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The switch to a modern lifestyle in recent decades has coincided with a rapid increase in
prevalence of obesity and other diseases. These shifts in prevalence could be explained
by the release of genetic susceptibility for disease in the form of gene-by-environment
(GxE) interactions. Yet, the detection of interaction effects requires large sample sizes,
little replication has been reported, and a few studies have demonstrated environmental
effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We
performed extensive simulations of a quantitative trait controlled by 2500 causal variants to
inspect the feasibility to detect gene-by-environment interactions in the context of GWAS.
The simulated individuals were assigned either to an ancestral or a modern setting that
alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of
perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of
realistic scenarios, highly significant GRSxE is detected despite the absence of individual
genotype GxE evidence at the contributing loci. Second, an increase in phenotypic
variance after environmental perturbation reduces the power to discover susceptibility
variants by GWAS in mixed cohorts with individuals from both ancestral and modern
environments. We conclude that a pervasive presence of gene-by-environment effects can
remain hidden even though it contributes to the genetic architecture of complex traits.
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INTRODUCTION
Diseases such as diabetes, cardiovascular disease, and obesity have
become highly prevalent in the developed world in a period of
just a few generations. For example, more than one third of U.S
Citizens are obese (Ogden et al., 2007). The incidence of these
“modern” diseases is now also rising in developing countries
(Abegunde et al., 2007). Recent changes in lifestyle are thought to
be the main drivers of the emergence of these diseases, because
genetic changes at the population level only occur after many
generations.

Paradoxically, the rapid increase in prevalence of these diseases
coincides with large heritability values. There is increasing evi-
dence that the heritability of several traits has increased in the
last 50 years. Obesity serves to illustrate this point. An analysis
of Swedish military conscripts born from 1951 to 1983 showed
an increase in the heritability along with a marked increase in the
genetic variance for obesity (Rokholm et al., 2011b). A further
study of Danish twins showed that one percentage point increase
in the prevalence of obesity accompanies a ∼3.3% increase in
the genetic variance for the trait (Rokholm et al., 2011a). Thus,
the increased influence of the current “obesogenic” environment
exerts its effects through a large alteration in the overall con-
tribution of genetic factors to the susceptibility for obesity. The
two most likely explanations for this phenomenon consist of (i)
uncovering of new cryptic susceptibility variants that did not pre-
viously participate in the genetic architecture of the trait (Gibson

and Dworkin, 2004), or (ii) an increase in the effect size of
variants already associated with obesity before the emergence of
the current “obesogenic” environment (Hermisson and Wagner,
2004).

In the last 5 years, thanks to the detection of genetic vari-
ants robustly associated by GWAS, the presence of gene-by-
environment interactions (GxE) has been confirmed for several
traits. However, the discovered GxE effects explain just a minor
fraction of variance, suggesting that most interaction effects
remain hidden. The poor availability of reliable environmental
data constitutes one the major hurdles to detect GxE interac-
tions. Genetic variation of common nature can be interrogated
systematically with commercial genotyping arrays, but the avail-
ability of counterpart environmental information is often patchy
and inconsistent, impeding a systematic interrogation of GxE
effects (Patel et al., 2010, 2013). Moreover, the lack of high-
throughput environmental data makes it difficult to replicate
consistently GxE findings across datasets (Patel and Ioannidis,
2014). A second obstacle lies in the large sample size that is
required to discover interaction effects univocally. For example,
an early report observed that physical activity and diet mod-
ulate the effects of FTO variants on obesity (Demerath et al.,
2011), but the evidence remained unclear in subsequent studies
(Hubacek et al., 2011; Van Vliet-Ostaptchouk et al., 2012) until a
large meta-analysis of 45 studies of ∼240,000 samples confirmed
this interaction. Specifically, this meta-analysis established that
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the risk effect of FTO alleles was ∼100 and 40% larger in phys-
ically inactive relative to active individuals from North America
and Europe, respectively [Odds Ratio: 1.43 vs. 1.22 and 1.27 vs.
1.21, respectively (Kilpelainen et al., 2011)].

Additionally, synergistic interactions between causal alleles
and environmental factors are being detected through genetic risk
scores (Franks et al., 2013). The calculation of GRS involves gen-
eration of a weighted sum of the risk due to several variants into
a single figure, thus overcoming the limitation of statistical power
for individual SNPs. For example, the interaction between risk
alleles and sugar-sweetened beverage intake has been confirmed
by means of a predisposition score for obesity based on 32 GWAS-
discovered obesity variants. Specifically, the risk in BMI per 10
risk alleles increased by 77% in individuals with ≥1 serving per
day compared to sugary beverage intake <1 serving per month
(Qi et al., 2012). Similar examples of GRSxE detection have been
described for fried food consumption and adiposity (Qi et al.,
2014), cigarette use polygenic risk and neighborhood social cohe-
sion (Meyers et al., 2013) and Western dietary patterns and type
2 diabetes (Qi et al., 2009; Nettleton et al., 2013).

In order to quantify how prevalent this GRS-by-environment
(GRSxE) contribution may be, we have performed a simulation
study of a quantitative trait under “ancestral” and “modern” envi-
ronments. Our main aim was to define the range of realistic
conditions in which GRSxE interaction effects can be detected in
the absence of evidence for individual GxE for the contributing
alleles. The environmental perturbation and genetic architecture
of the trait are based on recent inferences from human GWAS
data. We demonstrate that a wide range of perturbation effects is
consistent with current observations from GxE studies, although
our investigations also show that these effects may heavily reduce
the power to detect causal alleles by GWAS.

MATERIALS AND METHODS
GENETIC ARCHITECTURE OF THE SIMULATED TRAIT
We performed simulations of a polygenic quantitative trait to
study the feasibility to detect gene-by-environment effects in the
context of GWAS studies. We considered a trait partially con-
trolled by genetic variants in the context of a total phenotypic
variance of 1 (VP = 1). In all simulations, we approximate the
genetic architecture based on two recent inferences regarding the
genetic basis of complex traits in humans. First, the trait is con-
trolled by 2500 causal SNPs of common nature (minor allele
frequency >5%). This number of genes resembles the number
of susceptibility variants inferred for several complex traits [e.g.,
from ∼1700 to 2900 for myocardial infarction and type 2 dia-
betes, respectively (Stahl et al., 2012)]. Second, we assign the
percentage of variance explained by each causal SNP (genetic
variance of the trait, gv) based on the inferences from a large
meta-analysis on normal height variation (Lango Allen et al.,
2010). This study discovered 180 loci associated with height, each
explaining from 0.012 to 0.28% of the variance in the trait. The
contribution of 701 variants of similar effect size (accounting for
16% of the VP) was inferred. We thus assigned the inferred distri-
bution to 701 randomly selected variants from the 2500 simulated
SNPs (gathered from Supplementary Table 4 in Lango Allen et al.,
2010). Each of the remaining 1799 alleles was assigned to explain

0.012% of the variance. Hence, the 2500 simulated common SNPs
individually explain from 0.012 to 0.28% of the variance, and the
total genetic component of the trait accounts for 36% of the VP

(heritability = 36%). Importantly, note that we assign the allelic
effects as a percentage of variance that each SNP explains, with
the corollary that the actual effect size per allele will depend on
the frequency of the causal allele (see next paragraph).

The number of SNPs and g of the trait are fixed. Then,
for each simulation we re-assign the effect allele frequencies
(EAF) and effect sizes (β) at each of the 2500 causal SNPs. To
mimic the ascertainment bias of GWAS arrays, EAF values were
drawn from a uniform distribution with boundaries 0.05 and
0.95 [U(0.05,0.95)]. Genotypes were simulated assuming Hardy-
Weinberg equilibrium. For example, for a SNP with EAF = 0.4
in a simulation of 10,000 samples, we would assign a value of
0, 1, and 2 phenotype-increasing alleles to ∼1600, 4800, and
3600 individuals, respectively. At this point of each simulation,
we know the number of alleles that every individual carries at each
site, as well as the total genetic variance each SNP explains. We can
then easily calculate the effect size (β) of each SNP. The effect of
the ith SNP on the trait is given by its contribution to the genetic
variance of the trait (Park et al., 2010):

gvi = 2 ∗ β2 ∗ EAFi ∗ (1 − EAFi)

For example, a variant that explains 0.28% of the VP with an
effect allele frequency of 0.4 would increase the simulated pheno-
type by 0, 0.076, and 0.153 in individuals with 0, 1, and 2 causal
alleles at that position, respectively. We consider an additive poly-
genic architecture. Thus, for each simulated individual the effects
are added additively per allele copy, and summed independently
across all 2500 causal loci. After assigning the effects to all SNPs,
the additive genetic variance component (VA) equals ∼0.36. To
achieve the desired phenotypic variance (VP = 1), we assigned
a random environmental component (VE) to every individual,
drawn from a normal distribution with mean 0 and variance 0.64
(VE = 1 − VG). In summary, we simulated a quantitative trait
with heritability 36% that results from the additive gene action
over 2500 independent causal SNPs of common frequency.

MODELING A SHIFT IN ENVIRONMENT THAT PERTURBS THE GENETIC
EFFECT SIZES
The genetic architecture explained above assumes that all indi-
viduals experience the same environment. This study investigates
the consequences of a change in the environment that also mod-
ifies genetic contributions to disease or traits. Consequently, for
convenience we call the baseline situation the “ancestral” envi-
ronment, and postulate a new “modern” environment in which
genetic effects are perturbed at some fraction of the 2500 causal
SNPs. We also suppose that in contemporary society, some indi-
viduals have a lifestyle more close to the “ancestral” one (simplis-
tically, low caloric intake, high activity) while others have a more
“modern” lifestyle (they consume sugary beverages and engage in
other obesogenic behaviors). In reality there will be a gradation,
but the dichotomous model serves for purposes of illustration of
the potential consequences for disease for contemporary societies
of the transition to a western lifestyle, that may have induced GxE
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effects (Gibson, 2009). Specifically, we considered the situation
in which some or all individuals in the population live in a new
environment that provokes a scaling effect (perturbation) in the
genetic effect size at a fraction of the 2500 causal SNPs. Thus, sim-
ulated individuals can be classified into two binary “unperturbed”
and “perturbed” categories, according to the environment they
live in. The ancestral and modern environments aim to model
a situation in which the genetic susceptibility to disease may
have been altered in modern societies as a consequence of the
transition to a western lifestyle (Gibson, 2009), that may have
induced GxE through scaling effects. Specifically, the “modern”
environment alters the genetic architecture of the trait by causing
a multiplication of the effect size (β) by a constant factor (e.g.,
with a 1.5-fold change, a SNP with βANCESTRAL = 0.06 trans-
forms to βMODERN = 0.09). The strength of the GxE interaction
is proportional to, first, the factor of perturbation and, second,
the proportion of SNPs that become perturbed in the “modern”
environment. For example, physical activity was shown to atten-
uate the association between rs9939609 in FTO and body mass
index (BMI) by ∼30 to 95% (Andreasen et al., 2008; Kilpelainen
et al., 2011). Another recent study on the interaction of sugar-
sweetened beverages and BMI described an increase of 77% in
the genetic risk per 10 causal alleles for individuals who drink >1
beverage serving per day, which would translate into an ∼8%
increment in the effect size per variant under the “modern” envi-
ronment (Qi et al., 2012). In our simulations, we explored the
parameter space that ranges from 5 to 100% increase in the
genetic effect size (1.05–2-fold change, respectively). Regarding
the proportion of SNPs perturbed, we explored the outcomes
after perturbing from a minimum of 1% to a maximum of 20%
of the causal variants (25 and 500 of the 2500 simulated SNPs,
respectively).

SELECTION OF SNPs THAT BECOME PERTURBED IN THE “MODERN”
ENVIRONMENT
All causal SNPs do not account for the same proportion of genetic
variance in the simulated trait. Therefore, the degree of GxE we
induce also depends on the actual effect size of the perturbed
SNPs. We explored two different models of SNPs that become
perturbed. In model 1, the SNPs were chosen at random, whereas
in model 2 they were chosen from those explaining most of the
variance (e.g., the 250 SNPs with highest explained variance in
simulations if 10% of the variants were perturbed). Importantly,
the random environmental component (VE) was drawn equally
in both “ancestral” and “modern” environments. In other words,
the “modern” environment induces an increase in the VP after
perturbation that is entirely dependent on the genetic compo-
nent of the trait, thus increasing the VG and heritability. Models
entailing an increase in VE could be similarly explored, but we do
not do so here. Moreover, we note that although we only simu-
late scaling effects (at the SNP level), since only a small portion
of variant effects is perturbed, there are also rank effects at the
phenotype level.

THREE SCENARIOS OF SNP DISCOVERY IN A GWAS SETTING
For both perturbation models 1 and 2 explained above, we set up
three different scenarios to perform a “SNP discovery” process to

ascertain the variants that were subsequently tested for the pres-
ence of GxE effects (see a workflow summary in Figure 1). In
the first scenario, “scenario A,” we act as if all perturbed SNPs
were known, and forward them directly to GxE analysis (see next
section). “Scenario A” avoids the GWAS discovery step and thus
constitutes an ideal situation to establish an upper bound for the
range of perturbation effects that can be detected under models 1
and 2.

However, in reality we do not know in advance which SNPs
may have undergone environmental perturbation in effect size.
Usual practice consists on testing GxE effects for variants that
have been previously associated by GWAS. To mimic the situa-
tion, we developed two further scenarios in which we added a
preliminary GWAS step to discover SNPs. In “scenario B,” we per-
formed a GWAS in which 100% of the samples were selected from
the “modern” perturbed environment. In “scenario C” we per-
formed GWAS upon a sample that is drawn equally from each
of the two environments (50% of the individuals come from
the “ancestral” and “modern” settings, respectively). In other
words, “scenario C” corresponds to a situation in which half of
the society lives in an “ancestral” environment (e.g., extensive
physical activity in daily life and low fat diet), whilst the other
half follows a “modern” lifestyle that increases the effect size of
perturbed alleles. Importantly, we do not “know” which environ-
ment each individual lives in, in the sense that this information
is not included in the discovery GWAS. For both scenarios, we
performed a two-stage genome-wide screen in which the quan-
titative phenotype is regressed against the allele dosage at each
SNP. In the discovery screen, we assay the 2500 simulated SNPs
in a sample of 50,000 individuals. SNPs that achieve P < 10−5

in the discovery GWAS are then assayed in a meta-analysis with
100,000 individuals after joining the 50,000 samples from the dis-
covery GWAS with a new simulated replication sample of 50,000
individuals. Finally, SNPs associated with the quantitative trait at
P < 5 × 10−8 in the meta-analysis are then forwarded to a novel
sample of 40,000 individuals for the GxE analysis described in the
next section.

TESTING FOR GENE-BY-ENVIRONMENT EFFECTS AFTER
PERTURBATION
A central focus of our study lies in the evaluation of the power to
detect the GxE effects in our simulated trait. We aimed to evaluate
the performance of two different approaches, namely (i) power of
detection through the examination of individual SNPs and (ii) by
means of unweighted genetic risk scores (GRS) that sum up the
number of causal alleles for each individual (without weighting
each allele by its effect size). To do so, for each scenario we sim-
ulated two cohorts of 20,000 individuals each that are sampled
from the “ancestral” and “modern” environments, respectively.
For each simulated individual, we know its phenotype, the num-
ber of causal alleles at each SNP (coded as “0,” “1,” and “2”), the
total number of causal alleles over all selected loci (GRS) and the
environment it belongs to (coded as “0” and “1” for “ancestral”
and “modern” environments, respectively). In each simulation
of 40,000 individuals, we tested the interaction between genetic
component and environment by means of a multiple linear
regression: Yj = β0 + βG ∗ χ(G) + βE ∗ χ(E) + β(G∗E) ∗ χ(GE)
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FIGURE 1 | Summary of the steps followed in the study.

to estimate the regression coefficient β(G∗E), with Yj, χ(G)i,
and χ(E)i recording the phenotype, allele dosage (or GRS) and
environment of the individual j, for individuals 1, . . . , 40, 000.

In summary, we explored two different ways to select SNPs that
undergo perturbation and three different procedures to choose
the actual variants upon which we test for gene-by-environment
interactions. For each of the six resulting combinations (models 1
or 2, and scenarios A, B, or C), we explored 400 combinations of
parameters. Specifically, the percentage of SNPs that experienced
perturbation ranged from 1 to 20% (20 steps of 1%), and the fac-
tor of perturbation ranged from a 1.05–2-fold change in effect

size (20 steps of 0.05-fold increments). We performed five differ-
ent replications for each of the 400 combinations, and thus 2000
simulations for each of the six combinations. Results are summa-
rized as heat maps that interpolate relevant parameters across a
continuous range of values (Figures 2, 4–7, and Supplementary
Table 1).

STATISTICAL ANALYSIS
All the analyses were performed using the R software v.3.0 (R Core
Team, 2013). Associations between the simulated phenotype and
allele dosage, as well as the GxE interactions, were tested with the
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FIGURE 2 | Distribution of effect sizes and phenotypes before and after

perturbation. From left to right, outcomes after perturbing the effect size of
1, 5, and 20% of the SNPs by 1.5, 1.5, and 1.2-fold, respectively. Top and
bottom panels have been simulated under models 1 and 2, respectively.
Major plot: the effect size (β) of the 2500 causal SNPs is shown in y-axis.
SNPs are ranked in x-axis according to the percentage of variance explained
by each variant in the “ancestral” environment (from left to right). Gray dots
correspond to the effect size in the “ancestral” environment. The scaling

effect among environments is shown in black and red. Specifically, the black
and red dots in main panel indicate, respectively, the effect size before and
after (in “ancestral” and “modern” environments). Minor plot: distribution of
phenotypes in a cohort of 10,000 simulated individuals. Black and red curves
show the histogram of phenotypes for the same individuals, before and after
perturbation. The curve in the background represents the histogram of
phenotypes if the two simulated samples are joined into a cohort of 20,000
individuals.

lm function. Heatmap plots were generated using the fields and
akima R packages.

RESULTS
We simulated an environmental perturbation in genetic effect
sizes to explore the feasibility of detecting gene-by-environment
interactions. In the “ancestral” environment, the 2500 causal vari-
ants explained from 0.012 to 0.28% of the phenotypic variance.
In the “modern” setting a percentage of variants ranging from 1
to 20% underwent perturbation, and their effect sizes increased
by a constant factor that ranged from 1.05 to 2-fold. We applied
two different models to select the causal SNPs that become per-
turbed in the second “modern” environment, and built three
scenarios to select the SNPs upon which we investigated the fea-
sibility of detecting gene-by-environment interactions following
the workflow in Figure 1. A detailed summary of the results for
each simulation is available in Supplementary Table 1.

EFFECTS OF THE “MODERN” ENVIRONMENT IN THE DISTRIBUTION OF
EFFECT SIZE AND PHENOTYPES
The actual effect size of each causal allele depends on the fre-
quency and variance explained by the causal variant. For example,
we set the strongest contribution in the “ancestral” environment
at ∼0.3% of the variance explained. If that allele has a frequency
of 0.5, it would present an effect size of 0.075 (βANC), increas-
ing the phenotype by 0, ∼0.075 and 0.15 in individuals with zero,
one and two causal alleles, respectively. If it becomes perturbed
in the “modern” environment by the strongest perturbation pos-
sible (2-fold change; βMOD = 2 ∗ βANC), the effect size would
increase from ∼0.075 to 0.15. Thus, the variant would increase
by 4-fold the percentage of phenotypic variance it accounts for,
hiking from ∼0.3 to 1.2% (see Materials and Methods).

The differences in the distribution of phenotypes under
each environment not only depend on the strength but on the
proportion of variants that become perturbed in the “modern”
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setting. The same perturbation inducing a 2-fold increment in
the effect size, but acting upon 20% of the SNPs, would result
in a distribution of phenotypes that do not overlap extensively.
We illustrate the resulting distribution of phenotypes under the
“ancestral” and “modern” environments for a range of pertur-
bation effects in Figure 2 (black and red lines, respectively). For
instance, the average phenotype under “modern” conditions after
perturbing 20% of the causal SNPs by 1.2-fold is two standard
deviations above the average phenotype under the “ancestral”
environment. Overall, perturbation leads to a flattened distribu-
tion of phenotypes when individuals from both environments
are combined, and the increase of phenotypic variance is pro-
portional to the percentage of people that live in the “modern”
environment. The differences are strengthened under model 2,
because the SNPs that already present the largest effect sizes in
the “ancestral” environment are chosen for perturbation in the
“modern” setting. Indeed, the most extreme simulated perturba-
tion, such as multiplying the effect of 20% of the variants by two,
results in bimodal distributions that can be easily distinguished
and are probably biologically unrealistic. However, the differences
are much subtler for most of the parameter space, and in next
sections we refer to the parameter space that results in a change in
the distribution of phenotypes that resembles that of typical traits
such as contemporary BMI (see Figure 3 for a real example based
on the change in BMI shown by North American males).

The perturbation in genetic effect sizes prompted by the “mod-
ern” environment leads to an increase in the heritability of the
quantitative trait (Figure 4). The phenotype presents a basal her-
itability of 36% in the “ancestral” environment, but it easily
boosts in the “modern” setting. For instance, a 1.2-fold increase
in the effect size of 20% of the causal SNPs leads to a heritabil-
ity of ∼80%, and a similar effect is achieved with a 1.3 and

FIGURE 3 | Shift in BMI in U.S males from 1971–1975 to 1988–1994.

Distribution of BMI in North American males (20–55 age) studied in the
NHANES I and III health and nutritional surveys (adapted from Figure 1 in
Cutler et al., 2003).

1.6-fold change acting upon ∼10 and 5% of the causal variants,
respectively. This happens because the “modern” environment
induces a hike in VP that is entirely due to a higher VG (we
keep VE constant, see Material and Methods). Again, the effect
is more pronounced under Model 2 (Figure 4B). For instance,
2-fold increments in the effect size inevitably lead to unrealistic
heritability values above 90% in the “modern” environment.

We illustrate the effects of the “modern” environment on
(i) the genetic effect sizes of perturbed SNPs (major graphs
in Figure 2), (ii) the differences in the distribution of pheno-
types between the “ancestral” and “modern” lifestyles (small
graphs in Figure 2), and (iii) the heritability of the simulated
trait (Figure 4). We next describe the ability to detect gene-by-
environment interaction effects induced by the “modern” setting.
We compare the ability to detect GxE interactions at the SNP
level with that of GRSxE analyses. Overall, we consider three dif-
ferent scenarios to ascertain candidate SNPs, and examine for
GxE effects in cohorts of 40,000 individuals in which half of the
samples come from the “ancestral” and “modern” environments,
respectively.

DETECTION OF GxE EFFECTS WHEN ALL PERTURBED VARIANTS ARE
KNOWN (SCENARIO A)
Even if the analyses include all variants that are perturbed (that
is, known from the model, without a GWAS discovery step),
GxE effects tend to remain undetected at the SNP level (see
Figure 5). Specifically, under Model 1 only 32 out of 2000 simula-
tions (1.6%) achieved genome-wide significance (P < 5 × 10−8)
for any SNP in the GxE analyses, and all of these required a >1.5-
fold change in the effect size (Figure 5B). Indeed, at most a single

FIGURE 4 | Heritability of the simulated trait in the “modern”

environment. Color map showing the heritability in cohorts perturbed
under model 1 (A) and model 2 (B), according to the percentage of SNPs
perturbed (x-axis) and the factor of perturbation in effect size (y-axis).
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FIGURE 5 | GxE analyses under scenario A. For scenario A, color
maps showing the results of the gene-by-environment interaction
analyses according to the percentage of SNPs perturbed (x-axis) and
the factor of perturbation in effect size (y-axis). (A) P-value of the
GRSxE interaction under model 1. (B) Number of SNPs at

genome-wide significance levels (P < 5 × 10−8) for GxE under model
1. (C) P-value of the GRSxE interaction under model 2. (D) Number
of SNPs at genome-wide significance levels (P < 5 × 10−8) for GxE
under model 2. Panels (B,D) record the largest number observed
out of five permutations.

variant was detected in each simulation, even if we tested for
GxE individually for all perturbed SNPs (e.g., 500 tests for GxE
when 20% of the variants were perturbed). Furthermore, only
14% of the 100 simulations with a 2-fold change in the effect size
harbored a variant that passed the threshold for genome-wide
significance (Figure 5B). Conversely, there was a wide range of
perturbation parameters for which genetic risk scores, the sum of
the total number of causal alleles each individual carries, consti-
tuted a powerful tool to detect interaction effects induced by the
“modern” environment (Figure 5A). For instance, GRSxE inter-
action terms using GRS calculated over 250 perturbed SNPs (10%
of causal variants) showed extremely low p-values (P < 10−10)
for all the ranges from 1.3 to 2-fold change in the genetic
effect size. Indeed, tiny increments in the effect size, such as a
1.2-fold change, resulted in ∼100% of the simulations detect-
ing GRSxE effects at the P < 0.05 significance level (notice that
we performed a single GRSxE test per simulation, because the
allelic count of all tested variants were collapsed into a single

number). Only the parameter space correspondent to <1.1-fold
changes for <5% of the causal variants consistently resulted in
non-significant GRSxE interaction terms (Figure 5A).

The same patterns were observed under the environmental
perturbations of Model 2, although an overall increased ability to
detect interaction effects was noticed (Figures 5C,D). Specifically,
12.8% of the simulations (255 out of 2000) led to significant GxE
effect at the SNP level, although 74.1% of those showed a sin-
gle variant being genome-wide significant (189 out of 255). It
was necessary to perturb genetic effects by 1.8–2-fold to achieve
several variants being significant at the SNP level (Figure 5D).
The interaction effects induced by the “modern” environment are
almost universally detected through GRSxE analyses (Figure 5C).

DETECTION OF CAUSAL ALLELES BY GWAS AFTER MODERN
ENVIRONMENTAL PERTURBATION
In “scenario A,” the environmental perturbation in effect sizes can
be easily detected with GRSxE analyses. These results establish
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an upper bound for the ability to detect gene-by-environment
effects induced by the “modern” lifestyle, because the analyses
are restricted to the truly perturbed variants. Yet, for real traits
it is uncertain which SNPs may present GxE effects. Usual prac-
tice consists of prioritizing variants unequivocally associated to
the trait of interest, such as the alleles discovered by GWAS. To
mimic this procedure, we perform a preliminary GWAS study to
ascertain variants for GxE analyses.

GWAS meta-analyses of 100,000 individuals entirely drawn
from the “ancestral” environment detected ∼90 genome-wide
significant variants, accounting for ∼15% of the heritability
(data not shown). GWAS on cohorts with 100% of the indi-
viduals being “perturbed” under model 1 led to an increased
ability to detect variants associated to the trait (Figure 6A). The
number of detected variants oscillated from 100 to 150 for the
most realistic range of perturbation parameter space, and hiked
to ∼300 when GWAS was performed upon 100,000 very heav-
ily “disturbed” individuals (e.g., 2-fold change in the effect size
for ∼20% of the causal variants). A progressively larger number of

the associated variants that are detected correspond to perturbed
variants (Figure 6B). The tendency to detect increasing propor-
tions of perturbed variants becomes exacerbated under model 2.
Specifically, and even if similar numbers of significant variants are
detected by GWAS (Figure 6C), the increment in SNP detection
corresponds to perturbed variants (Figure 6D).

Highly divergent patterns were observed when we perform a
preliminary GWAS upon a mixed sample of individuals drawn
equally from the “ancestral” and “modern” environment (“sce-
nario C”). Under Model 1, the number of variants detected by
GWAS still remained close to ∼90 only if the 50% of GWAS indi-
viduals coming from the “modern” environment had only been
perturbed slightly (e.g., <1.2-fold for <5% of the causal SNPs,
bottom-left corner in Figure 6E).The ability to detect causal alle-
les dropped when more extensive perturbations were simulated.
For instance, ∼60 variants were detected at genome-wide sig-
nificance levels when 7% of the variants had their effect size
multiplied by 1.3-fold, and almost no variants are discovered if
the same percentage of SNPs underwent a 1.8-fold change in

FIGURE 6 | Number of SNPs discovered by GWAS under scenarios B and

C. Color maps showing the results of the GWAS upon cohorts of 100,000
individuals with (i) 100% of the samples drawn from the “modern”
environment (scenario B; top panels, A–D) and (ii) 50% of the samples drawn
from each “ancestral” and “modern” environments (scenario C; bottom
panels, E–H). Specifically: (A,E) Under model 1, number of variants

discovered by GWAS at genome-wide significance levels (P < 5 × 10−8).
(B,F) Under model 1, percentage of the genome-wide significant variants that
have undergone perturbation. (C,G) Under model 2, number of variants
discovered by GWAS at genome-wide significance levels (P < 5 × 10−8).
(D,H) Under model 2, percentage of the genome-wide significant variants
that have undergone perturbation.
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the effect size, or with a 1.3-fold increase for 20% the causal
SNPs. Interestingly, the increasingly reduced number of variants
discovered by GWAS under “scenario C” corresponded to per-
turbed SNPs (top-right corner in Figure 6F). Similar patterns
were observed for “scenario C” under model 2 of perturbation
(Figures 6G,H). As discussed below, we attribute these effects
to the increase in phenotypic variance being greater than the
individual genetic effects of each SNP.

DETECTION OF GENE-BY-ENVIRONMENT INTERACTIONS WITH SNPs
DETECTED BY GWAS
The enhanced power to discover SNPs under “scenario B”
resulted in patterns of GxE interaction detection that are
similar to those observed for “scenario A,” in which only
perturbed variants were used (Figures 7A–D). SNP-by-SNP
tests rarely resulted in significant GxE interaction coefficients
(Figure 7B). By contrast, a wide range of the parameter space
led to significant GRSxE evaluations, starting from ∼1.4-fold

change for ∼5% of the variants to any stronger perturba-
tion, Figure 7A). Similarly, under model 2 the tendency toward
significant GRSxE detection was exacerbated (Figure 7C), and
GRSxE interactions were significant for the whole range of sim-
ulated parameters. In these analyses, only GWAS performed
upon strongly perturbed individuals (1.8–2-fold change in
β) permitted detection of perturbed SNPs that were consis-
tently significant at the individual level in the GxE analysis
(Figure 7D).

A reversed pattern was observed under “scenario C.” The
proportion of perturbed SNPs among the detected variants
was higher as perturbation strengthened, but it became neg-
ligible in absolute terms because almost no variants were
detected by GWAS. Thus, the overall poor performance of mixed
GWAS to detect perturbed SNPs rendered almost impossible
the task of detecting GxE effects with GWAS SNPs, even at the
GRSxE level (Figures 7E,F). The compromised detection power
under “scenario C” does not however preclude the detection

FIGURE 7 | GxE analyses with SNPs discovered in a preliminary GWAS

(scenarios B and C). Color maps showing the results of the
gene-by-environment interaction analyses according to the percentage of
SNPs perturbed (x-axis) and the factor of perturbation in effect size (y-axis).
Results for scenario B are shown in top panels (A–D). Specifically: (A) P-value
of the GRSxE interaction under model 1. (B) Number of SNPs at
genome-wide significance levels (P < 5 × 10−8) for GxE under model 1.

(C) P-value of the GRSxE interaction under model 2. (D) Number of SNPs at
genome-wide significance levels (P < 5 × 10−8) for GxE under model 2. The
corresponding results for scenario C are shown in bottom panels (E–H).
Panels (B,D,F,H) record the largest number observed out of five
permutations. White areas in top right corners in panels (E,G) correspond to
parameter space with no SNPs detected by GWAS and thus missing GRSxE
analyses.

www.frontiersin.org July 2014 | Volume 5 | Article 225 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Marigorta and Gibson Simulation of gene-by-environment interaction in GWAS

of gene-by-environment effects through GRSxE analyses under
model 2 (Figures 7G,H).

DISCUSSION
In this study we performed a series of simulations to inquire
under what conditions gene-by-environment effects can be
detected. We applied an environmental perturbation upon
cohorts of individuals that live in either an “ancestral” environ-
ment, or a “modern” setting that leads to an increment in the
genetic effect sizes of a percentage of the causal alleles. For a wide
range of the explored parameter space, gene-by-environment
effects mostly remain unnoticed when interaction is examined
at the SNP level. Conversely, GxE analyses are well powered to
detect significant interactions when the genetic component of
each individual is summarized through genetic risk scores (GRS)
that sum up the total number of causal alleles in a single figure.
Moreover, we find that the ability to detect perturbed SNPs in a
GWAS preliminary to the GxE analysis depends on the mixture of
samples coming from each environment. Genome-wide screens
performed upon homogeneous cohorts of perturbed individuals
show increased power to detect significant gene-by-environment
interaction effects. In contrast, GWAS upon heterogeneous mix-
tures of “unperturbed” and “perturbed” individuals present a
decreased ability to detect significant SNPs, thus inhibiting the
task of detecting GxE effects.

FEASIBILITY OF THE ENVIRONMENTAL PERTURBATION UNDER THE
“MODERN” ENVIRONMENT
The validity of the insights gained from this study depends on
the plausibility of our model of environmental perturbation,
and the extent to which we mimic the reality faced by current
GWAS studies. Certainly, it is difficult to evaluate the conse-
quences of the “modern” perturbation in the case of actual
human phenotypes because the heritability and phenotype distri-
butions correspondent to the “ancestral” lifestyle are unknown.
However, there is increasing evidence that the switch to a west-
ern lifestyle may have been coupled with a change in the genetic
effects of causal alleles (Gibson, 2009). Human complex traits
result from the assemblage of multiple physiological dimensions,
which may lead to a canalization of phenotypes whereby genetic
effects are minimized following long-term stabilizing selection
(McGrath et al., 2011). Under such a theoretical model, the “mod-
ern” human standard of living may have uncovered the activity
of previously silent, or almost silent, cryptic genetic variability
(Hermisson and Wagner, 2004). For example, this could have
been the case for polymorphisms lying in genes that partici-
pate in pathways involved in neural regulation of appetite (Heber
and Carpenter, 2011). These variants may have played a small
role in the genetic etiology of weight throughout the history of
our species, but may explain a larger proportion of the indi-
vidual susceptibility to obesity in the modern environment of
unrestricted access to processed food. A variety of other simi-
lar situations could be imagined, such as the interplay between
addiction, tobacco use and lung cancer (Amos et al., 2008).
In our simulations, we explore a range of parameter space in
which the “modern” environment perturbs from 1 to 20% of
the causal variants. Such a change can be easily framed in a

pathway perspective. Specifically, one or several physiological
pathways participating in the genetic architecture of complex
traits may respond differently under the “modern” environment.
In the context of a common disease, the environmental per-
turbation we explore would plausibly amount to an increase
in the proportion of the population at risk (as in Figure 3 for
real BMI).

Our model postulates one of the simplest instances of GxE
in which individuals are assigned to a binary environmental
state that would roughly correspond to “ancestral” and “modern”
lifestyles. A more realistic scenario of environmental perturba-
tion should summarize the varying fraction of “modern lifestyle”
followed by each person into an individual-specific measure, or
“exposome” (Patel and Ioannidis, 2014). More complex simula-
tions could be tuned to incorporate more realistic settings. For
instance, the extent of exposure to modern lifestyle could be more
finely determined (e.g., degree of sedentary behavior, diet pat-
terns, stress at work. . . ) to explore threshold-dependent models
of GxE. Our simulations are necessarily a simplification of the
almost infinite array of GxE interactions that could arise in the
presence of multi-layered and continuous environments that can
perturb the genetic effects of causal variants (Luan et al., 2001;
Wong et al., 2003). However, the qualitative environmental states
in our simulations resemble the practice of recent studies that
have confirmed GxE effects after categorizing the environment
into binary categories, as has been the case for example in stud-
ies of sugar-sweetened beverage consumption and overall diet
patterns (Do et al., 2011; Qi et al., 2012).

In addition to the mechanism of perturbation and the binary
nature of the simulated environment, the realism of our pertur-
bation model also depends on the likelihood that the explored
parameter space is realistic. We chose to approximate this by
checking whether the range of simulated effects results in pheno-
typic distributions that approximate real observations. In the con-
text of BMI, for instance, western urban women have been shown
to present an average BMI value that is ∼4 standard deviations
larger than the corresponding figure for Hadza hunter-gatherer
women (see Table 1 in Pontzer et al., 2012). These differences
are similar to the average horizontal shift between “ancestral”
and “modern” environment that we observe in our simulations
(e.g., depending on the percentage of perturbed SNPs, changes
in effect sizes by <1.4-fold lead to ∼1 to 4 standard deviations
of difference in the average phenotype). Furthermore, we also
examined the shape of the phenotype distributions. Indeed, we
observe significant GRSxE analyses for simulations with param-
eter combinations that result into more flattened but unimodal
distributions of phenotypes, such as those observed in U.S men
(Figure 3). Nonetheless, the actual phenotypic variance of a com-
bined population depends on the mixture proportions and even
extreme situations in which half of the individuals are raised in
each environment do not lead to a bimodal phenotypic distri-
bution in a combined simulation population. The heritability of
the trait is also kept within a reasonable range. It can severely
hike to 90% in the context of the most severe perturbations,
but the actual heritability would lie from 36 to 80% accord-
ing to the exact proportion of “unperturbed” and “perturbed”
individuals.
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DETECTION OF GENE-BY-ENVIRONMENT EFFECTS WITH GENETIC RISK
SCORES
We observe a substantial parameter space in which gene-by-
environment effects can be easily detected with genetic risk scores
while remaining hidden in individual SNP analyses, even after
testing exclusively those variants that were detected in popu-
lations perturbed by the “modern environment.” SNP-by-SNP
analyses provide anecdotal evidence for significant GxE, and only
when extreme perturbations are assayed (e.g., >400 SNPs per-
turbed by 2-fold in the effect size are necessary to detect a single
genome-wide significant variant). Conversely, GRSxE analyses are
always significant when β-s are multiplied by 1.3-fold or more,
or for the whole range of perturbation parameters when the
“modern” environment affects the SNPs that explain most of the
variance in the trait (i.e., model 2). These results confirm that a
widespread presence of GxE effects is not at odds with the lack
of evidence when individual variants are assayed, despite of a
substantial presence of interaction effects.

An important aspect of our simulations lies in the choice of
variants that are perturbed by the “modern” environment. We
observe that it is easier to detect GxE effects when the variants
that are perturbed coincide with the alleles that explain most of
the genetic basis of the trait, as in model 2. This makes sense
considering that these perturbed variants not only present the
largest effect sizes, but also have multiplied it in the “modern”
environment. The same mechanism explains the increment in
the number of variants detected by GWAS when the genome-
wide screen is performed entirely upon perturbed individuals,
as in “scenario B.” For real traits with widespread GxE effects, it
may be key to perform GWAS selecting for perturbed individuals.
The selection of those individuals following a “modern” lifestyle
would unravel specific pathways that respond badly in face of per-
turbation, thus enabling a more detailed understanding of the
etiology of the diseases of affluence. Nonetheless, it may be inher-
ently complex to design “perturbed-only” GWAS, owing to the
difficulty in defining what exactly constitutes the perturbed envi-
ronment. The sampling of individuals could also be confounded
by the fraction of cases that are entirely due to purely environ-
mental causes without any major role of gene-by-environment
interactions linked to “modern” life.

MIXTURE OF ENVIRONMENTS COMPROMISES GWAS DISCOVERY
POWER
The simulations in which the preliminary GWAS is performed
upon cohorts with a mixed environmental exposure (“sce-
nario C”) show a remarkable trend regarding SNP discovery. The
combination of “ancestral” and “modern” environments does
not compromise the detection of causal variants when pertur-
bation effects are tiny or restricted to a small fraction of the
causal SNPs. However, larger perturbations decrease the ability
to detect new variants, and statistical power eventually collapses
for the strongest range of effects in our simulations. This result
makes sense because gene-by-environment interactions add vari-
ance and heterogeneity in the estimates of SNP effects. We show
the results for a causal variant that explains 0.3% of the vari-
ance in an “ancestral” population (Figure 8). This allele achieves
P < 10−12 when assayed in a GWAS with 20,000 individuals that

follow the “ancestral” lifestyle. In contrast, the significance wors-
ens (P < 10−7) when this variant is assayed upon a mixture of
10,000 “ancestral” individuals and 10,000 individuals in which
10% of the SNPs have increased their effect size by 1.5-fold.
Eventually, the variant remains completely unnoticed in a mixed
GWAS when the effect size increases by 2-fold in the individ-
uals following “modern” lifestyle (P∼10−4). As a consequence,
these variants are not found among the top candidate list in our
simulated meta-analysis GWAS.

It is difficult to evaluate the extent to which pervasive gene-
by-environment effects have compromised the power to discover
associated variants by GWAS. The number of discovered variants
correlates with sample size (Visscher et al., 2012), but some other
differences among studies can be remarked upon. For instance, a
large meta-analysis of ∼180,000 individuals reported 180 differ-
ent loci associated to height, whereas a similarly powered study
with >250,000 individuals only described 32 loci for BMI (Lango
Allen et al., 2010; Speliotes et al., 2010). This may be explained
simply by a difference of narrow sense heritability. On the other
hand, the SNP-based heritability in these studies explains a
notably greater proportion of the total heritability for height,
implying a reduced missing heritability concern. We propose that
this difference might be attributed to environmentally-induced
heterogeneities in genetic effect size being more prevalent in the
case of BMI, in turn explaining the lack of power to detect obesity-
related loci. Arguably, this limitation can be avoided in real GWAS
through the inclusion of covariates (e.g., variables that capture
nutrition and physical activity levels per individual in a GWAS
for obesity). However, the potential covariates to be included are
often unknown or not available for all the cohorts, as in for exam-
ple the largest meta-analyses for height and BMI (Lango Allen
et al., 2010; Speliotes et al., 2010).

We explore a genetic architecture and a range of perturbation
parameters that are based on empirical data, which strengthens
the validity of our observations. However, the present study is
not devoid of weaknesses. Among others, we have used the same
sample size in all the simulated GWAS and GxE studies. This
comes at a price, since the range of perturbations that result
in significant GRSxE would certainly change if larger studies
were performed. Second, we performed simulations of random
mating populations with genotypic proportions following strict
Hardy-Weinberg equilibrium (HWE). This procedure follows the
usual practice consisting of screening polymorphisms for HWE.
Nonetheless, confounding of population structure with environ-
mental variability, further complicating the detection of GxE in
real studies, remains a possibility. Third, we explored the presence
of interactions through unweighted GRS that do not take into
account the effect size of each variant. Since only a few variants
present notably large effects (Figure 2), in reality weighted and
unweighted risk scores are very highly correlated once more than
a few dozen loci are incorporated, which minimizes the loss of
power to detect GRSxE effects compared to weighted risk scores.
Finally, it should be noted that we only simulate causal variants
instead of tagging SNPs, which effectively over-estimates effect
sizes relative to those discovered in true GRS.

In summary, the present study constitutes a preliminary eval-
uation of a realistic mechanism by which gene-by-environment
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FIGURE 8 | Environmental perturbation in genetic effect sizes decreases

the power of GWAS. Association results and P-value for the same variant
under five different GWAS with 20,000 individuals. Left boxplot: a variant
explaining 0.3% of the phenotypic variance achieves genome-wide

significance in a GWAS with 100% of the samples being drawn from the
“ancestral” environment. Successive boxplots: the same variant drops in
statistical significance when tested in GWAS in which the allele has
undergone a 1.25, 1.5, 1.75, and 2-fold perturbations in 50% of the individuals.

interactions may have altered the genetic etiology of human traits.
A widespread presence of realistic GxE effects could only be
detected by genetic risk scores calculated upon all variants discov-
ered by GWAS. The extent to which these effects have shaped real
human traits remains as an open question, and should be studied
in future research.
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