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INTRODUCTION
This is a time of explosive growth in
the fields of evolutionary and population
genetics, with whole genome sequencing
and bioinformatics driving a transforma-
tive paradigm shift (Morozova and Marra,
2008). At the same time, advances in
epigenetics are thoroughly transforming
our understanding of evolutionary pro-
cesses and their implications for popula-
tions, species and communities (Callinan
and Feinberg, 2006). These revolutionary
changes present tremendous opportuni-
ties and challenges to our field (Table 1).
In this essay, I will lay out my personal
interpretation of what some of the biggest
opportunities and challenges are for evo-
lutionary and population genetics over the
next decade. I believe that for our field to
take full advantage of these tremendous
opportunities, we must effectively com-
bine genomics, epigenetics, bioinformat-
ics, experiments and modeling (Figure 1).
Genomic pipelines are rapidly producing
intractably large volumes of data (e.g.,
Griffiths-Jones et al., 2008), often with-
out sufficient forethought about what the
data will be used for, or how it will
be curated, archived, and analyzed. We
would be well served by thinking carefully
in advance about hypotheses, what data
would be best suited to address them, what
experiments could be designed to evalu-
ate and validate results, and how power-
ful modeling approaches could be coupled
with experimentation and data mining
to generalize experimental results and
explore their implications across scales of
biological organization from nucleotides
to ecosystems.

Today our field is justifiably obsessed
with the explosive emergence of vast
genomic data sets and the opportunities
of integrating epigenetics with genomics
to explore epigenomic patterns of gene
regulation (Griffiths-Jones et al., 2008;
Suzuki and Bird, 2008). However, the
informatics challenges that attend this
emergence are often not fully appreciated.
The sheer vastness of genomic data sets
is spectacular to contemplate, and can be
terrifying to witness. Scientists are often
overwhelmed and drown in the vastness of
these emerging data. More data does not
necessarily lead to better understanding.
Often the flood of data can force scien-
tists to focus on data storage and curation
to such a degree that they completely lose
sight of hypotheses about relationships
between these data and biological process,
how the patterns we observe in these vast
data sets can be tested through controlled
and replicated experimentation, and how
the results can be generalized across scale
through simulation and modeling.

INTERSECTION OF GENOMICS AND
EPIGENETICS WITH
EXPERIMENTATION
DATA WITHOUT EXPERIMENTS AND
EXPERIMENTS WITHOUT APPROPRIATE DATA
ARE BOTH EQUIVOCAL
Experimentation has always been one of
the most effective means to achieve reli-
able knowledge (Wright, 1984). Through
replication and control, variation can be
quantified and accounted for and spurious
effects can be removed, leading to reli-
able inferences about drivers and strong
tests of hypotheses. In our field, linking

common garden experiments (Whitham
et al., 2006) with genomic and epige-
nomic datasets presents a tremendous
opportunity to advance understanding of
genetic controls on phenotype and fit-
ness (Figure 1A). In the sea of genomic
data, it is all too tempting to use data
mining techniques to seek correlations
between genetic patterns and some pro-
cess of interest. Finding such correlations
suggests hypotheses, but does not provide
a strong basis to evaluate whether these
hypotheses may be true. The phenomenon
of the under-determination of theories by
facts suggests that there may be innu-
merable ways in which a given observed
pattern of genetic variation could have
been produced in a population, and to
avoid logical inferential errors of affirming
the consequent it is absolutely essential to
test hypothesis in controlled and replicated
experiments, such as common gardens.

INTERSECTION OF EXPERIMENTATION
AND MODELING
EXPERIMENTS WITHOUT MODELS ARE NOT
EXTENSIBLE; MODELS WITHOUT
EXPERIMENTS ARE NOT VERIFIABLE
Experiments provide a powerful means to
control one or a few processes hypoth-
esized to drive genetic and epigenetic
structure of populations (e.g., Kohler,
1994). However, experiments necessarily
are limited to a few interactions, at rela-
tively small scales and over relatively short
temporal extents. Simply put, experiments
without models are not extensible, and
models without experiments are not ver-
ifiable (Figure 1B). Simulation modeling
provides tremendous abilities to explore
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Table 1 | Grand challenges facing evolutionary and population genetics related to genomics, epigenomics, bioinformatics, modeling and

experimentation, and their integration.

GENOMIC, EPIGENOMIC, AND BIOINFORMATICS GRAND CHALLENGES

A Improved efficiency and effectiveness of whole genome sequencing and development of broad libraries of genomes of non-model organisms.

B Improvements of fine-scale genetic mapping to quantify patterns of genetic linkage across genomes.

C Improved quantification, measurement, and understanding of the genetic architecture and processes controlling heterosis, epistasis and
pleiotropy, and other interactions between loci and alleles within the genome.

D Improved understanding of the architecture and processes affecting heritable variation in gene activity not caused by changes in DNA sequence.

E Understanding the architecture and processes driving changes of transcriptional potential of a cell.

F Improved understanding of causes and consequences of DNA methylation and histone modification.

G Improved understanding of interactions between genomic variation and epigenetic processes, such as effects and heritability of repressor
proteins attached to silencer regions of DNA.

H Improved methods and tools for organizing, analyzing, storing and retrieving vast genomic, and epigenomic datasets.

MODELING GRAND CHALLENGES

A Developing computationally efficient spatially explicit, individual based models that simulate dispersal, mating, genetic exchange, and mortality as
functions of cost-distance between individuals resulting from differential patterns of movement in heterogeneous landscapes.

B Incorporating selection into spatially explicit, individual based genetics models, such that models allow evaluation of differential patterns of
selection across complex fitness landscapes, and the interaction of differential patterns of gene flow with differential patterns of local selection.

C Improving how genomic data are modeled in individual-based, spatially explicit gene flow and selection models.

D Using the improved models described in (A–C) to evaluate relationships between landscape resistance, landscape heterogeneity, population
distribution and density and spatial patterns of allelic richness, heterozyosity, inbreeding coefficient, and effective population size.

E Using the improved models described in (A–C) to evaluate time lags in the emergence of genetic structure and equilibration of genetic diversity in
spatially structured populations.

F Using the improved models described in (A–C) to evaluate mechanisms for sympatric and peripatric speciation as functions of restricted gene
flow and differential local directional selection.

G Using the improved models described in (A–C) to evaluate the interactive effects of landscape heterogeneity, landscape dynamics, and population
dynamics on power of different statistical modeling approaches to reliably detect and predict changes in genetic diversity, population structure,
and fitness in response to spatial patterns in the environment and fluctuations in population size and environmental conditions.

EXPERIMENTATION GRAND CHALLENGES

A Designing and implementing replicated common garden experiments in which genotypes collected from across broad environmental gradients
are reciprocally transplanted in replicated experimental gardens that span the range of environmental conditions in the field.

B Incorporating multi-species, community-genetics designs into replicated common gardens to evaluate the interactions between genetic
characteristics of foundation species and the genetic characteristics and composition of associated communities.

C Conducting long-term experiments in which strength of selection is controlled to identify the genomic and epigenomic structure and processes
underlying adaptation.

D Conducting long-term experiments in which rates of migration and strength of selection are controlled in a spatially structured environment to
quantify interactions between gene flow, epigenetic processes and selection in influencing genetic diversity, fitness and reproductive isolation.

E Conducting long-term experiments in which species interactions, such as competition, commensalism and predation, are manipulated across
gradients of differential gene flow and selection to understand how population process across multi-species communities interact to drive
evolution of the individual species.

GRAND CHALLENGES INVOLVING THE COMBINATION OF MODELING WITH GENOMICS/EPIGENOMICS/BIOINFORMATICS

A Combining simulation modeling and genomic data to better understand processes of non-additive gene interaction, such as epistasis and
polygenic effects on phenotype, and how they influence evolution across complex spatially heterogeneous adaptive landscapes.

B Combining simulation modeling and genomic/epigenomic data to better understand the causes and consequences of pleiotropy in natural and
simulated populations, specifically how spatial and temporal fluctuations in heterogenous adaptive landscapes may affect the outcome of fitness
tradeoffs of pleiotropic effects in terms of patterns of gene frequency across a spatially structured population.

C Using simulation modeling to evaluate the evolutionary influences of epigenomic processes, such as DNA methylation, histone modification and
repressor proteins, in spatially complex and temporally varying environments and in multi-species interactions.

D Using improved understanding of genomic and epigenomic architecture to improve realism and usefulness of spatially explicit, individual-based
simulation models.

E Using simulation models to evaluate what kinds of genomic and epigenomic data to produce for a given research objective, in terms of what kinds
of markers, how many markers, from what parts of the genome, from how many individuals, and from which locations across the population.

GRAND CHALLENGES INVOLVING THE COMBINATION OF EXPERIMENTATION WITH GENOMICS/EPIGENOMICS/BIOINFORMATICS

A Designing controlled and replicated experiments to test hypotheses about gene linkage, epistasis, pleiotropy, and polygenic effects on fitness.

B Designing controlled and replicated experiments to test hypotheses about heritable variation gene activity that is not caused by changes in DNA
sequence.

(Continued)
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Table 1 | Continued

C Designing controlled and replicated experiments that are able to separate and quantify the relative effects and interactions of genomic and
epigenomic processes in driving evolution.

D Using information from whole genome scans and gene mapping to inform experiments as to what loci and what markers to include as response
factors in experiments that manipulate selection gradients and species interactions.

GRAND CHALLENGES INVOLVING THE COMBINATION OF MODELING AND EXPERIMENTATION

A Using simulation modeling to evaluate alternative experimental designs in terms of tradeoffs in sample size, experimental complexity, variance
and effect sizes to inform design of optimal experiments.

B Using experiments to confirm and validate predictions of simulation modeling.

C Using simulation modeling to generalize experimental findings by evaluating potential outcomes of identified processes in novel conditions,
heterogeneous landscapes, fluctuating environments, and across broad ranges of spatial and temporal scale.

GRAND CHALLENGES INVOLVING THE COMBINATION OF MODELING, EXPERIMENTATION, AND GENOMICS/EPIGENOMICS/

BIOINFORMATICS

A The greatest opportunities for advancing the fields of evolutionary and population genetics involve combining modeling, experimentation,
genomics, epigenomics, and bioinformatics.

B Combining bioinformatics with modeling and experimentation to link vast genomic and epigenomic databases to spatially explicit simulations
which are then validated and calibrated by controlled and replicated manipulative experiments.

C Experiments provide decisive proof of cause-effect relationships relating genomic and epigenomic variation to evolutionary and population
genetic processes, while modeling allows exploration and generalization of the implications of these relationships across scales in spatially
complex and temporally varying conditions, such as predominate in actual populations.

the implications of alternative hypothe-
ses (Epperson et al., 2010; Landguth and
Cushman, 2010). This allows researchers
to a priori evaluate sampling designs
and analytical approaches to optimize
the research to provide high power to
evaluate hypotheses. In addition, simula-
tion enables generalization of the results
of experiments across scales to explore
the implications of causal relationships
in real populations. Ecosystems are the
stage on which the play of evolution
is acted, and ecosystems are complex,
spatially structured, and temporally vary-
ing. Our hypotheses typically focus on
relatively simple relationships between
mechanisms and responses, and our
experiments to test them focus on these
relationships at small scales over short
time periods. Simulation modeling is crit-
ical to explore how these pattern-process
relationships propagate across scale and
how variation in these processes across
space and through time influences their
outcomes.

INTERSECTION OF GENOMICS AND
EPIGENETICS WITH MODELING
MODELS WITHOUT DATA ARE NOT
COMPELLING; DATA WITHOUT MODELS ARE
NOT INFORMATIVE
Integration of genomic and epige-
nomic datasets with genetic modeling
is improving model testing, validation
and calibration (Figure 1C). Spatially

explicit, individual based simulation mod-
eling has advanced such that relationships
between environmental characteristics,
population structure and the genetic or
epigenetic characteristics populations can
be rigorously modeled (Landguth and
Cushman, 2010; Landguth et al., 2012).
The genomic revolution is providing
researchers vast data sets comprising the
genomic and epigenomic characteristics
of many individuals which enables mod-
els to be optimized to training datasets,
and validated using independent test-
ing data. Just as models without data
are not compelling, data without models
are not informative. Simulation model-
ing has tremendous potential to quantify
genetic processes, explore how they prop-
agate across space and through time,
and predict the effects of changes to the
pattern-process relationship.

PUTTING IT ALL TOGETHER
In the sections above I described the chal-
lenges and opportunities presented by the
intersection of vast genomic and epige-
nomic datasets, controlled genetic exper-
iments, and simulation modeling. There
is a synergistic dependence among these
three fields in advancing evolutionary
and population genomics. Data alone are
not informative. Models alone are not
compelling. Experiments alone are not
generalizable. It is the intersection among
these three different scientific endeavors

that provides the best means of address-
ing the most difficult and important chal-
lenges in evolutionary and population
genetics.

Perhaps the best way to illustrate this
synergy is through an example of how
the three-way intersection of genomic
data, controlled experiments and simu-
lation modeling might be implemented
(Figure 1D). For the sake of illustration,
our task is to predict the effects of climate
change on gene flow and adaptive evolu-
tion of a population across a large geo-
graphical extent. We hypothesize that gene
flow of this species would be affected by
distance among individuals, and that the
population would be differentially adapted
to environmental conditions across the
range (e.g., Landguth et al., 2012). With
this hypothesis we might begin by con-
ducting a large simulation experiment to
evaluate how different degrees of gene
flow and different strengths of selection
across environmental gradients would be
expected to affect genetic characteristics
of the population. The results of these
simulations would guide sampling design
to detect the hypothesized relationship
across a reasonable range of effect size
and variability. We would implement this
sampling regime, producing a large spa-
tially referenced genomic or epigenomic
data set.

Next, we would calibrate, optimize
and validate models predicting the
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FIGURE 1 | Schematic showing three major branches of evolutionary and population

genetics addressed in this essay. Bioinformatics work to develop, curate, archive and analyze
genomic and epigenomic data, modeling of the influences of population processes on genomic and
epigenomic patterns within populations and controlled and replicated experiments to test
hypothesized relationships are all critical to advancing our field. The greatest challenges and
opportunities lie in the intersections among these three branches of research. (A) Bioinformatics
should inform design of experiments, and results of genetic experiments should guide what
genomic and epigenomic data are collected for a given research effort. (B) Modeling should guide
design of experiments and generalize and extend experimental results to explore implications of
pattern-process relationships across scale, and experiments should guide the parameterization and
calibration of models. (C) Bioinformatics should provide modelers with genomic and epigenomic
data appropriate for model development, calibration, optimization and validation, while models
should inform bioinformaticians as to which genomic and epigenomic data is most relevant for a
particular question. The three way intersection of bioinformatics, modeling, and experimentation
(D) provides the strongest potential synergy to advance evolutionary and population genetics.

population process from the pattern in
the observed genomic or epigenomic data
(e.g., Cushman et al., 2006). We then
would use the simulations previously con-
ducted to evaluate how well the popu-
lation process inferred from the empir-
ical data optimization matches the pat-
terns produced through simulation of the
same processes (e.g., Shirk et al., 2012).
This is a different example of synergy
between modeling and genomic data, one
in which the data are used to infer a pop-
ulation process and simulations are used
to evaluate how well that inferred pro-
cess can explain the observed data. This
combination of empirical modeling and
simulation modeling would identify the
most supported candidate models explain-
ing influences of gene flow and selec-
tion on the genetic characteristics of the
population.

A controlled and replicated experi-
ment would then be designed to eval-
uate the working hypothesis developed
through empirical analysis and simula-
tion (e.g., Whitham et al., 2006). This
would involve synergy between genomics

and experimentation and between model-
ing and experimentation. First, we would
design the experiment to control the fac-
tors identified through the simulation
modeling and empirical optimization to
be the putative drivers of observed pat-
terns of genetic variation. For example,
if we found one pattern of genomic
or epigenomic variation was associated
with warm and dry climatic conditions,
while another was associated with cold
and wet conditions, we could construct
a network of experimental common gar-
dens replicated across the climate gradi-
ent. We could use simulation modeling
to evaluate how many individuals would
be needed in each garden and how many
gardens would be needed to provide high
power to detect the inferred fitness rela-
tionship, if present. There would also be
synergy between the genomic data and
experimental design; we would recipro-
cally grow the genotypes that evinced
the nonrandom patterns of apparent gene
flow and selection. This is an example of
synergy between genomic sampling and
experimental design, in which patterns of

genomic data across the putative selection
gradients are then used to select individ-
uals expressing those genetic characteris-
tics for reciprocal transplanting across the
experimental garden network. Designing
the experimental garden to replicate and
control the factors identified by model-
ing as likely drivers of the genetic pat-
terns in the population, and reciprocally
transplanting in all gardens the genotypes
which were found to be non-randomly
associated with the putative selection gra-
dients, would provide a rigorous basis of
evaluating whether the processes inferred
from empirical optimization and sim-
ulation actually are responsible for the
observed genomic or epigenomic structure
of the population.

Suppose the reciprocally transplanted
common garden experiment confirmed
the hypothesized relationship between cli-
mate and the pattern of genomic or epige-
nomic variation across the population. We
would then explore the implications of the
identified process through further simula-
tion modeling. We might want to simulate
what the expected genetic structure and
allele frequency would be, given the pro-
cess, in different study areas than were
used to build the original model. We then
could test the model further by sampling
additional genomic samples from this new
study area and evaluating how well the
observed genetic structure and allele fre-
quencies match that predicted by simu-
lations based on the process identified in
the experiments. This is an example of a
three way synergy between genomic data,
modeling and experimentation.

CONCLUSION
Perhaps the greatest challenge facing
the fields of evolutionary and popula-
tion genetics today is to produce, pro-
cess, curate, archive and analyze immense
genomic datasets in a way such that
research is led by a priori hypothe-
ses, integrated with powerful modeling,
and, where possible, linked to repli-
cated and controlled experiments to test
putative relationships between population
processes and evolutionary and popula-
tion genetic responses. No single person
has the expertise or the time to effec-
tively bring these components together.
More than ever, success in advancing our
field will depend on collaborations across
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large multi-disciplinary groups. Experts in
the development of genomic and epige-
nomic data are needed to produce the
raw genomic data for subsequent analy-
sis. Bioinformatics specialists are needed
to provide programming and computer
science expertise to efficiently process,
curate, archive and analyze vast genomic
datasets, and to effectively utilize high per-
formance computing resources. Modelers
will be needed to work with the bioin-
formaticians to explore the implications
of hypotheses a priori, to refine hypothe-
ses by optimizing fit to observed data,
and predict how observed pattern process
relationships may propagate across scale
through space and time. Experimenters
should work closely with modelers to rig-
orously test hypotheses in controlled and
replicated experiments. To be successful
this entire integration should be led by the-
oreticians who have a coherent vision for
how each of these parts will synergize to
address focused and falsifiable questions of
importance in advancing the field.
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