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The synergistic effects of genes and the environment on health are explored in three case
studies: adult lactase persistence, autism spectrum disorders, and the metabolic syn-
drome, providing examples of the interactive complexities underlying these phenotypes.
Since the phenotypes are the initial targets of evolutionary processes, understanding the
specific environmental contexts of the genetic, epigenetic, and environmental changes
associated with these phenotypes is essential in predicting their health implications.
Robust databases must be developed on the local scale to deconstruct both the population
substructure and the unique components of the environment that stimulate geographically
specific changes in gene expression patterns. To produce these databases and make
valid predictions, new, locally focused, and information-dense models are needed that
incorporate data on evolutionary ecology, environmental complexity, local geographic
patterns of gene expression, and population substructure.
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INTRODUCTION
The impact of gene–environment interactions in important
human biological conditions affecting health are underappre-
ciated due to a current imbalance in the knowledge needed
to integrate and synthesize molecular, ecological, and sociocul-
tural databases. In addition to the need for more precise data,
there is also a great need for more specific interdisciplinary
paradigms and research methodologies to identify and address
these gene–environment interactions (Jackson, 2004). Environ-
mental exposures of both high intensity and long duration are
closely tied to health impacts. When these occur at the popu-
lation level, such exposures can be of public health relevance.
Even shorter exposures, however, can alter the signatures of epi-
genetic dysregulation in peripheral blood samples, within a few
hours of environmental exposure (Baccarelli and Ghosh, 2012).
Sustained behavioral and social processes and events can
directly manipulate the epigenome and modulate the expres-
sion genome. Research on health risk assessment can ben-
efit by developing ways to discern the differences in these
effects.

A number of excellent examples exist of these kinds of inter-
actions. We begin with the first case study of the genomic
consequences among some proportion of humanity in response to
generations of continued milk drinking beyond the weaning stage.

CASE STUDY: ADULT LACTASE PERSISTENCE (LP):
EVOLUTIONARY ECOLOGY, SUBSISTENCE PRACTICES, AND
GENETIC DIVERSITY
Among almost all mammals, the ability to digest lactose declines
sharply after infancy. High lactose digestion capacity in adult

humans is common only in certain North Atlantic European,
Mediterranean, Central Asian, and selected African populations,
and overall, it is thought to be an evolutionary adaptation to
millennia of drinking milk from domestic livestock (Holden and
Mace, 1997). Prior to the domestication and use of milk pro-
ducing species, there was no evolutionary advantage in the LP
phenotype. Whereas afterward, there was and this has driven
an entirely new dynamic in genetic evolution. When variabil-
ity in the ability to digest and derive nutritional benefit from
lactose was discovered among Western scientists, discussions of
regular successful adult consumption of milk suggested that such
practices were the human norm by using such terms as “adult
lactose intolerance” and “adult lactase deficiency” to, in fact,
describe what is the true human (and mammalian) behavioral
and genetic norm. As the scope of the research was broadened
to include non-European individuals and groups in the anal-
yses as well as investigations among other mammals, it was
realized that adult lactase persistence and adult lactose toler-
ance were the evolutionary exception. Something quite special
had to have happened at a social, behavioral, and genetic lev-
els in a small subset of humanity to allow adults to consume
and derive nutritional benefit from the ingestion of animal milk
without incurring the negative health consequences of lactose
intolerance.

As the health-associated symptoms of the behavioral prac-
tice of adult milk drinking began to be examined by researchers
with genetic training and evolutionary interests, we began to
recognize that the practice of adult milk drinking had likely
emerged during the early stages of animal domestication in many
locales, and yet was geographically restricted to those groups
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with regular access to animal milk. The ability of human adults
to successfully consume the milk of their domesticated live-
stock necessitated a genetic change in these humans, foremost
of which was persistence of gene or genes for the production
of the enzyme lactase into adulthood. LP is one of the clear-
est examples of niche construction in humans (Gerbault et al.,
2011) where human modification of the environment signifi-
cantly changes the direction of genetic selection thereby increasing
the biological fitness associated with having specific genetic
mutations.

Once the behavioral practice of regular adult consumption
of animal milk was in place in these diverse groups, concomi-
tant changes in the gene expression patterns of the domesticated
livestock were required for the enhanced production of the addi-
tional milk needed to meet the dietary demands of adult human
consumers. We now know that there is substantial geographic
coincidence between high diversity in cattle milk genes, loca-
tions of the European Neolithic cattle farming sites (>5,000 years
ago) and present-day LP among adult Europeans (Beja-Pereira
et al., 2003). The reciprocal influences of genetics and the cultural
environments in these early pastoralists facilitated the subsequent
social and behavioral shifts observed as a result of this changed
dietary pattern. In certain populations of domesticated cattle and
humans their genes had coevolved in response to changes in behav-
ior that became imbedded in the emerging social fabric of these
selected groups.

Genetics has now been able to provide researchers with the
specific molecular variants involved in each of the geographical
regions that this coevolutionary pattern has emerged and their cal-
culated emergence times [discussed in Ingram et al. (2009)]. These
data have, in turn, allowed us to refine and expand our interpreta-
tions of the social consequences of these behavioral shifts and their
ramifications on regional development and health, reemphasizing
the dynamic feedback loop between “genes” and “environment.”

In European dairying groups and their descendants, a single
genetic mutation explains the distribution of the LP phenotype
[see Anagnostou et al. (2009)]. This single nucleotide poly-
morphism is located 13.9 kb upstream from LCT (13910T)
was proposed to be the cause for LP. The −13910∗T allele,
which is widespread in Europe was found to be located on
an extended haplotype of 500 kb or more (Anagnostou et al.,
2009). In Central Asia the causal polymorphism for LP is the
same as in Europe (−13.910C > T, rs4988235; Heyer et al.,
2011), suggesting genetic diffusion between the two geographical
regions.

However, elsewhere among milk-consuming groups, several
other mutations are associated with LP. For example, in some
South Africans, the −14010∗C allele, is associated with LP (Jensen
et al., 2011). In East Africa, the primary mutation appears to
be (−13907G; Enattah et al., 2008). The European (−13910T)
and the East African (−13907G) allele share the same ancestral
background and most likely a similar social and behavioral his-
tory, probably related to the same cattle domestication event.
In Saudi Arabia, the European allele (−13910T) is absent and
instead two new mutations are found as a compound allele:
(−13915T/G) within the -13910 enhancer region and a synony-
mous SNP in the exon 17 of MCM6 (−3712T/C), −3712 base

pairs from LCT (Enattah et al., 2008). This compound allele is
highly prevalent among many Arab populations and shows a dif-
ferent, highly divergent ancestral haplotype, perhaps in response to
camel domestication and milk consumption (Enattah et al., 2008).

Recent studies in Tibet (Peng et al., 2012), however, suggest that
three novel SNPs (−13838G/A, −13906T/A, and −13908C/T) are
responsible for LP among Tibetans, placing them at variance with
European, East African, and Middle Eastern genetic patterns. This
emphasizes the concept of local geographic-based responses to
common environmental challenges and reinforces the need for
taking population history into consideration in the search for
genes responsible for health-related conditions.

The worldwide geographical variability in the genetics under-
lying the LP phenotype suggests that this phenotype emerged
independently several times in human history. Furthermore, sev-
eral independent mutations tied to regional social events coupled
with local behavioral choices and existing patterns of genetic vari-
ation are involved in its current multiethnic distribution. These
genetic data can both broaden and deepen the scope of environ-
mental analyses of LP by permitting researchers to identify the
origins of this phenotype in any particular individual or group and
to correlate a specific genetic variant of LP with the unique his-
torical and evolutionary circumstances that characterize a specific
milk-consuming group.

CASE STUDY: AUTISM SPECTRUM DISORDERS (ASDs):
ENVIRONMENTAL COMPLEXITY AND DYNAMISM IN GENE
EXPRESSION
One of the most poignant examples of environment interac-
tions influencing important clinical abnormalities are the autism
spectrum disorders (ASDs). ASDs are a complex group of
neurodevelopment disorders, which are still poorly understood
(Centers for Disease Control and Prevention, 2012). ASDs typi-
cally appear before 3 years of age, and affect the brain’s normal
development of social and communication skills. ASDs appear to
be rising in frequency and are refractory to current treatments.
In 2008, the overall estimated prevalence of ASDs was 11.3 per
1,000 (one in 88) children aged 8 years. Overall ASD prevalence
estimates varied widely geographically and ASD prevalence esti-
mates also varied widely by sex and by biosocial/ethnic group
(Centers for Disease Control and Prevention, 2012).

From studies of both monozygotic and dizygotic twins, it is evi-
dent that identical twins are much more likely than fraternal twins
or siblings to both have autism. Similarly, language abnormalities
are more common in relatives of autistic children. Chromoso-
mal abnormalities and other neurological problems are also more
common in families with autism. Genetic factors clearly play a
role as well in ASDs. Some of the recently proposed genetic fac-
tors in ASDs include DRD2 and PPP1R1B in males (Hettinger
et al., 2012), chromosomal (Yang et al., 2012), copy number vari-
ations in candidate genes (Griswold et al., 2012), microRNAs
(miRNAs) associated with brain development and maturation
(Mellios and Sur, 2012), gene-disrupting mutations (nonsense,
splice site, and frame shifts; Iossifov et al., 2012), deficient GABA
neurotransmission (Mendez et al., 2012), and functional muta-
tions in postsynaptic scaffolding proteins at excitatory synapses
(Ting et al., 2012).
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Extensive research has been so far unable to explain the eti-
ology of ASDs, whereas a growing body of evidence suggests
that the involvement of local environmental exposures to spe-
cific, potent bioactive factors plays a major role. Phthalates, given
their extensive use and their persistence, are ubiquitous environ-
mental contaminants implicated in the etiology of ASDs. These
are endocrine-disrupting chemicals suspected to interfere with
neurodevelopment. Therefore, they represent interesting can-
didate environmental risk factors for ASDs pathogenesis (Testa
et al., 2012). Some other recently suggested environmental trig-
gers for ASDs include prenatal ethanol exposure (Middleton et al.,
2012), mercury poisoning, changes in the digestive tract, diet
(Pennesi and Klein, 2012), oxidative stress (Frustaci et al., 2012),
maternal fever during pregnancy (Zerbo et al., 2012), paternal
age (Eriksson et al., 2012; Iossifov et al., 2012), inadequate breast
feeding (Al-Farsi et al., 2012), and persistent exposure to organic
polybrominated diphenyl ethers (PBDEs) used in commercial
flame retardants (Woods et al., 2012).

Overall, the behavioral polytypism associated with ASDs
suggests that an array of genetic and environmental factors
influence the individual autism phenotype [see Buchholz et al.
(2013)]. The problem for scientists working on ASDs is that
this spectrum of disorders are rarely diagnosed in children
younger than 2 years, since diagnosis is based entirely on behav-
ioral tests (Frustaci et al., 2012). Changes in the epigenome
(Rangasamy et al., 2013) can serve as indicators of these gene–
environmental interactions and help clarify the contributions
of each set of factors (individually and interactively) to autism
[see Hall and Kelley (2013)].

As mentioned, environmental factors that mediate epigenetic
changes appear to play a strong role in the etiology of ASDs
(Ladd-Acosta et al., 2013). Unbiased investigations of a multitude
of novel candidate genes encoding nuclear factors implicated in
chromatin remodeling, histone demethylation, histone variants,
and chromatin alterations suggest that DNA methylation under-
lies many neurodevelopmental aberrations, including the ASDs
(LaSalle, 2013a). Additionally, long non-coding RNA (lncRNAs)
contribute to ASDs risk (Wilkinson and Campbell, 2013). Future
analyses of these non-coding RNAs as well as studies of a variety
of epigenetic modifications around genetic risk factors augmented
with quantified measures of environmental exposures and methy-
lome analyses are expected to be important for understanding the
complex etiology of autism (Hu, 2013; LaSalle, 2013b).

CASE STUDY: METABOLIC SYNDROME (MetS): REDEFINING
THE PARAMETERS OF POPULATION BEHAVIORAL AND
BIOLOGICAL SUBSTRUCTURE:
The most common diseases affecting the US population are
complex disorders that develop as a result of defects in mul-
tiple genetically controlled systems in response to environmen-
tal challenges (Berdasco and Esteller, 2013). MetS represents
a set of disorders that frequently occur together and increase
the risk of further cardiovascular and metabolic disease. MetS
is a global pandemic of enormous medical, economic, and
social concern affecting a significant portion of the world’s
population (Alberti et al., 2009). A number of organizations
have developed definitions for the MetS to guide clinician and

researchers in identifying the syndrome. One of the earliest was
the World Health Organization in 1998 (Grundy, 2007). Later,
the National Cholesterol Education Program/Adult Treatment
Panel III (NCEP/ATPIII) developed diagnostic criteria for the
MetS (Farook et al., 2012; Forti et al., 2012). The International
Diabetes Federation and Joint Interim Statement also proposed
criteria for identifying MetS (Ruemmele and Garnier-Lengliné,
2012).

All of these definitions of MetS include abdominal obesity,
hyperglycemia, hypertriglyceridemia, low high-density lipopro-
tein cholesterol, and hypertension (Ruemmele and Garnier-
Lengliné, 2012) and are considered the five indicators of the MetS.
If an individual possesses three or more of the five risk indicators,
then that person is defined as having MetS and is said to be at
increased risk for the development of cardiovascular disease and
also for Type 2 diabetes mellitus. Details of these five risk indi-
cators include: elevated triglyceride levels (≥150 mg/dl), elevated
systolic (≥130 mmHg) and diastolic (≥85 mmHg) blood pres-
sures, elevated fasting blood glucose level (>110 mg/dl), reduced
blood levels of High Density Lipoproteins (<40 mg/dl for men)
and <50 mg/dl for women), and abdominal obesity [large waist
circumference (WC), initially defined as >102 cm for men and
>88 cm for women].

However, these definitions were developed from studies of
Europeans (and their descendants; Wang et al., 2009) and the
cut-off values were promulgated as universal until recently when
studies of Chinese and Koreans demonstrated that some East
Asians develop diabetes and several risk indicators of cardiovas-
cular disease at lower body mass index (BMI) and WC values
than do European-descended populations (Zorzi et al., 2009; Kim
et al., 2012). This has given rise to several new studies that result
in our now suggesting that BMI and WC cut-offs be made more
population-specific (Grundy, 2007). Although the cut-off values
are still subject to change with additional research, most Asians
(whether East or South Asians) have lower BMI and WC cut-off
values than do European Americans or other Europeans when
they begin to express the abnormal clinical indicators of MetS.
Alternative patterns for MetS may also exist for aboriginal Cana-
dian AmerIndians (Nikitin et al., 2012). This additional biological
information on human diversity in BMI and WC may call into
question the reports, in Siberia and other East Asian regions,
for example, that the overall prevalence of both diabetes and
MetS among the indigenous East Asian population is lower than
among Europeans (Roth and Sathyanarayana, 2012). It may sim-
ply be that the detection criteria are different and that some East
Asian cases are being missed using European-based physiological
definitions.

Different BMI and WC cut-offs suggest that human populations
are highly variable and that diet and other environmental factors
have a huge impact on body shape, body composition, and suscep-
tibility to disease. This is not unexpected since signaling peptides
produced in peripheral tissues such as gut, adipose tissue, and
pancreas communicate with brain centers, such as hypothalamus
and hindbrain to manage energy homeostasis and these processes
are highly sensitive to the influence of environmental variables
(Du et al., 2012). The regulatory mechanisms of energy intake and
storage have evolved during extended periods of famine in human
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evolution to allow for optimal adaptation and ultimately protect
the species from extinction. It is now clear that these circuitries
are influenced by prenatal and postnatal environmental factors
including dietary adequacy and endocrine disruptive chemicals
(Du et al., 2012).

Hypothalamic appetite regulatory systems develop and mature
in utero and early infancy, and involve signaling pathways that are
important also for the regulation of the onset of puberty (Du et al.,
2012). Metabolic pathways involved in the regulation of growth,
body weight gain, and sexual maturation are largely affected by
epigenetic programming that can impact both current and future
generations (Du et al., 2012). Therefore, researchers studying MetS
cross-culturally would be well served to integrate both ecological
and evolutionary perspectives in their investigations since pop-
ulation substructure can dramatically influence the initiation of
MetS’s downstream events. In particular, intrauterine and early
infantile developmental phases are highly plastic and susceptible
to factors that affect metabolic programming. These, therefore,
affect metabolic function throughout the lifespan [discussed in Du
et al. (2012)]. Thus, the underlying mechanisms regulating human
metabolic biology are likely to be evident in many different groups
although the specific genes involved will vary between geograph-
ical groups. Definitions of metabolic disease indicators should
not be generalized to all world populations, particularly when the
standards are disproportionately based a minority of the world
human biodiversity and are largely restricted to measurements on
individuals from economically developed regions.

Although genetics, physiology, and environmental components
play a major role in the onset of the MetS diseases due to excessive
fat accumulation, little is known about how or to what extent each
of these factors contributes to the actual syndrome (Alberti et al.,
2009) and which specific genes may serve as triggers. Currently, the
search for patterns in the genetics of MetS is in its infancy. What has
emerged is that a host of different genes on different chromosomes
in different human groups that appear to be associated to varying
degrees with MetS. For example, in Mexican Americans, chromo-
some 7q21 shows strong evidence for linkage to MetS, especially
between markers D7S2212 and D7S821 (Forti et al., 2012). Six
chromosomal regions exhibit potential evidence for linkage with
MetS in this group. 29 single-nucleotide polymorphisms (SNPs)
from the fatty acid translocase [FAT or CD36, 18 SNPs] and gua-
nine nucleotide binding protein and α transducing 3 [GNAT3, 11
SNPs] gene (Forti et al., 2012), are associated with MetS and its
related traits in Mexican Americans. In this same population, sev-
eral SNPs were also associated with MetS and its related traits with
the strongest associations being linked with rs11760281 in GNAT3
and rs1194197 near CD36 (Forti et al., 2012). This accounted for
approximately 18% of the MetS linkage on chromosome 7q21
and together these genetic changes conferred nearly a threefold
increase in MetS risk for Mexican Americans (Forti et al., 2012).

Among Han Chinese (Dujic et al., 2012), however, an associa-
tion study suggests that ADIPOQ variants are associated with the
risk of MetS and include genotypes rs266729CG; rs1063539GC,
GC/CC; rs16861205AA, and rs7649121AT. Functional studies of
these molecular variants of ADIPOQ are still pending.

In a recent study of Bosnian (Eastern Europe) children with
MetS, a common rs45487298 polymorphism in HSD1181 is

thought to possibly have a protective effect against insulin resis-
tance (Min et al., 2012). In an effort to identify the gene networks
involved in MetS in British Europeans, researchers conducted Min
et al. (2012) and Alkharfy et al. (2012) conducted whole-genome
expression and genotype profiling and found nine coexpresssed
genes in abdominal tissue and six in gluteal adipose tissue, but
no coexpressed genes in whole blood. The rs10282458 polymor-
phism, affecting expression of RARRES2 (encoding chemerin),
was associated with BMI and rs2395185, affecting inter-depot
differences of HLA-DRB1 expression, was associated with high-
density lipoprotein and the BMI-adjusted waist-to-hip ratio in
this British population.

Among Saudi Arabians, a significant association of 894G > T,
4a/b, and −786T > C polymorphisms with MetS in eNOS is evi-
dent (Csaba, 2011). A genetic predisposition to develop abnormal
metabolic phenotypes, consistent with an increased prevalence of
metabolic phenotypes has reportedly been detected in the Saudi
Arab population with these genetic polymorphisms. Researchers
have also reported a high prevalence of MetS among Kuwaiti
adults (Al Zenki et al., 2012), presumably with a similar genetic
or environmental basis.

From this cursory overview of gene-association studies, it
appears that great diversity exists in specific susceptibility genes
that characterize the genetic underpinnings of MetS across geo-
graphical groups (see da Costa et al., 2014). Epigenetically, MetS
seems to reflect some level of hormonal imprinting (Lacaria
et al., 2012) which, when faulty can produce disturbances in
methylation patterns. CNVs also appear to be involved in
some cases of MetS (Wang et al., 2009; Rottiers and Näär,
2012). Dysregulation of miRNA may also contribute to the
metabolic abnormalities associated with MetS and thus may
provide a potential source of cardiometabolic therapeutic tar-
gets.

As the technology continues to improve, the ability to inte-
grate these epigenetic data into the analyses of MetS should prove
extremely important, permitting more precise assessments of the
epigenetic consequences of particular events on MetS phenotypes
[see Turcot et al. (2012) and Wang et al. (2012)].

STRATEGIES FOR DEVELOPING NEW PARADIGMS AND
RESEARCH METHODOLOGIES
Epigenetic factors that control chromatin dynamism are essen-
tial for the proper functioning of tissue homeostasis, cell identity,
and development. Deregulation of epigenetic profiles is intimately
associated with metabolic pathologies and neurological diseases,
among other complex disorders (Cox et al., 2013). From the case
studies presented here, we can see that both our assumptions about
the “gene” and the “environment” as well as their interactions need
to be more nuanced, more localized to the specific populations
under consideration, and more sensitive to the particular relevant
local environmental factors of influence.
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