple sequence

alignments, and subsequently creating position-specific scoring
matrices, hidden Markov models or others statistical models these
could be used to find matches on the 7 incompletly annotated
proteins.

Another example, the PL3 family, despite having a similar
GOscore (0.593), conversely has a rather low GOoccurrence score
(0.306). In addition, by looking at the distribution of annotation
terms within this family we can discover that all of its 228 proteins
are annotated to the pectate lyase activity term. However, this oth-
erwise coherent annotation is broken by 6 additional terms that
annotate the family heterogeneously to a much lesser extent (only
up to 2 proteins per term). Thus, here can be seen that the multi-
functional nature of proteins can greatly affect the GOoccurrence
metric. However, given the context of the PL enzyme class in
which the PL3 family is inserted, if we were only to consider
annotation terms that are children of lyase activity then we would
obtain a considerable GOoccurrence improvement to a score of
0.798 (data not shown) for this particular family. The annotation
terms that would be discarded, in this case, are clearly the prod-
uct of secondary functional modules in the proteins that do not
contribute to the global functional characterization of the fam-
ily. Hence, their removal when accounting for family functional
coherence is appropriate for this particular case. Regardless of any
analitical assertion over their biological value, their low anno-
tation count does not lend additional statistical support. That
can be further confirmed through the use of enrichment analysis
on this family and using the Benjamini-Yekutieli (Benjamini and
Yekuteli., 2001) method, for an α = 0.01 only pectate lyase activ-
ity and pectin lyase activity are considered significant (corrected
p-values of 0 and 9.8 × 10−4, respectively).

Visualization can be very helpful when analysing GO term
annotations for families or sets of proteins, thus we also used it
in our analysis. PL4 is a moderately annotated family in terms of
incompleteness which presents low values both for the GOscore
and GOoccurrence metrics. The graph represented in Figure 3
subsumes the GO term annotations from the molecular func-
tion aspect in the PL4 family. The top unlabelled node on the
graph is actually the root term molecular_function to which all
the 43 sequences are annotated. It is important to notice that in
the graph all indirect or inherited annotations are represented
by unlabelled white nodes while direct annotations are repre-
sented by gray GO term-named nodes. It should also be noted
that the direction of edges on the depicted graph in Figure 3 is
reversed in relation to the actual GO graph. The edges in a typ-
ical GO graph represent the hierarchical is_a relations that hold
between the molecular function aspect terms, and edge direc-
tion points from the outer leaf terms converging into a common

Table 1 | GO annotation scores (GOscore and GOoccurrence) and respective size in number of annotated proteins for each CAZy family in the

PL enzyme class.

Family PL1 PL2 PL3 PL4 PL5 PL6 PL7 PL8 PL9 PL10 PL11 PL12 PL13 PL14 PL15 PL16 PL17 PL18 PL20 PL22

Size 391 34 228 43 37 21 63 184 89 77 44 19 5 9 3 22 30 3 1 29

GOocc 0.146 0.798 0.306 0.373 1.000 0.405 0.288 0.303 0.128 0.261 0.325 0.586 0.550 0.420 1.000 1.000 1.000 0.667 1.000 0.880

GOscore 0.196 0.511 0.593 0.309 0.599 0.192 0.202 0.508 0.166 0.202 0.129 0.202 0.718 0.180 0.202 0.640 0.599 0.202 0.202 0.577
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root node, making the foundations of the true path rule that
states that “the pathway from a child term all the way up to
its top-level parent(s) must always be true” (Ashburner et al.,
2000). On the other hand, the graph edges on Figure 3 actu-
ally represent the flow of proteins from the most generic root
term into the more specific leaf GO terms. Additionally, edge
thickness is proportional to the number of proteins “flowing
down” from a parent node to a child node, and hence receiving a
more specific annotation. Thus, these modified edges are partic-
ularly useful in providing visual cues regarding annotation speci-
ficity, homogeneity and functional relevance for a given protein
family.

Again, given that the PL4 family belongs to the PL enzyme class
it would be expected that all proteins within the family might be
annotated to the lyase activity term. However, out of 43 proteins
only 25 are annotated with the lyase activity term thereby leav-
ing 18 proteins that potentially could also be annotated with it.
By following the descendants of the lyase activity term down the
graph we find that the term carbon-oxygen lyase activity, acting
on polysaccharides annotates only 16 sequences. It is not unex-
pected that the number of annotated protein decreases as we
walk down an annotation graph toward the leaf terms. Given
that the bulk of annotation is performed by automatic methods
it becomes more difficult to provide protein annotations at more
functionally specific levels with enough confidence. However, for

FIGURE 3 | Graph subsuming the GO molecular function aspect

annotation of CAZy’s PL4 family.

the PL4 family the most specific GO term is carboxypeptidase
activity annotating 7 proteins. Although this term is not a descen-
dent of the lyase activity term, 6 of the proteins annotated with it
are also annotated with with carbon-oxygen lyase activity, acting on
polysaccharides term. Unlike the PL3 family, for the case of the PL4
family it is not as simple to resolve the multi-functional nature of
their proteins and just excluding terms that are not descendants
of lyase activity is not an obvious option.

InterPro (Zdobnov and Apweiler, 2001) is a resource that can
be used to scan protein sequences against an extensive collec-
tion of signatures from multiple and diverse databases, and allows
the presence of domains and important sites useful to be pre-
dicted for protein functional analysis. Therefore, by using the
InterProScan on the PL4 family sequences we can obtain the
resulting matches against the InterPro signatures. A quick visual
comparison of the signature profiles of both lyase activity anno-
tated proteins and non-lyase activity annotated proteins leads us
to infer that the latter can in fact also be annotated to the lyase
activity term with reasonable confidence given the similarity of
the signature profiles. However, as can be seen in Table 2, despite
the term lyase activity being statistically significant, for α = 0.01
and a Benjamini-Yekutieli corrected p-value, the IC (normalized
for the GOA annotation corpus) is relatively low, therefore indica-
tive of a differentially low informative value. According to the
term enrichment corrected p-values, the term carbohydrate bind-
ing has the greater statistical significance (among all the direct
annotations in family PL4). However, intuitively it can be seen
that this term, despite being biologically relevant, does not pro-
vide a great information increment, since it has the third lowest
IC value in Table 2. The term carbon-oxygen lyase activity, acting
on polysaccharides ranks second in terms of significance but its IC
is also only slightly higher than the one for carbohydrate binding.
It is actually the third ranked term for statistical significance, car-
boxypeptidase activity that has the greatest IC even though it is
not even a descendant of lyase activity. Both calcium ion binding
and catalytic activity fall below the previously chosen threshold of
significance. The former can be explained by the fact that it has
only one annotation occurrence, and is most likely not relevant
for the PL4 family functional profile. The lack of significance of
the latter term is explained by its ubiquitousness both within the
CAZy families and the GOA annotation corpus which in turn also
reflects itself as a low IC.

Table 2 | GO term enrichment for CAZy family PL4 with

Benjamini-Yekuteli corrected p-values, normalized IC and number of

annotations.

GO term p-value (corr) IC (norm) Annotations

Carbohydrate binding 1.87e-47 0.658 43

Carbon-oxygen lyase activity,
acting on polysaccharides

7.50e-23 0.699 16

Carboxypeptidase activity 3.43e-12 0.813 7

Lyase activity 1.76e-10 0.404 25

Calcium ion binding 4.75e-01 1.000 1

Catalytic activity 1.00e+00 0.166 32
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FIGURE 4 | Graph subsuming the GO molecular function aspect

annotation of CAZy’s PL8 family.

Descendant terms of lyase activity can also lead to a
reduced annotation coherence, as measured simplistically by the
GOoccurrence metric. Any non-uniform annotation distribution
within a family will penalize this metric. For the PL8 family, as
can be seen in Figure 4, the penalization comes in part from the
multiple descendants of the lyase activity term. There are five leaf-
terms that are descendants of lyase activity in family PL8, but
presenting an asymmetrical distribution regarding the number of
proteins they annotate. As show in Table 3 all of these five terms
are enriched in family PL8, however only the term hyaluronate
lyase activity annotates sufficient proteins to potentially create a
support corpus that would allow annotation extension for this
term and within this family. Hence, there are still 149 candidate
proteins annotated with the carbon-oxygen lyase activity, acting on
polysaccharides term that can be asserted for extension with the
hyaluronate lyase activity term. As for the remaining sibling terms
they can not be dismissed as irrelevant for the family character-
ization, and are part of this family set of relevant activities but
lowering the value of the GOocccurrence metric.

3.3. PROPOSED APPROACH
In light of the results discussed above we propose a general
methodology for extending GO annotations in protein families
as depicted in Figure 5. Consider a set of protein families cre-
ated by curators within a given biological knowledge domain. A
certain level of functional similarity is inherently expected from

Table 3 | GO term enrichment for CAZy family PL8 with

Benjamini-Yekuteli corrected p-values, normalized IC and number of

annotations.

GO term p-value (corr) IC (norm) Annotations

Carbon-oxygen lyase activity,
acting on polysaccharides

8.15e-306 0.699 180

Carbohydrate binding 1.18e-186 0.658 178

Hyaluronate lyase activity 2.00e-095 1.000 31

Chondroitin-sulfate-ABC
endolyase activity

3.69e-011 1.000 4

Chondroitin AC lyase activity 1.24e-005 1.000 2

Chondroitin-sulfate-ABC
exolyase activity

5.49e-003 1.000 1

Xanthan lyase activity 5.49e-003 1.000 1

Lyase activity 3.37e-002 0.404 181

Metal ion binding 1.00e+00 0.687 2

FIGURE 5 | Outline of proposed methodology for annotation

extension.

these families. Following an initial collection of terms annotat-
ing each of these families a statistical enrichment can then ensue.
The commonly used technique of statistical enrichment allows
the filtering out of possible annotation terms that are not char-
acteristic of a family. At this point (Step 1) additional manually
created rules might be beneficial in order to capture not only
statistical support but potentially biological meaning related to
the specific context domain of the protein families. Following the
process of selecting the relevant term annotations for a given fam-
ily, functional annotation coherence in a family can be asserted
through the use of groupwise semantic similarity metrics (Step
2). A protein family showing greater annotation coherence may
supply sub-sets of protein (sequences) that can be used to create
multiple sequence alignments. These can subsequently be used to
create position-specific scoring matrices, hidden Markov models
or other statistical models that can be used for classification. Also,
any other available or obtainable protein feature from a sub-set
of proteins sharing an annotation can theoretically be used with
several machine learning techniques in order create individual
GO term classifiers. Visualization methods can be helpful in
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making this procedure semi-automatic. Following that course of
action subsuming annotation graphs, like the ones in Figures 3, 4,
can be dynamically generated. These annotation graphs can also
be made interactive in order to allow navigation through the indi-
vidual nodes. Hence, considering that each node represents an
annotation term, the graph can then be linked with the sub-
set of proteins annotated by that term in a given family. This
allows the selection of proteins which will contribute with fea-
tures (sequences or otherwise) to construct the single GO term
classifiers (Step 3). In turn, these classifiers can then be used for
the purpose of extending functional annotation on incompletely
annotated proteins within the given protein family (Step 4). By
submitting the families to the annotation metrics the coherence
differential can be gauged after each iteration of annotation exten-
sion (Step 5). It should be noted that the overall family coherence
metrics used should be selected or customized in order to take
into account the particular knowledge domain being assessed. Of
particular notice is that extensions are done per annotation term,
and each protein (and family) can have multiple functions and
thus terms associated to them.

4. CONCLUSIONS
Ideally, proteins should be annotated in a way that fully describes
their functional activities. However, even within the boundaries
of current knowledge, this is seldom the case. As we try to com-
pare protein sets, such as families, based on their functional
annotations this heterogeneity of functional annotation becomes
a greater issue. Annotation incompleteness in annotations can
lead to false interpretations about the existing functional inter-
similarity within a given protein set (or family). In order to
avoid erroneous interpretations on heterogeneous protein sets or
families (in terms of annotation specificity), functional compar-
isons are usually done at conservative levels. This means that by
comparing families at conservative annotation levels we would
also be comparing terms with lower IC and hence obtaining less
informative conclusions.

Resources such as the CAZy database provide high-quality
classifications of segments of the protein space into functionally

related families. These kind of protein families present themselves
as an opportunity and a knowledgebase from which we can ben-
efit in order to provide annotation extension methodologies.
Considering that any given protein family is a functionally related
set of sequences, then the heterogeneity of annotation specificity
can be explored within each family. Thus, sub-sets of homoge-
neous annotation in a family can be used to produce classifiers
which can potentially extend other proteins within the same fam-
ily that are under-annotated. This proposed methodology should
be regarded as a generic approach guided at mitigating some of
the current issues with annotation incompleteness, and despite
not being suitable for all annotation incompleteness states it
should allow for an increased extension of annotation over the
ever increasing protein space. It should be particularly useful
when applied in tandem with protein families from databases
like CAZy where proteins despite being grouped together into
functionally close families they still do not focus on functional
annotation. It should be noted that the coherence metrics pre-
sented here are only to illustrate typical annotation baseline
patterns and are not intended to be used in fully automated proce-
dures or to address issues like the measuring of coherence in sets
of multifunctional proteins on their own. However, customized
metrics derived from groupwise semantic similarity measures can
be implemented for each specific knowledge domain under study
in order to automate most of the procedure in the suggested
methodology.
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