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Ancestry inference is a frequently encountered problem and has many applications such
as forensic analyses, genetic association studies, and personal genomics.The main goal of
ancestry inference is to identify an individual’s population of origin based on our knowledge
of natural populations. Because both self-reported ancestry in humans or the sampling
location of an organism can be inaccurate for this purpose, the use of genetic markers
can facilitate accurate and reliable inference of an individual’s ancestral origins. At a higher
level, there are two different paradigms in ancestry inference: global ancestry inference
which tries to compute the genome-wide average of the population contributions and local
ancestry inference which tries to identify the regional ancestry of a genomic segment. In
this mini review, I describe the numerous approaches that are currently available for both
kinds of ancestry inference from population genomic datasets. I first describe the general
ideas underlying such inference methods and their relationship to one another. Then, I
describe practical applications in which inference of ancestry has proven useful. Lastly, I
discuss challenges and directions for future research work in this area.
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INTRODUCTION
In population genomic analyses, it is often necessary to classify a
sample of organisms into different population groups. This can
inform us about the evolutionary relationships and migration
history of natural populations and help identify an individual’s
population of origin. Because both the sampling location of an
organism or self-reported ancestry in the case of humans can
be uninformative for this purpose, the use of genetic markers
can facilitate accurate and reliable ancestry inference by exploit-
ing allele frequency differences across population groups. Recent
advances in genomic technologies as well as computing resources
have made it possible to accurately infer overall ancestry as well
as ancestry at a fine-scale across an individual’s genome. Ances-
try estimation is a frequently encountered problem and has been
used in a variety of applications such as tracing someone’s geo-
graphic origin in forensic investigations, correcting for population
stratification in genome-wide association studies and developing
personalized approaches to treatment.

There are currently two different paradigms underlying ances-
try inference: global ancestry (GA) estimation and local ancestry
(LA) estimation. GA inference involves estimating the propor-
tion of ancestry contributed by different populations averaged
across the entire genome. Such methods have been applied to
study population structure in humans (e.g., Pritchard et al., 2000;
Rosenberg et al., 2002; Tang et al., 2005; Price et al., 2006; Lao
et al., 2014) as well as in many other species (e.g., Nordborg et al.,
2005; Becquet et al., 2007). In contrast, in LA inference, we inter-
pret each chromosome in an individual’s genome as a mosaic
of segments that originate from different ancestral populations
and the goal is to find the ancestral population of origin at each

position. LA inference methods (e.g., Tang et al., 2006; Sankarara-
man et al., 2008; Maples et al., 2013) have been used mainly to
study recently admixed populations such as African Americans and
Latinos.

In this mini review, I will describe the various methods that
are currently available for efficient and accurate inference of GA
and LA from large genomic datasets. I first discuss the general
ideas behind the different approaches that are used, their relation-
ship to one another, relative performance in terms of speed and
accuracy, advantages, and drawbacks. Then, I will describe many
applications in which ancestry inference methods have proven to
be useful. Lastly, I will discuss challenges and possible directions
for future research in this area.

METHODS FOR GLOBAL ANCESTRY ESTIMATION
The main goal of GA inference is to estimate the fraction of ances-
try contributed by each population as averaged across the entire
genome. There are two broad categories of methods available
for such inference: model-based approaches and non-parametric
approaches.

MODEL-BASED APPROACHES
Model-based approaches for GA inference attempt to estimate
individual ancestry coefficients assuming particular statistical
models. For example, the programs STRUCTURE (Pritchard et al.,
2000) and ADMIXTURE (Alexander et al., 2009) both model
the probability of observed genotypes using ancestry propor-
tions and population allele frequencies assuming Hardy–Weinberg
equilibrium and linkage equilibrium among loci. STRUCTURE
is based on a Bayesian approach that uses a Markov Chain
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Monte Carlo algorithm to obtain samples from the posterior
distribution. Falush et al. (2003) later extended this method to
allow for admixture linkage disequilibrium (LD). InStruct is an
extension of STRUCTURE which can jointly infer both popula-
tion structure and inbreeding rates for organisms that undergo
self-fertilization (e.g., plants). The method relaxes the Hardy–
Weinberg equilibrium assumption within clusters (Gao et al.,
2007). fastSTRUCTURE uses efficient algorithms to infer posteri-
ors underlying the STRUCTURE model employing a variational
Bayesian framework. In this framework, posterior inference is
posed as an optimization problem (Raj et al., 2014). ADMIXTURE
employs the same model (Alexander et al., 2009) as STRUC-
TURE but uses a maximum likelihood estimation procedure
involving high-dimensional optimization algorithms. In partic-
ular, this is accomplished through a block relaxation scheme
that alternates between updating the ancestry coefficient matrix
and population allele frequency matrix. Convergence is acceler-
ated via a novel quasi-Newton method. ADMIXTURE is over
an order of magnitude faster than STRUCTURE and produces
estimates of similar accuracy (Alexander et al., 2009). The pro-
gram FRAPPE (Tang et al., 2005) also follows the same likelihood
model as STRUCTURE but estimates parameters by maximum
likelihood estimation using an Expectation Maximization algo-
rithm. Enforcing strict convergence criteria makes this program
computationally burdensome. Therefore, in practice, relaxed
convergence criteria are used which makes the results slightly
less accurate than ADMIXTURE (Alexander et al., 2009). More
recently, Frichot et al., 2014 described fast computational algo-
rithms for ancestry inference that make use of sparse non-negative
matrix factorization (sNMF) and least squares optimization to
produce estimates of ancestry proportions. In particular, these
algorithms produce ancestry estimates that are as accurate as
ADMIXTURE but are ∼10–30 times faster in terms of speed.
SPA (spatial ancestry analysis) is a recently developed alter-
nate approach that uses explicit probabilistic models for the
change in allele frequency in space and uses these to position
individuals into two or three dimensional space (Yang et al.,
2012).

NON-PARAMETRIC APPROACHES
Non-parametric methods make use of techniques from multi-
variate analysis such as cluster analysis and principal component
analysis (PCA) to infer structure in the data. The main goal of
cluster analysis is to directly find subsets representing the different
population groups in the data (e.g., Gao and Starmer, 2007; Lee
et al., 2009; Bouaziz et al., 2012). Other techniques such as PCA
(Patterson et al., 2006; Price et al., 2006), multidimensional scal-
ing (MDS; Purcell et al., 2007), and principal coordinate analysis
seek to construct projections in lower dimensional space that cap-
ture a large fraction of the variation in the marker genotypes. The
coordinates inferred by such approaches tend to be highly corre-
lated with the geographic locations from where individuals were
sampled (Novembre et al., 2008; Wang et al., 2012). EIGENSTRAT
(Patterson et al., 2006; Price et al., 2006) is a well-known program
that implements PCA.

One of the issues with methods such as STRUCTURE and
ADMIXTURE is that they only consider individual markers

and not their joint variation patterns. Markers on the same
chromosome tend to be inherited together in the absence of
recombination. For close markers, at a population level, this results
in LD, i.e., non-random associations that reflects shared genealogy
and invalidates the independence assumption. For dense polymor-
phism datasets such as those obtained from sequencing, haplotype
based analysis has the potential to leverage this information and
provide improved ability to detect population substructure. Chro-
moPainter and fineSTRUCTURE (Lawson et al., 2012) are recently
developed programs that aim to make use of haplotype struc-
ture for high quality PCA and population structure inference
respectively. The modeling of LD leads to more accurate struc-
ture inference but at a cost of significantly higher running times
as compared to programs such as PCA and ADMIXTURE.

METHODS FOR LOCAL ANCESTRY INFERENCE
Additional complexities to ancestry inference can occur when a
population arises as a product of two or more divergent popula-
tions mixing for a certain period of time (i.e., admixed populations
such as African Americans and Latinos). GA inference methods
will assign every individual in such populations to more than one
group. Admixed genomes are mosaics of segments originating
from different ancestral populations and estimating the ancestral
proportions and in particular, finding the regional ancestry at each
genomic location in such situations is a particularly challenging
problem. Most of the methods that have been developed so far take
a generative approach to solve this and try to fit an explicit prob-
abilistic model to the data using a hidden Markov model (HMM)
or its extensions. Generative approaches for LA inference first try
to model the joint dependence of alleles and ancestry and subse-
quently use “Bayes” rule to estimate the dependence of ancestry
on SNP allele configurations.

Early approaches to LA inference based on the STRUCTURE
framework (Falush et al., 2003; Hoggart et al., 2004; Patterson
et al., 2004) made use of HMMs and did not explicitly model
background LD. One limitation of such methods is that they do
not fully leverage the information that is available in haplotypes
which can potentially be useful for distinguishing closely related
populations. In contrast other methods that can explicitly model
LD [e.g., SABER: Tang et al., 2006; HAPAA (HMM-based anal-
ysis of polymorphisms in admixed ancestries): Sundquist et al.,
2008; HAPMIX: Price et al., 2009] are computationally inten-
sive and are able to consider only two ancestral populations at
a time. LAMP (local ancestry in admixed populations) is a state
of the art algorithm for estimation of LA in recently admixed
populations (Sankararaman et al., 2008) that operates on slid-
ing windows of contiguous SNPs and assigns ancestries based
on a clustering algorithm. It was shown to be more accurate
and significantly faster than STRUCTURE (∼104 times faster)
and SABER (∼200 times faster). One of the underlying assump-
tions is the absence of recombination within windows. WINPOP
is a modification of the original LAMP framework that uses a
refined model of recombination events and an efficient dynamic
programming algorithm to improve LA inference for situations
where ancestral populations are closely related (Pasaniuc et al.,
2009). PCAdmix (Brisbin, 2010) is a heuristic approach for LA
inference. This approach first divides the genome into windows
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of 10–50 kb width and estimates the probability of origin from
particular reference panel populations using PCA. These prob-
abilities are then used as emission probabilities in a HMM to
infer ancestry viaViterbi decoding. SupportMix is another recently
developed approach for LA inference that trains Support Vector
Machines in a sliding window HMM framework (Omberg et al.,
2012). ASPCA (ancestry-specific principal components analysis )
is a novel method for inferring the within-continental origin of
haplotypes along the genome for admixed populations and was
developed recently in the context of reconstructing the history of
Caribbean populations (Moreno-Estrada et al., 2013). It involves
first inferring LA and then applying PCA to only genomic segments
of specific ancestries.

An alternative approach to LA inference, RFMix was developed
recently which takes a discriminative approach to this problem
(Maples et al., 2013). Such approaches model the dependency of
the unobserved variables (i.e., ancestries) directly as a function of
the observed variables (i.e., alleles). RFMix makes use of condi-
tional random fields which are based on random forests trained
on reference panels. LA inference based on RFMix was shown to
be faster and more accurate than many competing approaches
such as LAMP (∼33 fold faster) and Support Mix (∼1.7 fold
faster). EILA (efficient inference of local ancestry; Yang et al., 2013)
is another recently developed statistical method that uses fused
quantile regression and a k-means classifier to perform LA infer-
ence. The method does not assume linkage equilibrium between
markers and proposes to use all the genotyped SNPs for greater
accuracy. EILA has been shown to be more accurate than programs
such as LAMP and HAPMIX when the ancestral distance between
populations is large or moderate and is comparable in terms of
speed.

NUMBER OF SOURCE POPULATIONS AND ANCESTRAL
MISSPECIFICATION
Many LA inference methods assume that the ancestral source
populations as well as their allele frequencies are known and
use these as inputs. In practice, such information may either
not be available or even if available could be inaccurate (e.g.,
for Native Americans). Simulation experiments demonstrate that
errors in ancestral specification can significantly impact LA pre-
diction accuracy and the drop in accuracy is higher for closely
related ancestral populations (Pasaniuc et al., 2009). Thus, choos-
ing accurate ancestral groups is crucial for such scenarios but
is less critical when ancestral groups are distant (Pasaniuc et al.,
2009). In the absence of ancestral population information, many
existing approaches can also utilize the information contained
in the admixed samples themselves to estimate LA de novo (e.g.,
Sankararaman et al., 2008; Maples et al., 2013).

Most of these previously mentioned methods have been
demonstrated to be highly accurate for the case of two way admix-
tures such as in African Americans (Seldin et al., 2011). However,
the accuracy of such methods declines for more complicated
scenarios such as the admixture of three ancestral populations
in case of Latinos (European, African, and Native American).
The presence of closely related populations in multi-way admix-
tures (e.g., Europeans and Native Americans) further increases
the difficulty of inference. Many existing methods either cannot

handle these scenarios or are prone to high error rates making
it hard to reliably study LA in such cases. Keeping these issues
in mind, several new approaches were developed in the last few
years to more effectively handle multi-way admixtures. Johnson
et al. (2011) use an extension of SABER to three-way mixtures
in a haploid mode to infer virtual genomes. Henn et al. (2012)
extended the work of Bryc et al. (2010) to employ PCA and
HMMs to estimate ancestries for multi-way admixtures. LAMP-
LD and LAMP-HAP (Baran et al., 2012) are extensions of the
LAMP algorithm designed for dealing with multi-way admixtures
and combine HMMs with an innovative window-based frame-
work to achieve high accuracy estimates in Latinos. Rodriguez
et al. (2013) describe a LA inference method ALLOY that utilizes
a factorial HMM to capture the process generating maternal and
paternal admixed haplotypes, and, inhomogeneous variable length
Markov Chains to model the background LD in ancestral popu-
lations. ALLOY can handle both recent and ancient admixtures
with up to four ancestral populations. Guan (2014) presented
a two-layer HMM to detect structure of local haplotypes and
demonstrated its utility for LA inference for both two-way and
three-way admixture. Lanc-CSV (local ancestry using continent
specific variants) is a new method for ultra-fast and accurate
inference of LA in very large sequenced cohorts by using conti-
nent specific variants in a standard HMM framework (Brown and
Pasaniuc, 2014).

APPLICATIONS OF GLOBAL AND LOCAL ANCESTRY
INFERENCE
Ancestry estimation using genomic data has proven to be very
useful for many different applications. Importantly, in genetic
association studies, ancestry inference can be used to account for
the effects of population stratification which is a serious confound-
ing factor and can lead to elevated rates of false positives (Price
et al., 2010). In many scenarios, one is interested in the presence
of “cryptic” population structure, i.e., structure that is significant
and detectable only in genetic terms and not by external features.
Estimation of cryptic population structure is also important for
DNA fingerprinting to quantify the probability of false matches
(Balding and Nichols, 1994, 1995; Foreman et al., 1997; Roeder
et al., 1998).

Global ancestry inference is also useful in many evolution-
ary studies, where we are interested in learning more about
the properties of populations and the relationships among them
(Cavalli-Sforza et al., 1994). For this purpose, it is useful if we
can classify samples into populations. Similarly, given the knowl-
edge of different population groups, one may wish to classify an
individual of unknown origin into one of these groups (Davies
et al., 1999) or determine if an individual is an immigrant. In
the personal genomics space, many private companies now pro-
vide ancestry testing products which make use of genome-wide
markers from individuals (Royal et al., 2010). This can enable
individuals to learn more about the details of their ancestral his-
tory and geographical origins. Lastly, GA inference methods have
also proven useful for inferring population structure in many
non-human species such as maize (Zea mays; Pritchard, 2001),
chickens (Gallus gallus domesticus; Rosenberg et al., 2001), thale
cress (Arabidopsis thaliana; Nordborg et al., 2005), rice (Oryza
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sativa; McNally et al., 2009), and chimpanzees (Pan troglodytes;
Becquet et al., 2007).

Like GA inference, LA inference has also found numerous
applications. The most important application of LA inference
has been to map genes to disease through admixture mapping
in populations such as African Americans and Latinos (e.g.,
Hoggart et al., 2004; Zhu et al., 2004; Reich et al., 2005; Seldin
et al., 2011). Other crucial applications have included pharma-
cogenomics; for example, in a recent study, Native American
ancestry was significantly associated with the risk of relapse in
children suffering from acute lymphoblastic leukemia (Yang et al.,
2011). In addition to these traditional applications, in the more
recent years, LA inference methods have also found applications
in other settings such as localizing sequences of unknown loca-
tion from the human reference genome (Genovese et al., 2013),
studying recombination rate variation (Hinch et al., 2011; Weg-
mann et al., 2011), inferring natural selection (Tang et al., 2007;
Jin et al., 2012), making demographic inferences (Bryc et al., 2010;
Johnson et al., 2011; Kidd et al., 2012), and in joint association
and admixture mapping to boost the power to detect disease
linked genes and variants (Pasaniuc et al., 2011; Shriner et al.,
2011).

FUTURE RESEARCH AND CHALLENGES IN ANCESTRY
INFERENCE
With rapid advances in sequencing technologies, the amount
of genomic data available to us has grown massively in the
recent years. With the advent of dense variation data from fully
sequenced samples of genomes in thousands of individuals (e.g.,
1000 genomes project) and advances in haplotype phasing meth-
ods, we can anticipate new ancestry inference methods as well
as refinement of existing ones to more fully exploit the infor-
mation available. How to maximally utilize the rich information
available in the form of haplotypes in such exhaustive catalogs
of variation while developing inference methods that are also
computationally efficient and scalable for large sample sizes is
an important challenge for the future. For both global and LA
methods, there is also scope for improved modeling of back-
ground LD between genetic variants that can lead to lower error
rates and enhance our ability to detect subtle kinds of population
structure. The availability of large genomic datasets also allows
us to characterize the geographic locations of individuals with
unprecedented detail and more effectively distinguish between
closely related population groups. More accurate tools for pop-
ulation structure inference will therefore also lead to more reliable
knowledge of the ancestral history for individuals in personal
genomics and better facilitate personalized medicine. Similarly,
improved methods for LA inference based on such large datasets
are also likely to generate more powerful tools for admixture
mapping particularly for populations with complex admixture
history.
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