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Boolean networks (BoN) are relatively simple and interpretable models of gene
regulatory networks. Specifying these models with fewer parameters while retaining
their ability to describe complex regulatory relationships is an ongoing methodological
challenge. Additionally, extending these models to incorporate variable gene decay rates,
asynchronous gene response, and synergistic regulation while maintaining their Markovian
nature increases the applicability of these models to genetic regulatory networks (GRN).
We explore a previously-proposed class of BoNs characterized by linear threshold
functions, which we refer to as threshold Boolean networks (TBN). Compared to traditional
BoNs with unconstrained transition functions, these models require far fewer parameters
and offer a more direct interpretation. However, the functional form of a TBN does
result in a reduction in the regulatory relationships which can be modeled. We show
that TBNs can be readily extended to permit self-degradation, with explicitly modeled
degradation rates. We note that the introduction of variable degradation compromises
the Markovian property fundamental to BoN models but show that a simple state
augmentation procedure restores their Markovian nature. Next, we study the effect of
assumptions regarding self-degradation on the set of possible steady states. Our findings
are captured in two theorems relating self-degradation and regulatory feedback to the
steady state behavior of a TBN. Finally, we explore assumptions of synchronous gene
response and asynergistic regulation and show that TBNs can be easily extended to
relax these assumptions. Applying our methods to the budding yeast cell-cycle network
revealed that although the network is complex, its steady state is simplified by the
presence of self-degradation and lack of purely positive regulatory cycles.

Keywords: Boolean network, genetic regulatory network, attractor, steady state, state augmentation,

asynchronous update, feedback loop, yeast cell-cycle

1. INTRODUCTION
Dynamic models are used frequently to study the evolution of a
genetic regulatory network (GRN) over time [see De Jong (2002)
for a review]. Often accompanying these models is a graph rep-
resenting the relationships among the genetic components (e.g.,
proteins, DNA, RNA). The components are represented by nodes
and the regulatory relationships by edges. The dynamic models
range from highly quantitative frameworks such as systems of
differential equations [see Heinrich and Schuster (1996) for an
introduction] to more qualitative models such as Boolean net-
works (BoN) (Kauffman, 1969). Although systems of differential
equations are explicit and detailed in their description of net-
work trajectories, they require specialized knowledge of kinetic
parameters, time constants, and the mechanism underlying the
process. In comparison, BoN are easier to construct and interpret.
In a BoN, gene expression is discretized into one of two states,
e.g., on/off, up/down, or active/inactive. Regulation is modeled
by logic functions (e.g., AND, OR, NOT) that code the influ-
ence of the effector genes. Genetic regulation is either positive,

resulting in increased gene expression, or negative, resulting in
decreased gene expression. While discretizing gene expression
is certainly a simplification, similar approaches have resulted in
increased reproducibility and robustness when estimating both
absolute and differential gene expression (Parmigiani et al., 2002;
Scharpf et al., 2003; Zilliox and Irizarry, 2007; McCall et al.,
2011), and Boolean network models have been used to suc-
cessfully model gene regulatory networks (Albert and Othmer,
2003; Espinosa-Soto et al., 2004; Li et al., 2004; Davidich and
Bornholdt, 2008). For certain small networks, systems of differ-
ential equations and BoN are qualitatively similar in their state
transitions and long term behavior (Glass and Kauffman, 1972,
1973). These two types of models can differ in their results
when applied to networks with many nodes and complex gene
interactions.

Ultimately a desirable model is one that retains the relative
ease of modeling and interpretation of a BoN and the quanti-
tative precision of differential equations. A model that possesses
these qualities is the BoN proposed by Li et al. (2004) to study the
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Network Inference

• Q: Which kinds of biological networks have been inferred in the paper?
• A: We studied genetic regulatory networks (GRN), specifically the budding yeast cell-cycle network, using a threshold

Boolean network (TBN) model specified by linear functions and a threshold.
• Q: How was the quality/utility of the inferred networks assessed? How were these networks validated?
• A: We studied how the TBN model behaves under different assumptions of gene self-degradation and different

parameter specifications. We Markovianized self-degradation and showed that the resulting model is more tractable.
We proposed and proved two theorems relating gene self-degradation to a TBN’s attractor set and used these results
to assess the behavior of the budding yeast cell cycle. Our results were then compared to those of a widely cited
GRN model.

• Q: A few sentences explaining the main positive/negative results described in the paper.
• A: We showed how the TBN model accommodates aspects of GRNs such as variable Markovian self-degradation,

asynchronous gene update, and synergistic relationships, making the model more representative of real biolog-
ical networks. Additionally, we found that the complexity of a GRN can be summarized by the presence of
self-degradation and cycles comprised of only positive regulations. The primary limitation of TBNs is that they can-
not easily model all possible regulatory relationships. Nevertheless, the mathematical tractability and qualitative
characteristics of a TBN make it a desirable model for understanding GRNs.

budding yeast cell-cycle. Cited by more than 600 articles, their
BoN employs a simple, elegant linear function with a thresh-
old that utilizes far fewer parameters than a BoN specified by
truth tables. Because of the influential results of Li et al.’s thresh-
old Boolean network (TBN) model, a thorough analysis of the
model’s mathematical properties and fidelity to true network
behavior are important. A key aspect of their model is the treat-
ment of genetic degradation. Degradation primarily occurs in
three ways: (a) negative regulation by other genes in the network,
(b) negative regulation by other (unmeasured) genes not in the
network, and (c) intrinsic protein degradation. The latter two
are indistinguishable in a GRN and are commonly referred to as
self-degradation.

Our evaluation of the TBN consists of: (1) characteriz-
ing the regulatory relationships that the TBN can and can-
not express, (2) showing how self-degradation has a substantial
impact on a GRN’s steady state behavior, (3) Markovianizing
self-degradation, (4) proving that steady states of a GRN are
sensitive to gene interaction strengths, (5) commenting on
the role of self-degradation and interaction strength in asyn-
chronous gene update, and (6) augmenting the TBN to allow
for synergistic and antagonistic relationships. The extensions
improve a TBN’s representation of a GRN and the theoretical
results break down its complexity. In Section 2, we formally
introduce BoN, their dynamic properties and Li et al.’s cell-
cycle TBN. In Section 3, we evaluate the TBN and present
our theorems relating self-degradation to steady state behav-
ior. A summary and discussion of our findings follows in
Section 4.

2. MATERIALS AND METHODS
2.1. A REVIEW OF BOOLEAN NETWORKS AND DYNAMIC PROPERTIES
A Boolean Network (BoN) is defined as a directed graph G(X , E)

with Boolean transition functions. The graph G is composed of
a set of nodes X = {1, . . . , N} and a set of edges E , in which a
directed edge represents a causal relationship between two nodes.
Each node i can have either state xi = 0 or xi = 1. Whenever there

is an edge i → j ∈ E , j is called the child of i and i is called the
parent of j in G. Associated with each node is a Boolean function
fi : BN �→ B where B = {0, 1}. This function specifies how the
state of node i changes over time. Denote the state of node i at
time t as xi(t). Node i updates its state by the Markovian process,
xi(t + 1) = fi(x1(t), . . . , xk(t)) where 1, . . . , k are its parents. In
other words, the current state of a node is determined by a func-
tion of its parents’ previous states. Although fi is defined to take
N inputs, the relevant arguments are the parents’ states since all
other nodes do not directly affect i. In GRNs, an fi specifies the
regulatory relationship between gene i and the rest of the net-
work. The entire network updates synchronously by the process,
x(t + 1) = A(x(t)), where x = (x1, . . . , xN) is a state vector and
A : BN �→ BN is the model’s operator. To be exact, A is a vec-
tor whose components are the functions, fi. A network path is a
sequence,

x(0) → x(1) → x(2) → . . .

The long term behavior or steady state of a BoN can be charac-
terized by its attractors. An attractor is a set of network states that
occur infinitely often in the sequence At(x(0)) with t ≥ 1. If the
set contains only one element, then the attractor is referred to as
a fixed point, otherwise the attractor is periodic. Formally, a fixed
point is defined as x = A(x). An important feature of an attractor
is its basin of attraction, which is the set of state vectors from which
the network reaches the attractor. The size of the basin of attrac-
tion represents the attractor’s pull on the network states. Growing
evidence suggests that an attractor represents a particular cell fate
(Kauffman, 1969; Huang et al., 2005).

2.2. THE CELL-CYCLE THRESHOLD BOOLEAN NETWORK
The cell-cycle of the budding yeast Saccharomyces cerevisiae is a
phenomenon that continues to fascinate and generate knowledge
even after years of research. Li et al. (2004) developed a dynamic
BoN to model the cycle and “demonstrated that the cell-cycle net-
work is extremely stable and robust for its function” (p.4781).
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Their BoN uses a linear transition function with a threshold,
henceforth referred to as a TBN, in the following manner:

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijxj(t) > 0

0,
∑

j aijxj(t) < 0

xi(t),
∑

j aijxj(t) = 0

(1)

where xj(t) is the expression of the regulator protein j at the
current time t, xi(t + 1) is the expression of the regulated pro-
tein i at the next time t + 1, and interaction coefficient aij codes
the strength and type of regulation that protein j exerts on pro-
tein i. Positive regulation is specified by positive values of aij and
negative regulation by negative values of aij. Any regulation is a
product of the parent’s state xj(t) and the type and strength of
the regulation aij. The next state of a protein depends only on
its parents’ current states. Specifically, the next state xi(t + 1) of
protein i is ‘on’ if the sum of its parents’ regulatory effects sur-
passes 0, “off” if the sum is below 0, and when the sum is 0, the
state remains the same. Self-degradation is a process not incorpo-
rated in Equation (1), but defined separately as: if

∑
j aijxj(t) = 0

from t = ts to t = ts + td − 1 then xi(ts + td) = 0, where td is
referred to as the protein’s lifetime. A higher value of td translates
to a slower rate of decay. In the cell cycle TBN constructed in Li
et al. (2004), only proteins not negatively regulated by others pos-
sess the self-degradation property (we note, however, that Swi5
appears to be an exception, as indicated in Figure 1 of Li et al.
(2004)). Proteins that do not self-degrade maintain their current
state according to line 3 of Equation (1). For ease of reference, we
refer to these proteins as having the persistence property.

Proteins in the cell-cycle network belong to one of four classes:
(a) cyclins (Cln1,-2,-3, Clb1,-2,-5,-6), (b) inhibitors/competitors
of cyclins (Sic1, Cdh1, Cdc20, Cdc14), (c) transcription factors
(SBF, MBF, Mcm1/SFF, Swi5), and (d) checkpoints. We focus on
a simplified network having only the cell size checkpoint. The
cell-cycle starts at phase G1 where the cell size becomes large
enough and Cln3 reaches a high enough concentration, i.e., its
Boolean state is equal to 1. When these two conditions are met,
the cell commits to division. Next, the cell moves into S phase
in which DNA is synthesized. After S phase is the gap phase G2,
and in the final phase M, chromosomes separate and the yeast cell
divides into two cells. This phenomenon repeats when the right
conditions encourage cell growth and division.

Accompanying the TBN model in Equation (1) is a graph
depicting the relationships among the proteins in the cell-cycle
network. We reproduced the cell-cycle network in Figure 1. The
graph is identical to Li et al.’s except for green self loops that
we added to proteins that are assumed to persist. Functionally,
Figure 1 is equivalent to theirs. An edge between two nodes rep-
resent one of four regulatory relationships, negative regulation,
positive regulation, self-degradation and persistence. These rela-
tionships are represented with a red edge, green edge, yellow loop,
and green self loop respectively (note that all genes possess either a
green self loop or a yellow loop). Li et al. assigned all positive reg-
ulations (green edges) the same interaction coefficient aij = ag ,
and all negative regulations (red edges) aij = ar . Although aij is
allowed to take on any real value, Li et al.’s main results are based
on ag = −ar = 1. They claimed that “the results are insensitive to

FIGURE 1 | The simplified yeast cell-cycle network.

the values of the weights ag and ar . . . and to the protein lifetime
td, as long as −ar ≥ ag and td > 0” (p. 4785).

The cell-cycle network in Figure 1 appears to be very com-
plex. The network contains 11 proteins, some proteins have as
many as five regulators, and there are many feedback loops. With
the exception of Swi5, a protein that is not negatively regulated
by others in the network self-degrades (yellow loop), otherwise
it persists (green self loop). We will show how the attractor set
changes when Swi5 is set to persist instead of degrade, which
illustrates the network’s sensitivity to the assumptions of self-
degradation. An important feature of this network is that the
positive regulations (green edges) are almost acyclic except for
the cycle between Clb1&2 and Mcm1/SFF, key players in the
M phase or mitosis. We will discuss in more detail how this cycle
plays a crucial role in the simplicity of the network’s long term
behavior.

Compared to a BoN specified by truth tables, the TBN in
Equation (1) captures genetic relationships with far fewer param-
eters, which is especially convenient when the model space is
relatively large. As an illustration, suppose a network has N nodes
and each node i has ki parents. Defining a BoN with truth tables
requires

∑N
i 2ki parameters, 2ki parameters per node, while spec-

ifying the TBN in Equation (1) requires only
∑N

i ki parameters,
ki of aij per node. The TBN is a hybrid between a BoN and a
system of differential equations that retains the interpretability of
the former and the mathematical tractability of the latter.

In the next section, we analyze the TBN model and propose
extensions related to self-degradation, asynchronous gene update
and synergistic relationships. We also state theoretical results that
translate self-degradation and network cycles to network steady
state behavior.

3. RESULTS
3.1. THRESHOLD BOOLEAN NETWORK MODEL
The primary limitation of the model described by Equation (1)
is that only the regulatory relationship OR can be expressed.
For example, given proteins, i, j, and k, expressing i if j ∪ k
can be achieved by setting aij = aik = 1. However, expressing i
if j ∩ k is impossible with any combinations of aij and aik. To
encode an AND relationship and other types of regulations, the
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threshold needs to be greater than zero. An example of a TBN
with a non-zero threshold was implemented by Davidich and
Bornholdt (2008) to model the fission yeast cell-cycle. We present
a more general form of the model in Equation (1) by including a
threshold parameter αi ≥ 0:

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijxj(t) > αi

0,
∑

j aijxj(t) < αi

xi(t),
∑

j aijxj(t) = αi.

(2)

Clearly, Equation 1 is a special case of Equation 2 in which
αi = 0 ∀i. By varying thresholds and interaction coefficients, it
is possible to encode many regulatory relationships. Given pro-
teins, i, j, and k, encoding the relationship i if j ∩ k would simply
require setting aij = aik = 0.5 and αi = 0.99. Even more compli-
cated relationships can be expressed using the TBN model. For
example, i if (j ∪ k) ∩ l could be achieved by setting aij = aik =
0.1, ail = 0.95, and αi = 1.

However, not all relationships can be expressed. One such
relationship is i if (j ∩ k) ∪ (l ∩ m). The following example
illustrates this issue:

Example. In order to encode the relationship i if (j ∩ k) ∪ (l ∩ m),
the coefficients aij, aik, ail, aim and the threshold αi would have to
satisfy the following inequalities:

aij + aik > αi

ail + aim > αi

aij + ail ≤ αi

aij + aim ≤ αi

aik + ail ≤ αi

aik + aim ≤ αi.

Summing the first 2 inequalities produces aij + aik + ail + aim >

2αi. Summing the last four inequalities produces 2aij + 2aik +
2ail + 2aim ≤ 4αi. The contradiction shows that it is not possi-
ble to encode the above relationship using any TBN of the form
in Equation (2). Although inclusion of the threshold parameter
αi permits a far wider range of regulatory relationships, some
limitations remain.

3.2. SELF-DEGRADATION
3.2.1. Steady state characteristics
Setting negative regulations (red edges) at the same rate aij =
ar = −1, positive regulations (green edges) at the same rate aij =
ag = 1 and protein lifetime td = 1, the main result of the cell-
cycle TBN, reported in Li et al. (2004), is the set of attractors
in Table 1A. The largest basin of attraction shown is 1764. Of
211 = 2048 possible network states, 1764 states flow toward the
fixed point (0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0), in which inhibitor pro-
teins Cdh1 and Sic1 stay active indefinitely even when the rest of
the network is off. Although the cell-cycle network is very com-
plex, the attractor set has only seven attractors, which are all fixed
points.

Thomas (1981) explored the effects of different regulatory cir-
cuits or feedback loops on the composition of the attractor set.

Regulatory circuits are classified as positive or negative depend-
ing on whether the number of negative regulations (red edges)
in the circuit is odd or even. Thomas proposed that positive cir-
cuits are necessary to generate multiple attractors and negative
circuits are necessary to generate fixed points and periodic attrac-
tors. These ideas were later formalized in theorems by Remy et al.
(2008); Richard (2010), and various conditions for a unique fixed
point attractor set have been developed by Robert (1980); Shih
and Dong (2005); Richard (2013). The theorems and results in
this manuscript build upon these works by examining the effect of
self-degradation and regulatory circuits on a network’s long term
behavior.

Theorem 1. Let G = (X ,E) be a TBN of the form in Equation (2)
with N nodes,X = {1, . . . , N} and edges E . Suppose each threshold
parameter satisfies αi ≥ 0 for each i. If every node has a self-
degradation loop and network cycles must have at least 1 negative
regulation (red edge), then the network’s attractor is a unique fixed
point, the null state.

The proof requires the following definition. Let G = (X ,E) be
a graph. An ordering of nodes 1, . . . , N is a topological ordering
relative to G if, whenever we have i → j ∈ E , then i < j. A parent
node has a lower order than a child node. Most importantly, a
graph is directed acyclic or DAG if and only if it has a topological
ordering.

Proof. Denote the set of nodes having either an incoming or out-
going positive regulation (green edge) as Xn = {1, . . . , n} ⊂ X .
Given that cycles with all positive regulation (green edges) do
not exist, choose a topological ordering (with respect to green
edges only) for Xn, say T , and add directed null edges, which
have no real regulatory effect, to all pairs of nodes in Xn not hav-
ing an edge such that T is not violated. Then Xn has the unique
topological ordering T = 1, . . . , n. The expression of a node in
G = (X , E) at time t is a function of nodes with smaller topo-
logical order and other nodes in X at the previous time t − 1,
i.e.,

xi(t) = fi({x1(t − 1), . . . , xi − 1(t − 1)}, {xi(t − 1), . . . ,

xn(t − 1), . . . , xN(t − 1)})

where fi is the transition function for node i of the form in
Equation (2) in which the parameter aij can take any magnitude
so long as positive regulation is defined by a positive sign and
negative regulation by a negative sign.

The proof proceeds from the observation that, under the stated
hypothesis, if for td consecutive time points all nodes with topo-
logical ordering smaller than i have value 0, at the time point t
immediately following we must also have xi(t) = 0.

By mathematical induction, we will show that
(x1(k), . . . , xn(k)) = (0, . . . , 0) for some time k and remains at �0
after time k. At some time t < k,

x1(t) = f1({∅}, {x1(t − 1), . . . , xN(t − 1)})
= 0,
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Table 1 | The attractor set for the cell-cycle threshold Boolean network under different interaction coefficients.

Basin size Cln3 MBF Clb5&6 Mcm1/SFF Swi5 Cdc20&14 Cdh1 Cln1&2 SBF Sic1 Clb1&2

(A) ag = 1

1764 0 0 0 0 0 0 1 0 0 1 0

151 0 0 0 0 0 0 0 1 1 0 0

109 0 1 0 0 0 0 1 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1 0

7 0 1 0 0 0 0 0 0 0 1 0

7 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

(B) ag = 2

1978 0 0 0 0 0 0 1 0 0 1 0

57 0 0 0 0 0 0 0 1 1 0 0

7 0 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

(C) ag = 3

1936 0 0 0 1 1 1 1 0 0 1 1

59 0 0 0 0 0 0 1 0 0 1 0

40 0 0 0 0 0 0 0 1 1 0 0

7 0 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0

Protein lifetime is set at td = 1. All negative regulations are assigned a common coefficient aij = ar = −1. All positive regulations are assigned aij = ag. (A) Shows

the attractor set associated with ag = 1. (B) Shows the attractor set associated with ag = 2. (C) Shows the attractor set associated with ag = 3. For each panel, the

rows are the attractors, which are all fixed points, and columns 2 through 12 indicate whether a protein is on (1) or off (0) in the attractor. Column 1 lists the basin

size of each attractor.

and remains at 0 indefinitely through negative regulation or self-
degradation. At some t′ > t,

x2(t′) = f (t′ − t)
2 ({x1(t)}, {x2(t), . . . , xn(t), . . . , xN(t)})

= f (t′ − t)
2 ({0}, {x2(t), . . . , xn(t), . . . , xN(t)})

= 0

where the composite function f (t′ − t)
2 is the (t′ − t)th iteration

of the transition function f2, and (t′ − t) ≤ td, for any td. Node
2 remains at 0 indefinitely through negative regulation or self-
degradation. Assume that for some l nodes, all with order less
than n, satisfies at time t′′ > t′,

x1(t′′) = . . . = xl(t′′) = 0,

and remains at 0 indefinitely through negative regulation or self-
degradation.

Then at time k > t′′,

xn(k) = f (k − t′′)
n ({x1(t′′), . . . , xn − 1(t′′)}, {xn(t′′), . . . , xN(t′′)})

= f (k − t′′)
n ({0, . . . , 0}, {xn(t′′), . . . , xN(t′′)})

= 0.

where f (k−t′′)
n is the (k − t′′)th iteration of the transition function

fn, and (k − t′′) ≤ td, for any td. Node n remains at 0 indefinitely.
For all nodes not in Xn, they remain at state 0 through negative
regulation or self-degradation. Therefore, (xi(k), . . . , xN(k)) = �0
and remains a fixed point after time k.

In short, the proof shows that when upstream positive reg-
ulations are shut down by self-degradation, the network turns
off in a cascading fashion due to the topological order and self-
degradation. The theorem applies to an entire class of networks
whose member graphs may have any number of genes, any num-
ber of cycles with at least one negative regulation (red edge),
differing interaction coefficients aij and differing protein lifetimes
td. The theorem is invariant to aij and td because these parameters
only work to speed up or slow down the rate at which the network
reaches the null attractor. An example of a network belonging to
this class is displayed in Figure 2A.

Consider a more general network class that is still acyclic in the
positive regulations (green edges) but has the additional feature
of persistence (green self loops). An example of such a network is
shown in Figure 2B.

We noted above that the degradation model defined here
implies an assignment to each gene of either a yellow loop or a
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FIGURE 2 | (A) A network with all genes self degrading (yellow loop on
each node) and acyclic positive regulations (green edges). (B) A network
with persistence (green self loop) in addition to self-degradation and acyclic
positive regulations.

green self loop. Theorem 1 concerns the special case in which all
genes are assigned yellow loops. A green self loop is formally a
cycle (which does not contain a red edge), and so the hypoth-
esis of Theorem 1 does not hold if any persistent nodes are
present.

However, suppose we are given a TBN which does satisfy the
hypothesis of Theorem 1, but we then alter the model by desig-
nating a set of nodes as persistent, otherwise leaving the model
unchanged. We wish to determine how this affects the complex-
ity of the resulting attractor structure. It must have some effect.
To take a trivial case, suppose we have n unconnected persistent
nodes. Each may be analyzed as an independent TBN, each of
which can sustain a fixed point of value 0 or 1. The total num-
ber of unique fixed points for the entire network is therefore 2n.
Of course, the complexity of the attractor structure in this case is
due entirely to the lack of any exogenous degradation pathways,
and not to any connectivity structure of the network (which does
not exist in our example).

We next show that this type of reasoning can be extended to
TBNs which have the type of acyclicity defined by Theorem 1, but
which also have persistent nodes. It is possible to describe mathe-
matically weaker properties of acyclicity within cyclic networks
in a way which bounds the complexity of attractor structure.
For example, Skodawessely and Klemm (2011) found the max-
imum number of fixed points in such a network to be 2|V |
where V ⊆ N is a set of nodes whose removal leaves the network
acyclic.

Here, we extend our notion of acyclicity in the following way.
We say j is an ancestor of i if there is a directed path from j to i.
Define the two sets of nodes:

SG = { all persistent nodes }
SA = { all nonpersistent nodes not possessing

a persistent node as an ancestor}. (3)

Theorem 2. Suppose we are given a TBN in which the subnetwork
defined by the nodes SA of (3) satisfies the hypothesis of Theorem 1,
or for which SA = ∅.

Next, define the following sequence of subsets of nodes:

E1 = SG ∪ SA,

Ej = { all nodes not in ∪i < jEi with all parents in ∪i < jEi }, j > 1,

and suppose for some J all nodes are included in ∪i ≤ JEi. Then any
two fixed points with identical values for the persistent nodes must
be equal, and therefore the maximum number of fixed points is 2g ,
where g is the number of persistent nodes.

Proof. Suppose we are given any fixed point. The nodes in SA (if
any) form a TBN satisfying the hypothesis of Theorem 1, so any
fixed point must be 0 on these nodes. This implies that the fixed
point values of the nodes in E2 are determined entirely by those of
SG. The argument may be repeated for E3, E4, . . ., until the fixed
point values of all nodes are determined.

Theorem 2 complements the result of Skodawessely and
Klemm (2011). The conclusion implies a similar upper bound of
2g for the number of distinct fixed points, where g is the number
of persistent nodes. However, while the class of BoNs considered
by Theorem 2 is more restricted, removal of the persistent nodes
does not necessarily leave the network acyclic, so that the result of
Skodawessely and Klemm (2011) does not imply Theorem 2.

The hypothesis of Theorem 2 is satisfied by both TBNs of
Figure 2. In particular, for (B) we have SG = {1, 3}, SA = ∅, E2 =
{4}, E3 = {2}. However, if a negative regulation from node 2 to
node 4 was added, the hypothesis would no longer hold (we
would have Ej = ∅ for all j ≥ 2) and a counter-example could be
constructed.

Next, consider, the cell-cycle network of Figure 1. This TBN
satisfies the hypothesis of Theorem 2 by setting

SG = {MBF, Clb5&6, Cdh1, SBF, Sic1, Clb1&2}
SA = {Cln3}
E2 = {Mcm1/SFF, Cln1&2}
E3 = {Cdc20&14}
E4 = {Swi5}.

It is interesting to note that the hypothesis of Theorem 2 is sat-
isfied despite the existence of a cycle of green edges between
Mcm1/SFF and Clb1&2 (due the the fact that one of these nodes
is persistent).

We can see from the application of Theorem 2 to the cell-cycle
network that the relationship between the attractor structure and
the configuration of persistent nodes is similar to the previous
example of the completely unconnected TBN, in the sense that
all fixed points are fully determined by their values on the per-
sistent nodes, so that the complexity of the attractor structure
must be understood to be driven by a selective lack of exogenous
degradation pathways.
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3.2.2. Self-degradation assumptions
The assignment of self-degradation (yellow loops) to certain pro-
teins in a network is not a trivial task and cannot be completed
ad-hoc because self-degradation influences the network’s long
term behavior. The simplicity of the attractor set associated with
the cell-cycle network in Table 1A is attributable to the presence
of self-degradation and a lack of active network cycles composed
entirely of positive regulations (green edges). We exemplify this
claim with protein Swi5, the transcription factor for inhibitor
protein Sic1. According to Li et al.’s rule of assigning self degrada-
tion only to proteins without negative regulators (incoming red
edges), Swi5 should not self-degrade since it has the inhibitor
Clb1&2. However, their representation of the network allowed
Swi5 to have both attributes. Suppose we don’t allow Swi5 to self-
degrade since it has an inhibitor. How would this change affect
the network’s steady state behavior? We computed the attrac-
tor set for the cell-cycle TBN (Equation (1)) disallowing Swi5 to
have the self-degradation property in Table 2. Compared to the
attractor set with Swi5 self degrading (yellow loop) in Table 1A,
the attractor set in Table 2 is bigger with 14 fixed points, half
of which has Swi5 on. The attractor set in Table 1A is a subset
of that in Table 2, meaning that the new attractors are due to
Swi5 not degrading to 0. The biggest attractor in this new set is
(0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0) which differs from the biggest attrac-
tor in Table 1A only by the presence of Swi5. This exercise has
shown that slightly altering the degradation assumption dramat-
ically affected the size and complexity of the cell-cycle’s long term
behavior.

As noted above, the only cycle constructed with all positive
regulations in Figure 1 is between Clb1&2 and Mcm1/SFF, and
this cycle is not sustained (both proteins are at state 0) in the
network’s long term behavior. To leave the cycle on indefinitely,
that is, to keep Clb1&2 and Mcm1/SFF at state 1 perpetually,
the sum of the interaction coefficients ag associated with the
positive regulations (green edges) must exceed the sum of ar

associated with the negative regulations (red edges) acting on

Clb1&2. Since −ar = ag = 1, the cycle between Clb1&2 and
Mcm1/SFF may get turned on, but does not endure. If this cycle
is deleted, the network satisfies the hypothesis of Theorem 1.
Because the cycle between Clb1&2 and Mcm1/SFF does not stay
on, the network therefore yields a null attractor when all pro-
teins are forced to self-degrade. Thus, following Theorem 2, the
variety of fixed points in Table 1A is attributable to the 6 pro-
teins with persistence (green self loop) and the cardinality of
the attractor set satisfies the upper bound of 26. Note that the
fixed points in Table 1A differ at the proteins with persistence
(green self loop), as predicted by Theorem 2. In Section 3.3, we
present a network in which the cycle remains active in the steady
state.

3.2.3. Markovian self-degradation
Since self-degradation is not built into the Markovian transi-
tion functions of the TBN model in Equation (1), specifying
incremental degradation is a cumbersome separate process that
requires tracking each gene with the self-degradation property
and counting the td time steps prior to a state change. More
importantly, by not explicitly modeling degradation, the model in
Equation (1) does not have the typical Boolean network behav-
ior. In particular, a state can be repeated without the network
having reached an attractor. For example, suppose we have a two
member network in which the only regulations are: protein 1 pos-
itively regulates (green edge) protein 2, protein 1 self degrades
(yellow loop), and protein 2 persists (green self loop). The inter-
action coefficient is a21 = 1. Further, suppose that a protein’s
lifetime is td = 2. Using the TBN of Equation (1), a network path
is (1, 1) → (1, 1) → (0, 1). Markovianizing degradation via the
following model eliminates this problem by augmenting the state
space to express the degradation counter.

xi(t + 1) =

⎧⎪⎨
⎪⎩

1,
∑

j aijI(xj(t) > 0) > αi

0,
∑

j aijI(xj(t) > 0) < αi

max(xi(t) − εi, 0),
∑

j aijI(xj(t) > 0) = αi

(4)

Table 2 | The attractor set for the cell-cycle threshold Boolean network which does not contain Swi5’s self-degradation property.

Basin size Cln3 MBF Clb5&6 Mcm1/SFF Swi5 Cdc20&14 Cdh1 Cln1&2 SBF Sic1 Clb1&2

1383 0 0 0 0 1 0 1 0 0 1 0

380 0 1 0 0 1 0 0 1 1 1 0

139 0 0 0 0 1 0 0 1 1 1 0

108 0 1 0 0 1 0 1 0 0 1 0

10 0 0 0 0 1 0 0 0 0 1 0

8 0 0 0 0 0 0 0 1 1 0 0

6 0 1 0 0 1 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 1 0 0 1 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 1 0 0 1 0

The results are based on setting the interaction coefficients ag = −ar = 1 and protein lifetime td = 1.
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Here I(xj(t) > 0) is an expression indicator for protein j; εi ∈
[0, 1] is the degradation rate for protein i; all other parameters are
as previously defined in Equations (1) and (2). Whether a pro-
tein degrades is determined by the degradation parameter εi. A
protein degrades quickly with a large value of εi and persists at
εi = 0. The TBN model in Equation (1) with the protein lifetime
parameter td = 1 is equivalent to setting ε = 1 for proteins with
self-degradation (yellow loop) and ε = 0 for proteins with persis-
tence (self green loop). Note that ε = 1/td. Compared to the TBN
model in Equation (1) for which self-degradation must modeled
in a side process, Equation (4) explicitly models self-degradation
as part of the TBN.

The third line in Equation (4) is meant solely as a device for
Markovianizing degradation and persistence. Thus, xi(t + 1) ∈
[0, 1], but the regulatory relationships remain Boolean via the
indicator I(xj(t) > 0). The state space has simply been augmented
to allow self-degradation. A further modification that would
bring a TBN model closer to a system of differential equations
would be to eliminate I(xj(t) > 0) and allow node j to take state
xj ∈ [0, 1] in Equation (4).

So far self-degradation has been treated as a triggered event,
i.e., decays occurs after the net influence on the protein is equal
to the threshold. The model can be extended to have decay in the
presence of a net regulatory effect (Hanel et al., 2012) by letting a
protein be its own parent. The sums in Equation (4) would then
include node i and line 3 could be omitted with < αi replaced by
≤ αi. These extensions of Equation (4) need to be further studied
to understand their properties and appropriateness for modeling
a genetic regulatory network.

3.3. SENSITIVITY TO INTERACTION COEFFICIENT
To test the robustness of the cell-cycle TBN to different values
of the interaction coefficient aij, we changed the coefficient of
the positive regulations (green edges) to ag ∈ {2, 3}. The attractor
sets associated with ar = −1 and ag = 2 and with ar = −1 and
ag = 3 are in Tables 1B,C. The attractor set for the model with
ar = −1 and ag = 2 is a subset, with different basin sizes, of the
attractor set for the model with ar = −1 and ag = 1 (Table 1A).
When ar = −1 and ag = 3, the network cycle between Clb1,2
and Mcm1/SFF is turned on indefinitely in the biggest attrac-
tor (0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1) which has a basin size of 1936
states. This is a consequence of positive regulations overcoming
negative regulations acting on Clb1,2. With negative interactions
fixed at ar = −1, the attractor sets for networks with ag > 3 are
either identical or very similar to the set corresponding to ag = 3
(Table 1C). For those attractor sets not identical with Table 1C,
the main difference is the appearance of a two state attractor
{(0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0), (0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1)}. This
periodic attractor is very similar to the biggest fixed point
in Table 1C because all the same proteins get turned on.
The unequal attractor sets corresponding to different param-
eters indicate that the TBN model is not robust to variable
interaction coefficients; the cell-cycle network exhibit different
behaviors depending on the model specifications. Furthermore,
certain parameter values sustain the network cycle between
Clb1&2 and Mcm1/SFF and express cellular activities not
previously seen.

Next we explored how increasing the degradation delay td

changed the cell-cycle network’s behavior. When we set −ar =
ag = 1 and td > 1 in the cell-cycle TBN (Equation (1)) the same 7
attractors in Table 1A appear. Simulation results show that vary-
ing ar and ag with td yielded attractor sets that are sensitive only
to the interaction coefficient.

3.4. ASYNCHRONOUS GENE RESPONSE
The assumption that all genes in a network update simultane-
ously, synchronous response, may be too simplistic. For example,
synchronous BoN models may yield attractors driven by the
synchrony assumption (Ingerson and Buvel, 1984; Klemm and
Bornholdt, 2005). While synchronous response is well-defined,
asynchronous response has been defined and modeled in a vari-
ety of ways. One model of asynchrony works via an operator
external to the BoN that randomly selects a subset of genes
to update at each iteration while keeping the unselected genes
constant (Ingerson and Buvel, 1984; Greil and Drossel, 2005;
Skodawessely and Klemm, 2011). Another model of asynchrony
is achieved by allowing different regulatory relationships to have
different reaction rates (Thomas and d’Ari, 1990; Silvescu and
Honavar, 2001; Shmulevich and Zhang, 2002). Unlike stochas-
tic asynchrony, asynchrony due to varying reaction rates can be
incorporated into a deterministic BoN. One type of determin-
istic asynchronous response can be modeled by allowing genes
and proteins to have different self-degradation rates and different
interaction coefficients aij. A protein with a larger lifetime td in
Equation (1) will take a longer time to reach state 0. Allowing dif-
ferent proteins to have different lifetimes imply different response
times. A positive regulator with a higher interaction strength,
|aij|, can dominate a negative regulator with a smaller interac-
tion strength and turn on the affected gene. Suppose in a four
member network, the relationships {2 → 1, 3 → 1, 4 → 1} have
the following attributes: a12 = −1, a13 = 1, a14 = 3. Compared
to gene 3, gene 4 can neutralize the effect of the inhibitor gene 2
and turn on gene 1. In the absence of gene 4, gene 3 would not be
able to turn on gene 1 if the inhibitor gene 2 is also on. In this per-
spective, the magnitude of the interaction, |aij|, can be thought of
as a rate. Assigning different interaction coefficients to proteins
in a network may be a way to model asynchronous gene update.
As we’ve discussed in Section 3.3, different choices of the coeffi-
cient may produce different attractor sets. More work is required
to identify which attractors are insensitive to variable aij and their
importance to the cell-cycle.

3.5. SYNERGY AND ANTAGONISM
Thus far the TBN in Equation (1) assumes the regulatory effects
are additive. However, some genes act together such that their
combined effect is more or less than the sum of the individ-
ual effects. Synergistic regulation occurs when the joint effect of
multiple parents is more than the sum of the individual effects.
In contrast, antagonistic regulation results in a joint effect that
is less than the sum of the individual effects. Such relationships
have been studied in cancer cells in which genes exhibit a syn-
ergistic response to the combined effort of oncogenic mutations
(McMurray et al., 2008). Since synergistic and antagonistic regu-
lations can be critical to the function of a GRN, the interactions
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should be properly modeled. The TBN model in Equation (1))
can be extended to model these types of regulation by includ-
ing the statistical interaction terms,

∑
j,k ai(jk)xj(t)xk(t), where the

interaction coefficient ai(jk) between parents j and k and child i
are defined analogously to aij. Synergy is represented by a posi-
tive ai(jk) and antagonism by a negative ai(jk). Interactions of order
greater than two are similarly constructed.

4. DISCUSSION
A TBN specified by linear functions and a threshold instead of
truth tables is more quantitative at describing genetic regula-
tory network (GRN) dynamics. We illustrate how this framework
can accommodate aspects of GRNs such as variable Markovian
self-degradation, asynchronous gene update, and synergistic rela-
tionships. Furthermore, we found that the complexity of a GRN
can be summarized by the presence of self-degradation and cycles
comprised of only positive regulations. Although the model is
more analytical compared to networks specified by truth tables,
it still retains the qualitative interpretation of a BoN.

Inspection of the TBN model in Equation (1) to model the
budding yeast cell-cycle showed that the attractor set relied on
the assumptions of self-degradation and choice of interaction
coefficient aij. Changing these two aspects of the model changed
the steady state behavior of the cell-cycle. Our extension of the
TBN model using a threshold parameter as in Equation (2)
permits greater flexibility in describing regulatory relationships.
Another modification we suggested was Markovianizing degra-
dation to facilitate incremental or delayed degradation. We also
proposed varying the protein lifetime td and interaction coef-
ficient among proteins to simulate asynchronous gene update
and adding statistical interaction terms to account for synergistic
effects.

Our theorems claimed that the composition of a TBN’s
attractor set depends on the presence and abundance of self-
degradation (yellow loops), persistence (green self loops), and
network cycles. Theorem 1 states that the null attractor is
the only attractor for a network acyclic in the positive reg-
ulations (green edges) and in which all nodes self degrade.
This result holds under varying interaction strength and degra-
dation rates. Although the theorem was proved for TBNs, it
applies to other Boolean network models that are not of the
form in Equation (1) because the proof relies only on topo-
logical ordering in the positive regulations and self-degradation
on all genes. Theorem 2 states that under a weaker def-
inition of acyclicity, the complexity of the attractor struc-
ture is entirely determined by the configuration of persistent
genes.

Future work includes characterizing the attractor set, e.g.,
determine an upper bound on its cardinality, for (a) the class
of TBNs containing network cycles of positive regulations (green
edges), and (b) the class of TBNs containing both persistence
and network cycles of positive regulations in the presence of
self-degradation and asynchronicity.
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