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The mammalian unfolded protein response (UPR) is propagated by three ER-resident
transmembrane proteins, each of which initiates a signaling cascade that ultimately
culminates in production of a transcriptional activator. The UPR was originally characterized
as a pathway for upregulating ER chaperones, and a comprehensive body of subsequent
work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are
all transcriptionally enhanced by the UPR. However, the global reach of the UPR extends
to genes involved in diverse physiological processes having seemingly little to do with ER
protein folding, and this includes a substantial number of mRNAs that are suppressed
by stress rather than stimulated. Through multiple non-canonical mechanisms emanating
from each of the UPR pathways, the cell dynamically regulates transcription and mRNA
degradation. Here we highlight these mechanisms and their increasingly appreciated
impact on physiological processes.
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INTRODUCTION
The ER is best known as the gateway to the secretory path-
way. As the site of synthesis for nascent secretory proteins and
resident lumenal and transmembrane proteins of the endomem-
brane system, the ER shepherds the folding, oxidation, modifi-
cation, and assembly of approximately one-third of the cellular
proteome—or more in cell types specialized for protein secretion
such as antibody-secreting plasma B lymphocytes or endocrine or
exocrine cells (Huh et al., 2003; Tagliavacca et al., 2003). As such,
the ER is replete with chaperones, cochaperones, oxidases, and
thiol isomerases to facilitate protein folding, and utilizes an elab-
orate quality control system to recognize terminally misfolded
proteins and purge them from the ER for degradation (Araki and
Nagata, 2012). With this system in place, the low level of pro-
tein misfolding that arises because of the inherent error rate in
the process can presumably be managed. However, the quality
control machinery can be overwhelmed either by an overload of
nascent client proteins or by any exogenous disruption to the pro-
tein folding and trafficking system—so-called “ER stress” (Ron
and Walter, 2007). The consequences of a pervasive defect in ER
protein folding can be grave for both the cell and the organism.
A cell with overwhelmed ER quality control machinery will, at
best, fail to maintain secretory pathway integrity and to effectively
sense and respond to the extracellular milieu. At worst, accu-
mulated misfolded proteins might seed the formation of toxic
protein aggregates (Matus et al., 2011). Thus, the cell has in the
UPR a signal transduction system that augments the protein fold-
ing capacity of the ER. While the UPR improves ER function by
several short-term mechanisms, it ultimately culminates in gene

regulation for longer-lasting enhancement of the ER folding envi-
ronment. Classically, this regulation constitutes a self-contained
system in which ER stress leads to transcriptional induction of
genes encoding ER chaperones and other proteins that grease the
wheels of secretory pathway function, thereby alleviating ER stress
and shutting the response off (Travers et al., 2000). However, it is
now becoming clear that the UPR is much more deeply entwined
in cellular physiology than this simple view would suggest. In
mammals, it regulates genes involved in a number of cellular
processes that have little on their face to do with ER function,
including metabolism and inflammation (Fu et al., 2012; Garg
et al., 2012). The regulation of many of these genes cannot be
explained by the canonical mechanisms of UPR signaling. The
aim of this review is to highlight emerging concepts in the non-
canonical regulation of mRNA expression by the UPR. Rather
than providing an exhaustive account of all possible means by
which mRNA abundance might be controlled by the UPR, here
we describe the general principles by which such regulation can
occur and provide illustrative examples that emphasize the diverse
physiological consequences of such pathways.

THE CANONICAL UPR
The idea that there must be a signal transduction pathway ema-
nating from the ER first emerged from the observation that
expression of misfolded influenza hemagglutinin (HA) in mam-
malian cultured cells led to upregulation of the ER chaperones
Bip (aka GRP78, the product of the Hspa5 gene) and GRP94
(the product of the Hsp90b1 gene) (Kozutsumi et al., 1988). This
finding allowed previous reports of Bip and Grp94 induction
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in response to chemical perturbants (Drummond et al., 1987;
Kim and Lee, 1987) to be tied specifically to disrupted ER pro-
tein folding. The general applicability of the phenomenon was
extended to other misfolded ER client proteins (Dorner et al.,
1989), and to the upregulation of ER oxidases and thiol iso-
merases as well (Dorner et al., 1990). As with many fundamental
cellular processes, an analogous response was soon discovered in
yeast (Normington et al., 1989), and a cis-acting unfolded pro-
tein response element (UPRE) within the yeast Bip (aka KAR2)
promoter was discovered (Mori et al., 1992; Kohno et al., 1993).
The ER stress-responsiveness of KAR2 served as the spring-
board for a classic series of genetic and biochemical studies
describing the mechanistic basis of what had become known
as the unfolded protein response (Cox et al., 1993; Mori et al.,
1993; Cox and Walter, 1996; Sidrauski et al., 1996; Sidrauski
and Walter, 1997). Together, these studies identified Ire1p (for
Inositol-requiring enzyme) as an ER-resident transmembrane
kinase that became autophosphorylated during ER stress, acti-
vating a cytosolic endoribonuclease activity that catalyzed the
removal of an inhibitory intron from HAC1 mRNA. This splicing
event allowed the mRNA to be translated into the Hac1p tran-
scription factor, which subsequently bound to the KAR2 UPRE
and stimulated KAR2 transcription. A survey of the breadth of
UPR targets (Travers et al., 2000) took advantage of then-new
microrarray technology, and revealed two fundamental features
of the yeast UPR that have heavily influenced the subsequent
portrayal of the response in both yeast and mammals: (1) It is
predominantly an inductive response, with a bias for upregulated
genes; and (2) its scope is not limited solely to ER chaperones and
phospholipid synthesis enzymes, as had been originally thought,
but encompasses genes involved in other aspects of secretory
pathway function, including ER-associated protein degradation
(ERAD), vesicular trafficking, and protein translocation into the
ER, among other processes. Thus, even though the response was
more expansive than anticipated, it could still be considered as
a discrete transcriptional program designed to upregulate the
expression of genes with a common cis-element, all of which
influenced ER protein folding either directly or indirectly.

Once Ire1p was described in yeast, its mammalian homologs
(IRE1α and an intestine-specific paralog IRE1β) were discovered
(Tirasophon et al., 1998; Wang et al., 1998), as was a gene encod-
ing a transmembrane protein with a lumenal domain homolo-
gous to IRE1α but a cytosolic aspect homologous to other kinases
such as PKR that phosphorylate the translation initiation factor
eIF2α. The protein encoded by this gene was named PERK (PKR-
like ER kinase) (Shi et al., 1998; Harding et al., 1999). And, much
as the UPRE had been instrumental in identification of Ire1p in
yeast, so also a mammalian ER stress response element (ERSE)
in the promoters of Bip and Grp94 was characterized and used
to identify ATF6 (of the activating transcription factor family)
as another ER-resident stress sensor (Yoshida et al., 1998; Haze
et al., 1999). All three pathways are conserved throughout meta-
zoa, but the PERK and ATF6 pathways appear to assume more
modest roles in invertebrates such as flies and worms (Shen et al.,
2001; Ryoo and Steller, 2007).

As for yeast Ire1p, activation of each of the three mammalian
UPR pathways culminates in production of a transcriptional

activator and attendant rearrangement of chromatin structure
(Baumeister et al., 2005; Donati et al., 2006; Gal-Yam et al., 2006)
and recruitment of RNA Polymerase II (Sela et al., 2012) to
stimulate gene transcription. These pathways have been reviewed
exhaustively elsewhere (Schröder and Kaufman, 2005) and so
will only be described briefly here. Mammalian IRE1α is acti-
vated by autophosphorylation and catalyzes the splicing of Xbp1
mRNA, resulting in excision of a 26-base intron and thus allowing
in-frame translation of the downstream transcriptional activa-
tion domain of XBP1 (Yoshida et al., 2001a; Lee et al., 2002).
Translocation and activity of the bZIP protein produced from
spliced Xbp1 mRNA are regulated by the protein produced by
the unspliced mRNA (Lee et al., 2003a; Tirosh et al., 2006),
by the regulatory subunits of PI3 Kinase (Park et al., 2010;
Winnay et al., 2010), and by acetylation (Wang et al., 2011).
In the nucleus, XBP1 binds to UPRE sequences (distinct from
yeast UPRE elements) in, among others, the promoters of genes
encoding ERAD factors (Yoshida et al., 2001b; Lee et al., 2003b;
Yoshida et al., 2003; Yamamoto et al., 2007). XBP1 can also bind
to additional non-UPRE sequences and regulate genes involved
in phospholipid biosynthesis (Sriburi et al., 2007), lipogenesis
(Lee et al., 2008) and myogenic differentiation (Acosta-Alvear
et al., 2007). Mice lacking XBP1 die prenatally due to liver defects
(Reimold et al., 2000), and mice lacking IRE1α die even earlier
with both liver and lymphocyte differentiation defects (Zhang
et al., 2005) that might be secondary to placental failure (Iwawaki
et al., 2009). Liver-specific rescue of XBP1 deficiency only post-
pones death into the neonatal period, when dysmorphogenesis
of the exocrine pancreas leads to digestive failure (Lee et al.,
2005).

PERK activation and autophosphorylation lead to eIF2α phos-
phorylation which, while having the immediate (and transient)
effect of inhibiting the translation of most mRNAs, stimulates
translation of the Atf4 mRNA due to the presence of upstream
open reading frames (uORFs) in the Atf4 5′ UTR (Lu et al., 2004;
Vattem and Wek, 2004). This effect is a consequence of the inef-
ficient ribosome assembly brought on by eIF2α phosphorylation,
which allows certain mRNAs—2 to 8 percent by one estimate—to
be translationally stimulated rather than inhibited, based on the
presence of uORFs (Ventoso et al., 2012; Barbosa et al., 2013). Like
XBP1, ATF4 is a bZIP transcription factor; it binds to amino acid
response elements (AAREs) in target gene promoters. eIF2α can
be phosphorylated by other kinases in response to various cel-
lular stresses, and this pathway of signal transduction is known
as the integrated stress response (ISR) (Harding et al., 2003).
Perk−/− mice develop progressive postnatal diabetes and exocrine
pancreas disruption (Harding et al., 2001).

Finally, ATF6 is an ER-localized transmembrane transcription
factor. ER stress releases it from the ER to the Golgi, where it is
cleaved by regulated intramembrane proteolysis (RIP) to liberate
the transcriptionally active cytosolic domain—itself a bZIP fam-
ily member—that dimerizes with the constitutive factors NFY and
YY1 and binds to ERSE and ERSE-II sequences in target genes (Li
et al., 2000; Ye et al., 2000; Yoshida et al., 2000; Kokame et al.,
2001; Baumeister et al., 2005). ATF6 can also heterodimerize with
XBP1 on UPRE sites (Yamamoto et al., 2007); indeed, the mam-
malian UPRE was first identified by virtue of its binding by ATF6
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(Wang et al., 2000). Mice lacking ATF6 are overtly normal (Wu
et al., 2007; Yamamoto et al., 2007), and no basal phenotype has
yet been reported, although this surprising absence might be due
to functional redundancy between ATF6 and its paralog ATF6β

(discussed in more detail later).
The phenotypes of mice with constitutive deletions of UPR

components mesh with the narrative of the UPR as a self-
contained program for maintaining ER protein folding home-
ostasis. Where basal phenotypes are evident, disrupted cell types
in the various animals show evidence of grossly altered ER
structure and impaired secretory pathway function. In addition,
constitutive deletion of Xbp1, Atf4, and Atf6 allowed the tran-
scriptional programs downstream of each to be examined by
microarray in the most convenient cell type, mouse embryonic
fibroblasts (MEFs)—the cell type in which most of the basic
pathways of the UPR were elucidated. Similarly to yeast, MEFs
respond to ER stress with an upregulation of genes encoding
ER chaperones and cochaperones, ERAD factors, lipid synthesis
enzymes, and other proteins of importance to secretory pathway
function and general protein biosynthesis. Subsets of these genes
were found to depend on each of the three UPR-regulated bZIP
transcription factors. Although there is considerable overlap in
the sets of genes regulated by these factors, to a first approxi-
mation ATF4 coordinates the upregulation of genes involved in
protein anabolism and redox defense (Harding et al., 2003), XBP1
appears to regulate ERAD (Lee et al., 2003b), and ATF6 con-
tributes to upregulation of chaperones and ERAD factors (Wu
et al., 2007; Adachi et al., 2008). For the purposes of this review,
we shall refer to this mechanistic framework, culminating in pro-
duction of XBP1, ATF4, and ATF6—along with the direct actions
of these factors on target genes—as the canonical UPR, and it
is indicated in green in the accompanying figure to highlight

the non-canonical mechanisms that are the focus of this review
(Figure 1).

A deeper look at these microarray studies reveals that the tran-
scriptional output of the UPR is not so simple and self-contained.
The emphasizing of the UPR as a program for transcriptional
induction meant that the downregulated genes were not char-
acterized in each of these analyses; yet between one quarter and
one half of mRNAs regulated by ER stress are actually suppressed,
with few mechanisms to account for them. In contrast to upreg-
ulated genes, the suppressed genes cluster among a number of
cellular processes having apparently little to do with ER protein
folding (Arensdorf and Rutkowski, 2013). Further, even among
genes upregulated by ER stress, only a relatively small number
can be tied definitively to ATF4, XBP1, and/or ATF6. The mech-
anisms responsible for regulation of the majority of genes during
ER stress even in a presumptively “generic” cell type such as the
MEF are not understood, and quite possibly fall outside the scope
of the canonical UPR.

TEMPORAL DYNAMICS OF mRNA REGULATION
There are four ways in which mRNA abundance might be regu-
lated by the UPR: stimulation or inhibition of transcription, and
enhancement or compromise of mRNA stability. The historical
view of the UPR as a program for upregulation of ER chaper-
ones has shone the most attention on the first mechanism, but
the other three contribute as well. Indeed, they probably collec-
tively contribute to a substantial fraction of the observed changes
in mRNA expression upon ER stress, or perhaps even the major-
ity of it. The mechanism by which an mRNA is regulated has
implications for the timing and persistence of that event and, by
extension, the window of time during which the protein product
translated from that mRNA is able to influence cellular function.

FIGURE 1 | Canonical and non-canonical pathways of mRNA regulation.

Examples of each of the pathways of mRNA regulation discussed in this
review are shown. The canonical UPR pathways are shown in green. Also
depicted are transltional regulation (red), scaffolding (dark blue), transcriptional

cascades (yellow), cofactor titration (purple), alternate RIP substrates (light
blue), RIDD (brown), and miRNAs (orange). Together, these processes result
in the regulation not only of ER protein folding function (green) but also other
cellular processes such as metabolism and inflammation (maroon).
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To illustrate how the mode of regulation impacts the kinet-
ics of mRNA expression, we provide here a simple computational
model of a gene regulatory event, where the expression of a
target gene is controlled by the expression of an upstream fac-
tor that can either stimulate transcription of the target gene,
inhibit transcription, stimulate degradation of the target gene
mRNA, or inhibit degradation (Figure 2A). The regulatory step
is modeled as a non-cooperative interaction obeying simple
Michaelis-Menten kinetics. Transcriptional effects depend upon
the synthesis rate constant of the target transcript, the concen-
tration of the upstream factor, and the affinity constant of that
factor for its target gene. mRNA stability effects depend upon the
same values, and also, as with any first-order decay process, on
the concentration of the target mRNA itself. (The equations and
parameters are given in the Supplemental Material).

The point of this exercise is to illustrate how—all other vari-
ables being held constant—the mechanism of mRNA regulation
influences the rapidity with which the regulation is executed and
its persistence. Thus, the hypothetical scenario shown here pro-
poses that the action of the upstream factor has an effect on the
target mRNA that results in its regulation (either up- or down-)
by approximately ten-fold at its peak. With that stipulation, it
then tests how the expression of an mRNA with an otherwise fixed
rate of synthesis and rate of degradation behave in response to the
expression of the upstream factor.

For this particular example, we modeled the response so that
its peak effect was close to its saturation level, but the results were
similar when the association/dissociation rate constants were var-
ied over a wide range. This analysis reveals two salient features
that are largely independent of the actual parameters (rate constants
and affinity constants) chosen: First, mRNA levels can be more
rapidly altered by stimulatory processes (of either transcription
or degradation) than by inhibitory ones. Second, downregulated
genes as a group return to basal expression levels more rapidly
than do upregulated genes (Figure 2B). Further, the stability of
the target mRNA influences the window of time when its expres-
sion is regulated, with shorter half-lives causing mRNAs to more
directly mirror the expression of the upstream controlling fac-
tor (Figure 2C). In other words, while factors intrinsic to an
mRNA (its synthesis and degradation rate constants) influence
the window of time in which the mRNA is expressed, “stretch-
ing” its expression curve to the right or left, the extrinsic mode
of regulation determines whether the expression of an mRNA
experiences a lag either as stress is first experienced (i.e., if tran-
scription or degradation is inhibited) or when the response begins
to resolve (i.e., when transcription or degradation is stimulated).
These observations imply that varied mechanisms for mRNA reg-
ulation ensure that the UPR is a dynamically evolving amalgam of
outputs rather than a single output that simply varies in inten-
sity over time. Practically, they also imply that the timing of
mRNA regulatory events will reveal important clues about the
mechanisms responsible.

NON-CANONICAL PATHWAYS OF TRANSCRIPTIONAL
REGULATION
Non-canonical transcriptional outputs may arise as offshoots
of the framework of the canonical UPR by three general

FIGURE 2 | Temporal dynamics of mRNA regulation by different

mechanisms. (A) A computational model was created in which the
expression of a downstream target mRNA is directly controlled by the
induction of an upstream factor, the expression of which is shown. The
behavior of this factor is modeled loosely off of the dynamics of ATF4,
ATF6, and XBP1 upon a level of ER stress to which cells can successfully
adapt (Rutkowski et al., 2006). (B) Expression of the downstream target
mRNA was modeled based on the upstream factor either stimulating or
inhibiting transcription, or stimulating or inhibiting degradation, under
conditions where maximal expression of the factor approaches the
saturation level. For this simulation, the intrinsic (i.e., unregulated) half-life
of target mRNA was chosen to be 8 h, and the parameters were then
chosen to elicit 10-fold maximal regulation in expression, and varying the
rate- and affinity-constants did not change the essential behavior of the
model. The gray region indicates changes in mRNA levels that are less than
two-fold (the threshold most frequently used to identify regulated genes in
microarray experiments). The various curves illustrate two principles: (1) the
window of time in which the expression of an mRNA will appear to be
regulated (based on the two-fold criterion) depends on the mechanism of
regulation, and (2) downregulation of mRNA either by inhibition of
transcription or stimulation of degradation is necessarily shorter-lived than
is upregulation, implying that changes in expression of downregulated
genes might be easily overlooked. (C) The effect on transcriptional
regulation of decreasing the half-life of the target mRNA form ∼8 to ∼3 h is
shown. While the median half-life of cellular mRNA is 8–9 h, many of those
encoding transcription factors have shorter half-lives (Schwanhausser et al.,
2011). This includes that of Chop, which is itself transcriptionally regulated
by the UPR.
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mechanisms: (1) UPR pathway branching that results in the
production of additional transcriptional regulators; (2) transcrip-
tional cascades that expand the repertoire of targeted genes; and
(3) alteration of the activity of constitutively expressed transcrip-
tion factors through competition or cooperativity in the nucleus.
In addition, UPR transcriptional output can be enhanced by
the existence of parallel non-canonical stress-sensing pathways.
Below, we provide examples of each of these modes of transcrip-
tional regulation.

NON-CANONICAL REGULATION EMANATING FROM CANONICAL
PATHWAYS
The PERK and IRE1α cascades of the UPR in particular present
multiple points at which additional signaling cascades could be
initiated. First, both molecules are kinases, raising the possibility
that other substrates exist. Both also self-associate during activa-
tion (Bertolotti et al., 2000), potentially forming stress-dependent
scaffolds that can seed the assembly of signaling modules and
that culminate in transcriptional regulation. In addition, the
effects of eIF2α phosphorylation on protein synthesis poten-
tially allow for the production of transcription factors in addition
to ATF4.

Translational regulation
Phosphroylation of eIF2α initially suppresses the translation of
90% of cellular mRNA, which decreases to 50% within the first
3 h of stress (Ventoso et al., 2012). The effect of this suppres-
sion on the expression level of a given protein depends on the
half-life of that protein and the duration of eIF2α phosphoryla-
tion, which is regulated by both constitutive (CreP) and inducible
(GADD34) phosphatases (Jousse et al., 2003; Marciniak et al.,
2004). Accordingly, the expression of proteins with short half-
lives diminishes more rapidly than does that of long-lived pro-
teins, as demonstrated initially for the cell cycle regulator Cyclin
D1, the loss of which upon eIF2α phosphorylation leads to cell
cycle arrest (Brewer et al., 1999). Translational inhibition offers
the opportunity to transiently alter the composition of the tran-
scription factor network based on the expression of both the
factors themselves and upstream proteins that regulate transcrip-
tional cascades. While transcription factors as a class tend to have
short half-lives, the range of their half-lives nonetheless spans an
order of magnitude or more, meaning that inhibition of protein
synthesis will have a more pronounced effect on the protein levels
of some transcription factors than others (Schwanhausser et al.,
2011, 2013).

UPR activation converges on inflammatory signaling in part
through translation-dependent regulation of NF-κB. Members
of the NF-κB/Rel family of transcription factors (i.e., NFKB1,
NFKB2, c-REL, RELA, RELB) dimerize to form the NF-κB tran-
scriptional complex. The transcriptional activity of this complex
is determined by its composition (Elsharkawy et al., 2010); and
the complex regulates the transcription of genes involved in
immunoregulation, growth regulation, inflammation, carcino-
genesis and apoptosis (Hoesel and Schmid, 2013). NF-κB is
sequestered in the cytoplasm by IκB; in order for NF-κB to
be activated, the inhibitory subunit must be removed through
phosphorylation and degradation (Ahn and Aggarwal, 2005).

PERK—through the phosphorylation of eIF2α—affects NF-
κB signaling by suppressing the translation of IκB family mem-
bers (i.e., NFKBIE, NFKBIB), which have a shorter half-life than
NF-κB/Rel family members (Jiang et al., 2003; Deng et al., 2004).
Thus, eIF2α phosphorylation decreases the amount of IκB relative
to NF-κB. In addition, the translation of certain NF-κB/Rel family
members is suppressed during ER stress (i.e., REL, RELA, RELB)
while others are not (i.e., NFKB1, NFKB2) (Ventoso et al., 2012),
suggesting that eIF2α phosphorylation might not simply stimu-
late NF-κB activity, but might instead regulate the formation of
specific NF-κB complexes. The physiological significance of NF-
κB activation during ER stress is unknown; however, a number
of NF-κB target genes (Pahl, 1999) are found among ER stress-
regulated genes, pointing to a contribution of NF-κB to UPR
transcriptional output.

While NF-κB activity appears to be regulated passively by
eIF2α phosphorylation through simple loss of an unstable
inhibitor, translational control is also used to stimulate the trans-
lation of specific proteins, including several transcription factors
beyond ATF4. Indeed, while the majority of mRNA translation is
suppressed by eIF2α phosphorylation, the translation of ∼2–8%
of cellular transcripts is increased (Ventoso et al., 2012). Among
the transcripts whose translation is stimulated are a number of
transcription factors, including several among the bZIP family
in addition to ATF4. These include ATF5 (Zhou et al., 2008),
ATF3, CHOP, JUN, JUNB, FOS, FOSB, and CREB1 (Ventoso
et al., 2012). How the translation of these transcripts is regulated
during conditions of eIF2α phosphorylation is an area of active
research; however, the presence of alternative uORFs within these
transcripts is thought to dictate their translation during ER stress
(Morris and Geballe, 2000).

In the case of the constitutively expressed transcription fac-
tors C/EBPα and C/EBPβ, translational control allows for the
production of a truncated inhibitory form at the expense of a
full-length activating form. C/EBP family members are bZIP tran-
scription factors that participate in diverse physiological processes
including differentiation, proliferation, metabolism, and inflam-
mation (Ramji and Foka, 2002). Both α and β forms possess a
cluster of potential translation initiation sites that are highly con-
served among mammals. One of the start codons within this
cluster is out of frame with respect to the others, and intro-
duces a short open reading frame just upstream of the start
codons that initiate translation of the full-length forms of α and
β. The presence of this uORF is essential for translation of the
truncated forms of both proteins, which is stimulated by eIF2α

phosphorylation (Calkhoven et al., 2000; Wethmar et al., 2010).
The truncated versions of both proteins have intact DNA binding
domains but lack transactivation domains, making them poten-
tially dominant-negative inhibitors of transcription (Descombes
and Schibler, 1991).

Like Atf4, Cebpa, and Cebpb mRNAs both have uORFs that
regulate the translation of alternate isoforms, but their expres-
sion appears to be controlled by a somewhat different mechanism.
While the mechanism of C/EBPα translational regulation by
eIF2α phosphorylation is still somewhat unclear, the expression
of the long (aka Liver Activating Protein or LAP) and short (Liver
Inhibiting Protein or LIP) forms of C/EBPβ are regulated by both
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eIF2α phosphorylation and dephosphorylation. Synthesis of the
LIP form of C/EBPβ is translationally inhibited by eIF2α phos-
phorylation, with levels diminishing starkly because of its short
half-life (Li et al., 2008). However, translational recovery pro-
motes both increased synthesis and increased stability of the LIP
form, causing its expression to predominate over that of LAP
at later times after the induction of ER stress (Li et al., 2008;
Arensdorf and Rutkowski, 2013). Thus, C/EBPβ, and probably
C/EBPα as well, are more indirectly tied to eIF2α phosphorylation
than is ATF4.

Translational regulation of both C/EBPα and C/EBPβ has
been linked to diminished lipogenesis and improved glucose tol-
erance in mice fed a high-fat diet (Oyadomari et al., 2008).
Mice with liver-specific overexpression of a constitutively active
fragment of GADD34 that were raised on a high fat diet were
resistant to weight gain and showed enhanced insulin sensitiv-
ity and reduced hepatic triglyceride accumulation. The reduced
steady-state phosphorylation of eIF2α seen in these animals cor-
responded with lower expression of both C/EBPα and C/EBPβ

(only the long forms of each were studied) and their down-
stream target genes, including the lipogenic mediator PPARγ.
While a direct role for C/EBPα and β was not tested in
GADD34-overexpressing mice, these findings illustrate a poten-
tially significant physiological consequence of non-canonical ER
stress-mediated transcription—namely, that eIF2α phosphoryla-
tion promotes hepatic lipid accumulation through enhanced or
altered synthesis of C/EBPα and β.

C/EBPβ regulates inflammatory cascades in diverse cell types;
it is alternatively named NF-IL6 based on its ability to regulate
expression of the pro-inflammatory cytokine IL-6 (Akira et al.,
1990). Preferential production of the LIP form of C/EBPβ during
ER stress in cultured cells was found to result in transcrip-
tional repression of a number of inflammatory genes, including
IL4RA, which is an essential component of the IL-4 and IL-
13 receptors (Arensdorf and Rutkowski, 2013). Most cell types
express either the IL-4 or IL-13 receptor, and signaling through
IL4RA stimulates pro-inflammatory processes as diverse as B
cell proliferation, IgE class-switching, TH2 cell differentiation,
smooth muscle contraction, mucus hypersecretion, eosinophil
requirement, fibrotic deposition, and chemokine expression
(Hershey, 2003; Wynn, 2003; Wills-Karp and Finkelman, 2008;
Holgate, 2011). Remarkably, while ER stress suppressed IL-4/IL-
13-dependent downstream signaling, this suppression was lost
in Cebpb−/− cells, indicating that the translational regulation of
C/EBPβ can influence responsiveness to inflammatory signals.
This finding suggests that UPR or ISR activation could influence
the natural history of parasitic infections and allergic responses,
both of which are accompanied by extensive IL-4 and IL-13
signaling (McKenzie, 2000).

Scaffolding
Both PERK and IRE1α self-associate during ER stress (Bertolotti
et al., 2000). For yeast Ire1p, this self-association leads to the
formation of oligomeric Ire1p clusters (Korennykh et al., 2009).
While the dynamics of self-association for mammalian IRE1α and
PERK are less understood, it seems likely that, here too, higher
ordered multimeric complexes of both proteins form, resulting

in the creation of potential stress-specific scaffold supports on
the cytosolic face of the ER membrane (Li et al., 2010). IRE1α

can seed the formation of cytosolic signaling modules, at least
some of which culminate in transcriptional regulation (Hetz and
Glimcher, 2009).

Among the proteins recruited to phosphorylated and
oligomerized IRE1α is TNF receptor-associated factor 2 (TRAF2)
(Urano et al., 2000). This association is thought to be required
for activation of several kinases including IKK, JNK, ASK1, p38
MAPK, and ERK that contribute to cell fate decisions (i.e., sur-
vival vs. apoptosis) during ER stress (Urano et al., 2000; Nishitoh
et al., 2002; Nguyen et al., 2004; Hu et al., 2006; Li et al., 2010;
Tam et al., 2012). For IKK regulation, the subsequent activation of
NF-κB (IKK phosphorylates IκB, leading to its degradation) was
found to lead to induction of TNF-α expression (Hu et al., 2006).
Likewise, JNK activation leads to phosphorylation of the bZIP
transcription factor C-JUN (Urano et al., 2000), which has been
implicated in ER stress-mediated regulation in cultured neurons
of the gene encoding methylenetetrahydrofolate reductase, which
participates in folate and homocysteine metabolism (Leclerc and
Rozen, 2008), and of Gpt1 and Got1 in the liver, which encode the
liver enzymes AST and ALT that are released from the liver upon
damage (Josekutty et al., 2013). These examples notwithstanding,
however, the contributions of IRE1α/TRAF2-dependent signal-
ing to the sum of ER stress-mediated transcriptome control are
poorly understood.

PERK also has the potential to recruit other molecules upon
autophosphorylation and oligomerization, but there are fewer
known parallel pathways arising from PERK activation than from
IRE1α. PERK activation is necessary and sufficient for phos-
phorylation of the transcription factor NRF2 [Nuclear Factor
(Erythroid-Derived 2)-Like 2] and can phosphorylate NRF2
in vitro (Cullinan et al., 2003). Cells lacking PERK or NRF2 do not
effectively upregulate the NRF2-target genes Gclc or Nqo1 upon
ER stress (Cullinan and Diehl, 2004). PERK was also found to
be required for activation of MAP kinase- and phospholipase C-
dependent gene expression in response to ER calcium depletion
(Liang et al., 2006a). However, as with IRE1α-dependent signal-
ing modules, the global contribution of these pathways to mRNA
regulation during ER stress is not clear.

TRANSCRIPTIONAL CASCADES
The output of the UPR is dramatically expanded by hierarchically
arranged gene regulatory networks, in which the expression of
subordinate transcription factors is targeted for regulation by the
canonical UPR factors. Beyond conferring stress-responsiveness
to genes not directly bound by ATF4, XBP1, or ATF6, this expan-
sion also allows for transcriptional suppression, to the extent
that ATF4, XBP1, or ATF6 enhance the expression of repressive
transcription factors.

The best-characterized example of a secondary UPR-regulated
transcription factor is C/EBP Homologous Protein (CHOP).
CHOP is a direct target of ATF4 and ATF6 (Ma et al., 2002),
and its translation is stimulated by eIF2α phosphorylation (Palam
et al., 2011). Phosphorylation of CHOP by p38 MAP kinase
appears to be required for its full activity (Wang and Ron, 1996).
A member of the C/EBP family of transcriptional regulators,

Frontiers in Genetics | Genomic Endocrinology December 2013 | Volume 4 | Article 256 | 6

http://www.frontiersin.org/Genomic_Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology/archive


Arensdorf et al. Non-canonical mRNA control during ER stress

CHOP can form heterodimers with other C/EBP proteins, and
was proposed to act as a dominant-negative inhibitor of C/EBPα

and β in particular (Ron and Habener, 1992). It is now clear that
CHOP possesses both activating and repressing potential, and so
its effect on the transcriptome is complex.

CHOP is strongly functionally associated with cell death; both
cells and animals lacking CHOP are protected from a diverse array
of stressful stimuli (Zinszner et al., 1998; Oyadomari and Mori,
2004). Due at least in part to the very short half-life of both the
protein and its mRNA, CHOP expression is strongly correlated
with the ER stress burden in real-time (Rutkowski et al., 2006).
Hence, the window of time in which CHOP can exert a direct
effect on the transcriptome is tightly controlled, as one might
expect a priori for a factor that potentiates cell death. As a tran-
scriptional regulator rather than a conventional pro-apoptotic
effector, CHOP promotes cell death through the regulation of sev-
eral classes of downstream genes. CHOP has been proposed to
regulate the expression of both anti-apoptotic and pro-apoptotic
genes of the Bcl2 family (McCullough et al., 2001; Puthalakath
et al., 2007). In addition, CHOP regulates expression of the bZIP
factor ATF5, which is itself translationally regulated by eIF2α

phosphorylation (Watatani et al., 2008; Zhou et al., 2008), and the
targets of ATF5 include the pro-apoptotic protein NOXA (Teske
et al., 2013). However, ChIP-seq analysis revealed that its direct
targets are most prominently enriched for genes involved in pro-
tein synthesis, which are co-regulated by ATF4 (Han et al., 2013).
Among these genes is GADD34, which indicates that CHOP con-
trols a negative feedback loop allowing for the dephosphorylation
of eIF2α and resumption of protein synthesis, even if the ER is
ill-equipped to handle nascent protein influx (Marciniak et al.,
2004). A consequence of restored protein synthesis is increased
production of reactive oxygen species (ROS), likely resulting from
oxidative protein folding in the ER; indeed, CHOP also regulates
expression of the ER oxidase ERO1α (Li et al., 2009), indicating
that CHOP promotes oxidative folding in tandem with increased
ER influx. Blunting either ROS accumulation or protein synthesis
neuters CHOP’s pro-apoptotic potential (Marciniak et al., 2004;
Malhotra et al., 2008; Li et al., 2009).

The strong association of CHOP with cell death in both cell
and animal models raises the question of whether CHOP is intrin-
sically apoptotic, or instead whether this role is only manifested
in the context of severe stress, masking other roles for CHOP in
maintaining normal physiologic homeostasis. Indeed, the restora-
tion of protein synthesis following stress is essential to maintain
vital cellular functions, and the existence of a constitutive phos-
phatase ensures that even Chop−/− or Gadd34−/− cells are able
to resume protein synthesis (Harding et al., 2009; Tsaytler et al.,
2011); CHOP, therefore, merely accelerates the process, and it is
possible that the kinds of stresses encountered in normal (i.e.,
non-pathologic) physiology are sufficiently mild that the bene-
fits to cellular function of restoring protein synthesis outweigh
the cost of increased ROS production. In addition, while CHOP
induction is largely suppressed in some instances of physiolog-
ical UPR induction such as B lymphocyte differentiation (Gass
et al., 2002) and toll-like receptor ligation (Woo et al., 2009), it
occurs in others such as feeding after a fast (Pfaffenbach et al.,
2010).

CHOP likely contributes directly to the suppression of sev-
eral metabolic transcriptional regulators during ER stress in the
liver (Chikka et al., 2013). This finding suggests that CHOP
might serve a role in regulating lipid metabolism in vivo,
which is consistent with the steatosis observed in Chop−/−
mice (Maris et al., 2012). To the extent that CHOP (or
other secondary stress-regulated transcription factors) regulates
metabolic transcription factors such as Cebpa, Ppara, and Srebf1c,
there exists a multistep gene regulatory network during ER
stress in hepatocytes that culminates in changes in the expres-
sion of genes encoding rate-limiting enzymes of intermedi-
ary metabolism (Rutkowski et al., 2008). CHOP also promotes
inflammation (Maris et al., 2012; DeZwaan-McCabe et al., 2013;
Malhi et al., 2013), although whether this is a consequence of
direct CHOP action on inflammatory genes, or instead a sec-
ondary consequence of the other functions of CHOP is not yet
clear.

The actions of CHOP on the transcriptome and on the accom-
panying physiological processes highlight the ability of the UPR
to expand its reach through the regulation of secondary tran-
scription factor expression, but CHOP is certainly not the only
transcription factor whose transcription is regulated by ER stress.
In fact, a search through several published microarrays from
ER stress-treated MEFs (Marciniak et al., 2004; Wu et al., 2007;
Rutkowski et al., 2008) reveals expression changes for several
dozen transcription factors and cofactors, including both activa-
tors and repressors (Table 1). It follows that such transcriptional
cascading will create a temporal hierarchy of gene regulation, with
the earliest regulated genes being most proximally connected to
UPR pathways. Such cascading likely contributes to the regulation
of metabolic genes in the liver [(Arensdorf et al., 2013) this issue].

HETEROMERIC INTERACTIONS AND COFACTOR TITRATION
The major transcription factors of the UPR, both canonical and
secondary, are bZIPs (ATF4, ATF6, XBP1, CHOP, JUN, ATF3,
ATF5). The dozens of members of this family form homotypic
and heterotypic dimers, typically within functionally related sub-
classes (Vinson et al., 2006). Thus, the complement of genes
regulated during ER stress can be influenced by the formation
of novel regulatory complexes not possible when the UPR is
inactive, containing one UPR-regulated member and one con-
stitutively expressed member. For instance, as a C/EBP family
member, CHOP can interact with C/EBPα and C/EBPβ, altering
the transactivation potential of each of these (Fawcett et al., 1996;
Ubeda et al., 1996; Chiribau et al., 2010). Likewise, ATF6 was
recently shown to interact with C/EBPβ upon stimulation with
the inflammatory cytokine IFN-γ to transcriptionally upregulate
the autophagy-promoting gene Dapk1 (Gade et al., 2012).

Stress-regulated transcription factors can also influence global
gene expression beyond the genes they directly regulate through
the titration of coregulatory molecules shared with constitu-
tive transcription factors. Such a mechanism was demonstrated
recently for the coactivating factor CRTC2, which was shown
to lose its costimulatory interaction with the gluconeogenic
bZIP transcription factor CREB in favor of an interaction with
ATF6 (Wang et al., 2009). The consequence of this titration was
inhibition of hepatic gluconeogenesis during acute ER stress,
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Table 1 | Transcription factors and cofactors whose mRNA expression

is regulated by the UPRa.

Likely activator Likely repressor Both activities

demonstrated

UPREGULATED

Aatf Cry1 Atf2

Arnt1 Cry2 Atf3

Atf4 Hey2 Cebpg

Atf6 Mybbp1a Ddit3 (Chop)

Ets2 Sin3a Myc

Fubp1 Zfp57 Nfil3

Hoxa1 Rbpj

Hoxa11

Myst4

Nfya

Nr4a2

Rxrb

Snip1

Tfcp2

Zbtb7b

DOWNREGULATED

Foxq1 Id1 E2f8

Nfkbiz Nr1d1 Elk3

Nfkbia Hipk2

Stat3

a1.5-fold or more, p <0.05, in at least 2 of the arrays described in Marciniak et al.

(2004); Wu et al. (2007); and Rutkowski et al. (2008).

and gluconeogenesis and hyperglycemia could be suppressed in
diabetic animals by ATF6 overexpression.

ATF6 has also been shown to interact with the coactivator
PGC-1α. In skeletal muscle, this interaction promoted the full
upregulation of canonical UPR target genes upon exercise (Wu
et al., 2011). Likewise, a PGC-1α/ATF6 interaction stimulated
expression of the ERRγ orphan nuclear receptor/transcription
factor in a hepatocyte cell line (Misra et al., 2013). Roles for
ERRγ in glucose and alcohol metabolism in the liver have recently
emerged (Kim et al., 2012, 2013). PGC-1α has been implicated
in the transcriptional regulation of many key metabolic processes
including gluconeogenesis, fatty acid oxidation, and mitochon-
drial biogenesis, based on its ability to coactivate a number of
transcription factors (Lin et al., 2005). Therefore, it is possible
that ER stress will disrupt or otherwise influence the regulation of
such gene networks based on competition for PGC-1α binding,
although this has not yet been demonstrated.

EXPANSION OF UPR SIGNALING PATHWAYS
The status of PERK, IRE1, and ATF6 as canonical UPR regulators
arises from the primacy of their early discoveries and their ubiq-
uity. However, a number of other stress-signaling pathways have
since been discovered that extend the scope of the UPR in both
general and context-specific ways.

While IRE1α is ubiquitously expressed, its paralog IRE1β,
expressed in mucin-producing cells of the gut (Bertolotti et al.,
2001) and airway (Martino et al., 2013), was identified around

the same time (Wang et al., 1998). Like its paralog, IRE1β can cat-
alyze the splicing of Xbp1 (Calfon et al., 2002). Mice lacking IRE1β

are sensitive to colitis induced by dextran sodium sulfate chal-
lenge (Bertolotti et al., 2001), as are animals lacking XBP1 (Kaser
et al., 2008), ATF6, or the ER cochaperone p58IPK /ERDJ6 (Cao
et al., 2013). The phenotypic similarities among these animals
suggests that, like its paralog, IRE1β contributes to ER home-
ostasis largely through Xbp1 splicing and upregulation of the ER
folding and quality control machinery. However, the endonucle-
ase domain of IRE1β displays less activity toward Xbp1 than does
that of IRE1α and has an enhanced specificity for 28s rRNA, which
can contribute to suppression of protein synthesis (Imagawa et al.,
2008). In addition, in contrast to Ire1α−/− animals, Ire1β−/−
mice showed elevated expression of mucin 2 mRNA, impaired
MUC2 secretion, and exacerbated ER stress, including, para-
doxically, increased Xbp1 splicing (Tsuru et al., 2013). These
findings suggest that IRE1α and β have at least partially separable
functions, and raise the question of how strong a contribu-
tion IRE1β makes to mRNA regulation in the cells where it is
expressed.

IRE1β aside, the reach of the UPR has been most expanded
by the discovery of ER localized proteins that, like ATF6, are acti-
vated by regulated intramembrane proteolysis. First among these
was a paralog of ATF6 known as ATF6β (ATF6 is also known
as ATF6α) that is 36 percent identical to ATF6 over 93 percent
of its length (Haze et al., 2001). Cells lacking ATF6β show no
apparent defect in upregulation of canonical UPR target genes
(Yamamoto et al., 2007). However, like ATF6, ATF6β binds to
ERSE sequences in conjunction with NFY (Yoshida et al., 2001a).
Mice lacking both ATF6 and ATF6β die during embryogenesis
(Yamamoto et al., 2007), as do similarly manipulated medaka fish
(Ishikawa et al., 2012). Overexpression of Bip could partially res-
cue impaired notochord development in these fish, suggesting
that ATF6 and ATF6β converge on chaperone mRNA regula-
tion, albeit with somewhat different kinetics (Haze et al., 2001).
Whether ATF6β regulates the expression of any unique genes is
not yet known.

In addition to ATF6 and ATF6β, there are at least 5 additional
ER-resident transmembrane bZIP transcription factors that are
cleaved by RIP, including CREBH, Luman, OASIS, BBF2H7, and
CREB4 [reviewed in (Asada et al., 2011)]. These 5 proteins are
not highly homologous to each other or to ATF6, and each is
expressed in a unique subset of tissues, but they are all known
or thought to be cleaved by S1P (Raggo et al., 2002; Murakami
et al., 2006; Stirling and O’Hare, 2006; Zhang et al., 2006). These
proteins can be activated by conventional ER stress and/or can
regulate the expression of UPR target genes through traditional
ER stress-responsive cis-acting sequences (Kondo et al., 2005;
Liang et al., 2006b; Stirling and O’Hare, 2006; Zhang et al., 2006;
Kondo et al., 2007). However, they may be activated more strongly
by physiological signals that influence ER homeostasis in ways
other than the simple perturbation of or excess demand upon the
protein folding machinery, and might also be retained in the ER
by distinct mechanisms; at least CREBH appears to be retained by
virtue of its cytosolic membrane-proximal segment rather than
by lumenal Bip binding as for ATF6 (Llarena et al., 2010). In
addition, they also appear to regulate expression of distinct sets
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of genes, suggesting that they diversify the responsiveness of the
UPR and the scope of genes that it regulates in various tissues
rather than simply augmenting these processes.

The predominantly liver-specific RIP substrate CREBH illus-
trates the complex relationship between these substrates and the
canonical UPR. Crebh mRNA is upregulated by conventional
ER stress in the liver, and cleavage of the protein is modestly
stimulated as well; the cleaved form is capable of associating
with ATF6 and upregulating UPRE- or ERSE-dependent reporters
(Zhang et al., 2006). However, both its expression and cleav-
age are also strongly induced by inflammatory stimuli such as
LPS exposure or IL-6 treatment, and the genes encoding the
inflammatory modulators CRP and SAP were also identified
as likely CREBH targets. While inflammatory stimuli such as
LPS appear capable of inducing ER stress, they spawn a modi-
fied eIF2α-independent response (Woo et al., 2009), suggesting
that, even if CREBH is activated simply by the accumulation
of unfolded proteins in the ER, it would be so in the con-
text of a modified UPR. CREBH also regulates the expression
of hepicidin, leading to dysregulation of iron homeostasis upon
ER stress in wild-type mice but not Crebh−/− animals (Vecchi
et al., 2009). Therefore, CREBH can also contribute to the expan-
sion of mRNA expression even during exposure to a conven-
tional ER stressor. More recently, CREBH was shown to directly
regulate genes involved in gluconeogenesis (Lee et al., 2010)
and lipid metabolism (Zhang et al., 2012). The latter of these
processes showed a stronger CREBH dependence in the con-
text of a high-fat atherogenic diet, raising the question of the
extent to which physiological stimuli such as obesity impact gene
expression through the canonical UPR vs. through pathways that
enlist the action of molecules like CREBH to produce a unique
response.

Knockout of each of the RIP substrates [or, in the case of
Luman, a regulator of the pathway, LRF; (Martyn et al., 2012)]
yields a discrete phenotype attributable to dysfunction of the
major tissue in which the substrate is expressed (Asada et al.,
2011). In contrast, mice lacking ATF6, which have compro-
mised ER chaperone induction upon ER stress, show no appar-
ent basal phenotype (Wu et al., 2007; Yamamoto et al., 2007).
Therefore, simple failure to upregulate ER chaperones to the
maximum extent is not sufficient to elicit a phenotype, mak-
ing it unlikely that the RIP substrates merely augment chaperone
induction; more likely, the phenotypes induced by their deletion
are attributable to non-redundant actions on specific genes, be
they chaperones or something else entirely. However, their acti-
vation signals and the global effects on transcriptome regulation
remain unclear.

mRNA STABILITY
Although each UPR pathway culminates in production of a tran-
scription factor, mRNA abundance can just as readily be regulated
by enhanced or diminished stability. Indeed, one estimate of the
relative contribution of transcriptional and post-transcriptional
mechanisms to mRNA abundance during ER stress—based on
the comparison of mRNA levels in nuclear run-off assays against
total mRNA pools—suggested that ∼75 percent of mRNAs were
regulated at least in part at the level of stability (Kawai et al.,

2004). Pathways linking ER stress to mRNA stability are much
less understood than transcriptional mechanisms, but are emerg-
ing as important influences on UPR output and physiological
responses.

GENE REGULATION BY RIDD
A subset of ER-localized mRNAs are degraded directly by the
endonuclease activity of IRE1 in a process called regulated
IRE1-dependent decay (RIDD). The process was first observed
in Drosophila cells, in which a subset of mRNAs was rapidly
suppressed by ER stress in an IRE1α-dependent but XBP1-
independent manner (Hollien and Weissman, 2006). This group
of mRNAs was highly enriched for those encoding proteins with
in-frame ER targeting sequences, but the cleavage of these mRNAs
was otherwise non-sequence-specific. It is possible that RIDD
represents an ancient activity of IRE1, since Ire1p in the fission
yeast S. pombe catalyzes a RIDD activity but not a HAC1 splicing
activity (Kimmig et al., 2012). More recently, a sequence necessary
for mRNA cleavage by IRE1α in vitro was identified (Oikawa et al.,
2010), although it is not yet clear whether these findings extend
to RIDD targets in vivo as well. These findings led to the idea that
activated IRE1α directly cleaves some mRNAs that are brought
to proximity with the ER membrane by virtue of their associa-
tion with translating ribosomes synthesizing signal peptide- or
signal anchor-encoding proteins. This finding was subsequently
extended to mammalian cells (Han et al., 2009; Hollien et al.,
2009). The RIDD and Xbp1 splicing activities of IRE1α are
functionally separable (Han et al., 2009; Hollien et al., 2009),
implying that each process plays a distinct role in UPR-mediated
control over the transcriptome. Where these functions overlap—
i.e., in the expression of ER chaperones and other ER-localized
proteins that facilitate recovery from stress but whose mRNAs
are RIDD targets by virtue of their localization—the transcrip-
tional induction must be sufficient to overcome degradation by
RIDD.

Although the RIDD pathway has not yet been as well charac-
terized in mammalian cells, its targets in that context are involved
in processes ranging from signaling cascades (e.g., Pdgfrb, Efnb2,
Ncam1, Raptor) to transcription (e.g., Pbxip1, Hoxb4, Srsf3) to
lysosomal degradation (e.g., Bloc1s1, Tpp1, Hgsnat) to xenobi-
otic metabolism (Cytochrome p450s-encoding genes) and energy
production (e.g., Oxct1) (Hollien et al., 2009; Hur et al., 2012).
RIDD appears now not to be solely limited to genes encoding
ER-translocated proteins but includes mRNAs encoding cytosolic
factors as well (Hollien et al., 2009; Oikawa et al., 2010; Ventoso
et al., 2012). This ability of the ER-tethered IRE1α to degrade
mRNAs encoding cytosolic proteins might arise from the local-
ization of specific cytosolic mRNAs in the process of translation
to the ER membrane (Stephens et al., 2005); indeed, localiza-
tion of an mRNA to the ER membrane, irrespective of whether
it encodes a protein of the endomembrane system, appears suf-
ficient to target that mRNA for RIDD for the large majority of
mRNAs, at least in insect cells (Gaddam et al., 2012). In addition,
even mRNAs not stably associated with the ER membrane can
still be targeted for RIDD if they contain an Xbp1-like stem-loop
structure that allows them to associate directly with IRE1 (Moore
et al., 2013).
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Irrespective of whether RIDD acts on specific mRNAs or more
generally on most of those associated with the ER membrane,
its activation has distinct physiological consequences. IRE1β (but
not α) might control efflux of absorbed lipids through its RIDD
activity. Lipids absorbed from the diet are packaged by entero-
cytes into lipoprotein particles known as chylomicrons, and a key
step in this packaging is lipidation of apolipoproteins in the ER
by microsomal triglyceride transfer protein (MTTP) (Hussain,
2000). IRE1β was found to cleave Mttp mRNA, and Ire1β−/−
mice on a high fat diet had elevated MTTP expression, ele-
vated chylomicron production, and hyperlipidemia (Iqbal et al.,
2008). The RIDD pathway also can regulate lipid metabolism
in the liver; IRE1α-dependent degradation of genes involved in
lipogenesis and lipoprotein synthesis was elicited as a feedback
mechanism in mice lacking XBP1 (So et al., 2012). An analo-
gous pathway of feedback elicited IRE1α-dependent suppression
of proinsulin processing in pancreatic β cells of Xbp1−/− mice
(Lee et al., 2011). These findings are consistent with the idea
that RIDD is most active on ER-localized mRNAs, since lipopro-
tein formation, lipogenesis, and proinsulin processing all take
place in the ER or at the ER membrane. A conservative esti-
mate puts the frequency of RIDD targets at ∼5 percent of all
ER stress-regulated mRNAs in cultured mammalian cells (Hollien
et al., 2009), and it might in fact be substantially higher (Gaddam
et al., 2012). Whether RIDD is more or less active during phys-
iological stimuli in vivo and whether its specificity for certain
groups of substrates can be meaningfully regulated are not yet
understood.

mRNA REGULATION BY miRNAs
Another common source of mRNA regulation occurs
through microRNAs (miRNAs). miRNAs are short (∼22 nt)
single-stranded RNAs which bind to complementary mRNAs
and promote their degradation or, less frequently, inhibit their
translation (Valencia-Sanchez et al., 2006). The UPR-mediated
regulation of miRNA is a rapidly emerging area of investi-
gation and a potential mechanism for fine-tuning of mRNA
abundance. The pathways leading from UPR activation to
miRNA regulation and the consequences of this regulation for
mRNA abundance and downstream cellular processes have been
reviewed extensively in (Maurel and Chevet, 2013), to which we
direct the reader for details. Each of the three canonical UPR
pathways transcriptionally regulates the expression of discrete
miRNAs (Bartoszewski et al., 2011; Belmont et al., 2012; Byrd
et al., 2012; Chitnis et al., 2012; Gupta et al., 2012). To date,
the best-described functions of ER stress-regulated miRNAs
are in tuning UPR sensitivity (Byrd et al., 2012; Maurel et al.,
2013; Zhang et al., 2013) or in regulating cell proliferation and
apoptosis during stress (Chitnis et al., 2012; Duan et al., 2012;
Gupta et al., 2012; Muratsu-Ikeda et al., 2012).

As an emerging area of study, the physiological roles of ER
stress-mediated miRNA regulation are largely unknown; how-
ever, it was recently demonstrated that IRE1α activation causes
degradation of miR-17, which in turn leads to upregulation of the
miR-17 target mRNA encoding thioredoxin-interacting protein
(TXNIP) (Lerner et al., 2012). TXNIP promoted inflammasome
assembly, caspase-1 activation, and cell death, and Txnip−/− mice

were protected from pancreatic β cell death induced by pro-
duction of misfolded insulin. Given the ability of miRNAs to
coordinately regulate the stability of many target mRNAs, it seems
likely that this mechanism will emerge as a major contributor to
noncanonical UPR output, and that further physiological roles
will be discovered.

ER stress has been associated with changes in the stability of
individual mRNAs through undetermined mechanisms (Pereira
et al., 2010; Park et al., 2012), and so it is possible that other
pathways for regulating mRNA turnover exist as well. One sug-
gested mechanism is the sequestration of translationally inhibited
mRNAs in stress granules (Kimball et al., 2003). mRNA sta-
bilization through sequestration would thus decouple mRNA
abundance from protein abundance (Kawai et al., 2004). This
possibility illustrates the caution that must be exercised when
interpreting changes in mRNA abundance in general: mRNA and
protein expression are only loosely correlated (Gygi et al., 1999),
and understanding the mechanisms of mRNA regulation by the
UPR only illuminates one component in the regulation of gene
expression.

A WAY FORWARD: DISSECTING UPR-RESPONSIVE GENE
REGULATORY NETWORKS
The abundance of non-canonical mechanisms of mRNA regu-
lation by the UPR suggest that the number of mRNAs whose
regulation is attributable to direct binding by XBP1, ATF4, or
ATF6 is likely to represent only a small portion of all the regulated
genes. How, then, can the complex gene regulatory network of
the UPR be best studied moving forward? The explosion of high
throughput methodology and increasingly sophisticated bioin-
formatic tools holds promise for both “top-down” and “bottom-
up” approaches to this problem. The application of microarray
technology to the yeast UPR first revealed the complexity of the
transcriptional response (Travers et al., 2000); similar microarray-
based approaches (Harding et al., 2003; Lee et al., 2003b; Wu et al.,
2007) in mammals revealed the dependencies of subsets of genes
on each UPR pathway, but could not separate direct from indirect
influences. Next-generation sequencing methodologies, includ-
ing mRNA-seq and ChIP-seq, will now be used to piece together
regulatory hierarchies; these techniques were recently combined
to elucidate the gene networks regulated by XBP1 (Acosta-Alvear
et al., 2007) and CHOP and ATF4 (Han et al., 2013). A com-
plementary approach will be to find groups of genes that are
coordinately regulated and use bioinformatic analysis to predict
previously hidden upstream regulators. As proof-of-principle, we
have shown that the temporal organization of metabolic gene
regulation upon ER stress in the liver identifies the transcrip-
tion factor HNF4α as a key link between UPR activation and
the expression of genes involved in lipid metabolism [(Arensdorf
et al., 2013); this issue]. Such functional genomics approaches
have until recently been restricted to studies in simple organ-
isms like yeast. However, the ability to probe and experimentally
manipulate the entire mammalian genome has now made these
techniques feasible in higher eukaryotes as well (Kampmann et al.,
2013), and these approaches have been used to understand secre-
tory pathway function (Bassik et al., 2013) and the ERAD network
(Christianson et al., 2011).
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Although best known as the gateway to the secretory pathway,
the ER participates in many cellular processes that have little or
nothing to do with protein folding per se. While augmentation
of the ER protein folding capacity is certainly a significant con-
sequence of UPR activation, it remains to be seen whether most
of the genes regulated by the UPR ultimately redound to this
capacity, or whether the UPR has been co-opted in the homeo-
static regulation of other cellular processes—particularly those,
such as lipid metabolism, that involve the ER. Deciphering the
pathways leading from UPR activation to mRNA regulation will
allow the functional significance of non-canonical UPR signal-
ing mechanisms to be understood in the contexts of normal and
pathological physiology.
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