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The vast mammal diversity of the Neotropics is the result of a long evolutionary history.
During most of the Cenozoic, South America was an island continent with an endemic
mammalian fauna. This isolation ceased during the late Neogene after the formation
of the Isthmus of Panama, resulting in an event known as the Great American Biotic
Interchange (GABI). In this study, we investigate biogeographic patterns in South America,
just before or when the first immigrants are recorded and we review the temporal
and geographical distribution of fossil mammals during the GABI. We performed a
dissimilarity analysis which grouped the faunal assemblages according to their age and
their geographic distribution. Our data support the differentiation between tropical and
temperate assemblages in South America during the middle and late Miocene. The
GABI begins during the late Miocene (∼10–7 Ma) and the putative oldest migrations are
recorded in the temperate region, where the number of GABI participants rapidly increases
after ∼5 Ma and this trend continues during the Pleistocene. A sampling bias toward
higher latitudes and younger records challenges the study of the temporal and geographic
patterns of the GABI.
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INTRODUCTION
The Neotropics [Neotropical region sensu lato of Morrone
(2014)] supports an extremely large diversity of living mammals.
Currently there are around 1500 recognized species which rep-
resent in the order of 30% of the total world mammal diversity.
Included are endemic groups such as marsupials (opossums),
xenarthrans (sloths, armadillos, and anteaters), caviomorph
rodents (capybaras, spiny rats, chinchillas), platyrrhine monkeys,
and phyllostomid bats (Patterson and Costa, 2012). The variety
of biomes found in the Neotropics (lowland rainforest, savan-
nas, mountain forest, scrublands, and deserts) could provide a
partitioned environment enhancing species richness (Tews et al.,
2004).

The current Neotropical mammal fauna is the result of a
long evolutionary history. The Cenozoic (66–0 Ma) in South
America was characterized by long term geographical isola-
tion with the evolution of an endemic fauna (Simpson, 1980).
Sporadic dispersal events from other geographic areas interrupted
this isolation introducing novel clades into South America includ-
ing caviomorph rodents during the middle Eocene (∼41 Ma)
and platyrrhine monkeys during the late Oligocene (∼26 Ma)
(Pascual, 2006; Antoine et al., 2012; Croft, 2012; Goin et al.,
2012). The isolation of South America’s mammal fauna ceased
by ∼10–7 Ma, when proximity, and then permanent connection
was established with Central America. This connection initiated a

massive faunal exchange between North America (NA) and South
America (SA). This event is known as the Great American Biotic
Interchange (GABI) (Simpson, 1980; Webb, 1985). The classic
interpretation places the onset of the GABI by ∼3.0 Ma, with
some early migrations during the late Miocene from SA to NA by
∼9 Ma and from NA to SA by ∼7 Ma. Other studies using dated
molecular phylogenies across a wide range of taxa indicate an
important part of the interchange may have predated the perma-
nent land connection by ∼3 Ma (Koepfli et al., 2007; Cody et al.,
2010; Eizirik et al., 2010; Eizirik, 2012). The core of the GABI
is composed by a series of major migration “waves” during the
Pliocene–Pleistocene (2.5–0.012 Ma) (Webb, 2006; Woodburne,
2010). Recently, several NA mammals have been reported from
the late Miocene deposits, ∼10 Ma, within the Amazon basin.
These include a dromomerycine artiodactyl, gomphotheres, pec-
caries, and tapirs which suggest a more intense earlier connec-
tion (Campbell et al., 2000, 2010; Frailey and Campbell, 2012;
Prothero et al., 2014). However, the taxonomy and age of some
of these fossils have been questioned (Alberdi et al., 2004; Lucas
and Alvarado, 2010; Lucas, 2013). In Amazonia, Pleistocene ter-
races are built from older Cenozoic deposits (Latrubesse et al.,
1997), resulting in non-contemporaneous associations (Cozzuol,
2006). Even with these concerns in mind, in the last decades the
presence of northern forms in South America is becoming better
understood.

www.frontiersin.org January 2015 | Volume 5 | Article 451 | 1

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00451/abstract
http://community.frontiersin.org/people/u/119823
http://community.frontiersin.org/people/u/199877
mailto:juan.carrillo@pim.uzh.ch
http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Carrillo et al. Mammal Neotropical diversity and GABI

During the late Miocene (11.6–5.3 Ma) and early Pliocene
(5.3–3.6 Ma), the GABI was taxonomically balanced, as pre-
dicted by the MacArthur–Wilson species equilibrium hypothesis,
with similar number of NA and SA families participating in
the interchange (Webb, 1976; Marshall et al., 1982). During the
Pleistocene, NA mammals appeared to have diversified expo-
nentially in SA, resulting in an overall prevalence of NA over
SA–derived mammals. This could be the result of competitive dis-
placement (Webb, 1976, 1991; Marshall et al., 1982), but this has
not been subjected to rigorous analyses. In contrast, ecological
replacement has been demonstrated for extinct metatherians and
placental carnivores (Prevosti et al., 2013).

Vrba (1992) analyzed the GABI in the context of the “habitat
theory” (i.e., physical environmental changes are the main drivers
of “distribution drift”) and highlighted the importance of envi-
ronmental changes over biotic interactions as the major cause of
the biotic turnover. Webb (1991) proposed that the Pleistocene
glaciations and the widespread development of savannas in the
Neotropics facilitated dispersals during the GABI of savanna-
adapted mammals. Woodburne (2010) agreed with Webb’s model
and related the pulses of faunistic movements to the glaciations
and sea level changes of the Pliocene and Pleistocene. However,
most recent evidence does not support the widespread expan-
sion of savannas in the tropics during glacial times (Behling
et al., 2010). The GABI was dynamic with bidirectional migra-
tions (Carlini et al., 2008b; Castro et al., 2014) and with reciprocal
exchanges within a single lineage (e.g., procyonids; Baskin, 1989;
Forasiepi et al., 2014; and felids; Prevosti, 2006).

Potential biogeographic barriers or corridors along with envi-
ronmental changes controlled patterns of movements (Webb,
1991; Woodburne, 2010). The Andes are currently an impor-
tant biogeographic feature in South America extending for about
8000 km from Venezuela to Argentina, reaching average heights
of about 4000 masl and maximum elevations up to 7000 masl
(Ramos, 1999). The present day elevations of the northern and
the north central Andes (north of 20◦S) were reached during or
soon after the late Miocene (Mora et al., 2009) and may have con-
stituted a colonization corridor during the GABI (Patterson et al.,
2012 and references therein).

A full understanding of the GABI is difficult because of the
difference in fossil sampling between low and high latitudes
(Figure 1). Even with the major recent advances in Neotropical
paleontology (Kay et al., 1997; Campbell, 2004; MacFadden, 2006;
Sánchez-Villagra et al., 2010; Antoine et al., 2012), our knowledge
of this large portion of territory that comprises the neotropics,
twice the size of Europe and almost as large as North America is
scarce (Croft, 2012).

In this contribution, we investigate biogeographic patterns for
the middle and late Miocene (15.9–5.3 Ma) in SA at the initiation
of the GABI. We review the temporal and geographical distribu-
tion of fossil mammals during the GABI and discuss the special
significance of the fossil record from northern SA to understand
the patterns and dynamics of the interchange.

MATERIALS AND METHODS
Species lists from several middle and late Miocene–Pliocene
mammal associations (La Venta, Fitzcarrald, Quebrada Honda,

FIGURE 1 | Number of collections in the Paleobiology Database (PBDB)

across latitude for land mammals in North America (gray boxes) and

South America (white boxes) for each 1 ma period in the last 12 ma.

The boxplot shows the mean and standard deviation of the latitude of the
PBDB collections for each time interval.

Collon Curá, Urumaco, Acre, Mesopotamian, Cerro Azul,
Chiquimil, Andalhuala, Monte Hermoso, Inchasi and Uquía)
were compiled from several sources (Goin et al., 2000; Cozzuol,
2006; Reguero and Candela, 2011; Brandoni, 2013; Tomassini
et al., 2013; Tejada-Lara et al., in press) and other references avail-
able in the Paleobiology Database (PBDB) (Alroy, 2013), to which
we added 450 references with records of Neogene fossil mam-
mals from the Americas (Figures 2, 3; Supplementary Material
1–2). We obtained latitude and paleolatitude from each local-
ity from the PBDB (Table 1) and estimated the distance in km
among localities using Google Earth. Localities were coded for
presence/absence at the generic level (Supplementary Table 1).
The biochronology refers to the South American Land Mammal
Ages (SALMA) and the calibration of the boundaries of Tomassini
et al. (2013, modified from Cione et al., 2007) and Cione and
Tonni (1999, 2001). Genera were used as taxonomic unit (includ-
ing taxonomic identifications with cf. and aff. qualifiers). Lower
taxonomical levels are still unresolved for several localities and
data are incomparable.

We analyzed closely contemporaneous fossil mammal associa-
tions from SA using the Bray-Curtis binary dissimilarity index.
This reaches a maximum value of 1 when there are no shared
taxa between the two compared communities. The Vegan package
(Okasanen et al., 2013) was used to perform a cluster analysis with
average grouping method and a Nonmetric Multidimensional
Scaling (NMDS) set to two dimensions (axes) and 1000 runs.
We compared tropical and temperate Miocene localities, and in
order to account for differences in the sample size, we set the
number of taxa equal to the assemblage with the lowest rich-
ness within the subgroup and calculate Bray-Curtis dissimilarity
by resampling with replacement 1000 times all the localities. The
Vegan package was used to obtain genera accumulation curves for
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FIGURE 2 | Middle and late Miocene – Pliocene main fossil sites for

land mammals in South America. Triangles, middle Miocene; circles, late
Miocene; squares, Pliocene.

tropical assemblages, using the random method. All analyses were
performed in R (R Core Team, 2013).

We obtained records for late Miocene to late Pliocene land
mammals for NA and SA from the PBDB. We classified each genus
as North or South American if the taxon or its ancestor were
in either NA or SA before 10 Ma. We compared the geographic
distribution (tropical vs. temperate) and time of first appearance
datum (FAD) of GABI migrants in the continent (Supplementary
Material 3 and Supplementary Table 2). In order to account for
the age uncertainty of each FAD, we generate 1000 different ran-
dom values between the maximal and minimal age estimate and
calculate the mean and standard deviation of the age estimate for
each record.

STUDY SITES
We selected faunal associations from the tropical and temperate
regions of South America which all together span from the mid-
dle Miocene (∼15 Ma) to the late Pliocene (∼2 Ma), a critical
time period for the GABI. The study sites cover a wide latitudinal
gradient across the continent (Table 1).

La Venta
La Venta is one of the best-studied fossil assemblages from the
Neotropics and among vertebrates includes freshwater fishes,
crocodiles, turtles and different mammal clades (Kay et al., 1997).
These come from the Honda Group in the central Magdalena
valley, Colombia (Figure 2). Its age is constrained by radiomet-
ric and paleomagnetic data. The assemblage of La Venta served
as the basis for defining the Laventan SALMA (middle Miocene,
13.5–11.8 Ma) (Madden et al., 1997).

FIGURE 3 | Chronostratigraphy, South American Land Mammal Ages

(SALMAs) and temporal distribution of the faunal assemblages

discussed in the text. Colloncuran:15.7–14 Ma (Madden et al., 1997)
Laventan: 13.5–11.8 Ma. (Madden et al., 1997); Mayoan: 11.8–10 Ma. (Flynn
and Swisher, 1995); Chasicoan: 10– ∼8.5 (Flynn and Swisher, 1995);
Huayquerian = ∼8.5–5.28 Ma. Lower age following (Cione and Tonni, 2001;
Reguero and Candela, 2011) and upper age following (Tomassini et al.,
2013); Montehermosan = 5.28 –4.5/5.0 Ma. (Tomassini et al., 2013);
Chapadmalalan = 4.5/5.0–3.3 (Tomassini et al., 2013); Marplatan = 3.3 –
∼2.0 Ma. Lower age following (Tomassini et al., 2013) and upper age
following (Cione and Tonni, 1999; Cione et al., 2007); Ensenadan =
∼2.0–<0.78(0.5?) Ma. (Cione and Tonni, 1999; Cione et al., 2007);
Bonaerian = <0.78(0.5?)–0.13 Ma. (Cione and Tonni, 1999); Lujanian =
0.13–0.08 Ma (Cione and Tonni, 1999).

Fitzcarrald
The localities of the Fitzcarrald assemblage are found along the
Inuya and Mapuya rivers in the Amazon of Peru (Figure 2) from
the Ipururo Formation, interpreted as middle Miocene (Laventan
Age) (Antoine et al., 2007; Tejada-Lara et al., in press). The verte-
brate assemblage includes fishes, turtles, crocodiles, snakes and 24
mammalian taxa (Negri et al., 2010; Tejada-Lara et al., in press).

Quebrada Honda
Quebrada Honda is located in southern Bolivia at ∼21◦S latitude,
20 km north of the Argentine frontier and at an elevation of about
3500 m (Figure 2). The fossil-bearing deposits crop out in the
valley of the Honda River and its tributaries. Paleomagnetic and
radioisotopic data provide an extrapolated age of 13–12.7 Ma for
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Table 1 | Modern and ancient latitude and elevation of the faunal assemblages used in this study.

Faunal association Latitude Paleolatitude Elevation Paleoelevation Biome

La Venta ∼3◦ N ∼2.6◦ N ∼380 m “Lowland” Tropical

Fitzcarrald ∼10.5◦ S ∼12◦ S < 300 m “Lowland” Tropical

Quebrada Honda ∼22◦ S ∼22◦ S ∼3500 m ∼2600 ± 600 m Temperate

Collón Curá ∼40◦ S ∼41◦ S ∼800 m ? Temperate

Urumaco ∼11◦ N ∼11◦ N <100 m “Lowland” Tropical

Acre ∼10◦ S ∼10.5◦ S <300 m “Lowland” Tropical

Mesopotamian ∼32◦ S ∼32◦ S <100 m “Lowland” Temperate

Cerro Azul ∼37◦ S ∼37◦ S ∼150 m “Lowland” Temperate

Chiquimil ∼27◦ S ∼27◦ S 1000–2500 m ? Temperate

Andalhuala ∼27◦ S ∼27◦ S 1000–2500 m ? Temperate

Monte Hermoso ∼38◦ S ∼38◦ S <100 m “Lowland” Temperate

Inchasi ∼19◦ S ∼20◦ S ∼3220 m ? Temperate

Uquía ∼23◦ S ∼23◦ S ∼2800 m ∼1400–1700 m Temperate

the fossil bearing beds (MacFadden et al., 1990). Multiple prox-
ies to estimate paleoelevation of the Central Andean Altiplano
have yielded values between 1000 and 2000 m for the mid-
dle Miocene (Garzione et al., 2008); however, a most recent
study using clumped isotope thermometry on paleosol carbon-
ates inferred an earlier uplift for the Altiplano, with Quebrada
Honda at about 2600 ± 600 m and a mean annual temperature of
∼9 ± 5◦ C (Garzione et al., 2014). The assemblage includes about
30 mammals representing metatherians, xenarthrans, rodents,
astrapotheres, litopterns and notoungulates and correspond to
the Laventan SALMA (Croft, 2007).

Collón Curá
The Collón Curá Formation is largely exposed at the west of
Nord-Patagonian Massif (Neuquén and Río Negro provinces,
and Norwest Chubut Province). The rich vertebrate associa-
tion is represented by reptiles, birds, and principally mammals:
metatherians, xenarthrans, rodents, notoungulates, litopterns,
and astrapotheres (Kramarz et al., 2011). The fossil mammals
collected in the vicinities of the Collón Curá river by Santiago
Roth in the late 19th Century are the basis for the definition of
the Colloncuran SALMA, although a critical review of most of
the findings is still pending. Several radiometric dates for the
Collón Curá Formation indicate ages between 15.5 and 10 Ma
for the vertebrate association (e.g., Rabassa, 1974, 1978; Marshall
et al., 1977; Bondesio et al., 1980; Mazzoni and Benvenuto, 1990;
Madden et al., 1997).

Urumaco
The Urumaco sequence is found in the Falcón State in north-
western Venezuela (Figure 2). It includes the Querales, Socorro,
Urumaco, Codore and San Gregorio formations, which together
span from the middle Miocene to late Pliocene (Quiroz and
Jaramillo, 2010). The Urumaco sequence shows a high diversity
of crocodilians (Scheyer et al., 2013) and xenarthrans (Carlini
et al., 2006a,b, 2008a,c). We focus our analysis on the Urumaco
Formation. Linares (2004), on the basis of a mammal list of unde-
scribed material suggested a middle to late Miocene age. Until

a detail taxonomic revision is conducted, the biostratigraphic
correlation of the Urumaco association remains tentative.

Acre
The Acre region in the southwestern Amazonia includes sev-
eral fossiliferous localities which would represent different time
intervals considering the geological and palinological evidence
(Cozzuol, 2006). Fossil vertebrates come from the Solimões
Formation of the state of Acre, Brazil and Peruvian and Bolivian
localities from the Madre de Dios Formation (Negri et al.,
2010) (Figure 2). The vertebrate assemblage is very diverse and
includes fishes, snakes, lizards, birds, turtles, crocodiles, and
mammals including whales, dolphins, manatees and a diverse
assemblage of terrestrial forms. The Acre mammal assem-
blage has been referred to late Miocene, Huayquerian SALMA
(Cozzuol, 2006; Ribeiro et al., 2013) or included also in the
Pliocene, Montehermosan SALMA (Cozzuol, 2006). Campbell
et al. (2001) reported 40A/39A dates of 9.01 ± 0.28 Ma for the
base of the Madre de Dios Formation and 3.12 ± 0.02 Ma near
the top.

Mesopotamian
The continental mammals of the Mesopotamian assemblage
come from the lower levels of the Ituzaingó Formation, which
crops out along the cliffs of the Paraná River in Corrientes and
Entre Ríos provinces, north-east Argentina (Figure 2). The ver-
tebrate assemblage is rich and includes fishes, crocodiles, birds
and mammals (Cione et al., 2000; Brandoni and Noriega, 2013).
It differs taxonomically from other associations in Argentina
at the same latitudes and this was explained by a south-
ern extension of the northern realm (Cozzuol, 2006). The
age of the Mesopotamian assemblage has been largely debated
(Cione et al., 2000 and references therein); it is currently
assigned to the late Miocene, Huayquerian SALMA (Cione
et al., 2000) or also extended into the Chasicoan SALMA
(Brandoni, 2013; Brunetto et al., 2013). The dating of 9.47
Ma for the upper levels of the lower Paraná Formation (Pérez,
2013) represents a maximum limit for the Mesopotamian
assemblage.
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Cerro Azul
Several localities in central east Argentina (La Pampa and Buenos
Aires provinces) have provided abundant fossil vertebrates from
the Cerro Azul and Epecuén formations which are consid-
ered geologically correlated (Goin et al., 2000). This assemblage
includes reptiles, birds and a rich mammal association. These
units are assigned to the late Miocene, Huayquerian SALMA
(Goin et al., 2000; Montalvo et al., 2008; Verzi and Montalvo,
2008; Verzi et al., 2011) on the basis of mammal biostratigra-
phy. This association is currently the most complete list for this
age (Goin et al., 2000). The possibility of extension into the late
Pliocene cannot be discarded for some localities assigned to the
Cerro Azul Formation (Prevosti and Pardiñas, 2009).

Chiquimil
The Chiquimil Formation is exposed in north-west Argentina
(Catamarca Province) and is divided in three members. The
Chiquimil A (Riggs and Patterson, 1939; Marshall and Patterson,
1981) or El Jarillal Member (Herbst et al., 2000; Reguero and
Candela, 2011) provided a rich fossil record. The mammalian
association has been assigned to the late Miocene, Huayquerian
SALMA (Reguero and Candela, 2011). A dating in the middle sec-
tion of the Chiquimil Formation indicated ∼6.68 Ma (Marshall
and Patterson, 1981).

Andalhuala
The Andalhuala Formation is exposed in the Santa María Valley
in north-west Argentina (Catamarca Province). This is a classical
fossiliferous unit of the South American Neogene with abundant
and diverse fossil remains, including plants, invertebrates, and
vertebrates (Riggs and Patterson, 1939; Marshall and Patterson,
1981). Basal levels of the Andalhuala Formation have been dated
to ∼7.14 Ma (Latorre et al., 1997) and ∼6.02 Ma (Marshall and
Patterson, 1981) while a tuff sample close to the upper part of
the sequence was dated to ∼3.53 Ma (Bossi et al., 1993). The
mammal association has been referred to the Montehermosan–
Chapadmalalan SALMAs (Reguero and Candela, 2011).

Monte Hermoso
The Monte Hermoso Formation is exposed in the Atlantic coast at
the south west of Buenos Aires Province, Argentina. This unit has
provided fishes, anurans, reptiles, birds, and a diverse mammal
association. Recent biostratigraphic and biochronological analy-
ses (Tomassini and Montalvo, 2013; Tomassini et al., 2013) have
recognized a single biozone (the Eumysops laeviplicatus Range
Zone) in the Montehermosan Formation which is the base for the
Montehermosan SALMA. The Montehermosan was restricted to
the early Pliocene between <5.28 and 4.5/5.0 Ma by considering
the dating of 5.28 Ma in levels with Huayquerian mammals and
paleomagnetic correlations in the upper Chapadmalal Formation
(Tomassini et al., 2013).

Inchasi
The locality of Inchasi is found in the eastern cordillera in the
department of Potosí, Bolivia at an elevation of about 3220 masl
and ∼19◦S latitude (Figure 2). The mammal assemblage includes
10 mammals, representing xenarthra, rodentia, and native ungu-
lates (Litopterna and Notoungulata) (Anaya and MacFadden,

1995). Paleomagnetic analysis indicates an age of about 4–
3.3 Ma. The analysis of the mammal association first suggested
Montehermosan and/or Chapadmalalan ages (MacFadden et al.,
1993). A later revision (Cione and Tonni, 1996) correlated Inchasi
with the Chapadmalalan, although probably older than the clas-
sical Chapalmalalan sections at the Atlantic coast.

Uquía
The Uquía Formation crops out in the Quebrada de Humahuaca,
Jujuy province, north western Argentina at an elevation of ∼2800
masl and ∼23◦S latitude (Figure 2). The Uquía Formation is
divided in three units: the Lower Unit was assigned to the late
Chapadmalalan, the Middle Unit to the Marplatan (Vorhuean,
Sanandresian), and the Upper Unit to the Ensenadan (Reguero
et al., 2007; Reguero and Candela, 2011). 40K–40Ar data from a
volcanic tuff (“Dacitic tuff”) in the Lower Unit provided ∼3.0
Ma. Another tuff (U1) dated as 2.5 Ma is the boundary between
the Middle and Upper Unit. The geological and paleontologi-
cal evidence suggested that during the late Pliocene the area was
a wide intermountain valley at about 1700–1400 masl (Reguero
et al., 2007).

RESULTS
MIDDLE AND LATE MIOCENE–PLIOCENE MAMMAL FAUNAS FROM SA
In the NMDS analysis (stress value = 0.083), the analyzed South
American localities are primarily grouped by age and secon-
darily by geographic position (Figure 4A). The NMDS1 clearly
separates middle Miocene, late Miocene and Pliocene local-
ities and for the middle and late Miocene assemblages, the
NMDS2 separates tropical from temperate localities. For the
middle Miocene (Colloncuran, Laventan), the cluster analysis
separates the tropical assemblages of La Venta (∼2.6◦N paleolat-
itude) and Fitzcarrald (∼12.5◦S paleolatitude) from the south-
ern Collón Curá (∼41.3◦S paleolatitude) and Quebrada Honda
(∼22.3◦S paleolatitude). For the late Miocene (Huayquerian–
Montehermosan), Urumaco (∼10.9◦N paleolatitude) appears
outside the groups formed by Acre (∼10.5◦S paleolatitude) and
Mesopotamian (∼32.5◦S paleolatitude), another cluster includes
the Argentinean assemblages of Andalhuala (∼26.8◦S paleolati-
tude), Chiquimil (∼27.0◦S paleolatitude), Cerro Azul (∼37.0◦S
paleolatitude), and Monte Hermoso (∼38.9◦S paleolatitude).
Finally, the early Pliocene (Chapadmalalan– Marplatan) temper-
ate associations from Inchasi (∼19.9◦S paleolatitude) and Uquía
(∼23.4◦S paleolatitude) cluster together, although there are no
tropical assemblages to compare with. If we compare only fau-
nal assemblages from the same time period (middle Miocene, late
Miocene and Pliocene), there is a positive relationship between
the Bray-Curtis dissimilarity and the distance of each pair of
assemblages studied (Figure 4B).

The Bray-Curtis dissimilarity values with resampling cal-
culated for the tropical, temperate and tropical vs. temperate
assemblages for the middle and late Miocene shows that all
the assemblages are very different (Figure 4C). The Bray-Curtis
dissimilarity between middle Miocene tropical (La Venta and
Fitzcarrald) and temperate (Quebrada Honda and Collón Curá)
assemblages compared to the dissimilarity between tropical vs.
temperate are found to be statistically significant. Dissimilarity
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FIGURE 4 | (A) NMDS plot of the faunal associations using
Bray-Curtis dissimilarity; triangles, middle Miocene; circles, late
Miocene; squares, Pliocene. The gray lines show the clustering
result. (B) Bray-Curtis dissimilarity relationship with distance in km,
between each locality pair. We include only localities pairs which
are within the same time interval (middle Miocene, late Miocene,
Pliocene), red, tropical–tropical pair; blue, temperate–temperate pair;
black, tropical–temperate pair. (C) Density histograms of the
Bray-Curtis dissimilarity values among the different faunal associations
analyzed for the middle and late Miocene, red, only tropical faunas,
blue, only temperate faunas, black, tropical vs. temperate faunas.

values of middle Miocene tropical (mean = 0.830) are lower than
middle Miocene tropical vs. temperate (mean = 0.956) (Mann-
Whitney U, p < 2.2 e-16); whereas middle Miocene temperate
dissimilarity (mean = 0.964) is higher than middle Miocene
tropical vs. temperate dissimilarity (Mann-Whitney U, p ≤ 2.87
e-15). For the late Miocene, dissimilarity of tropical assemblages
(Acre and Urumaco) is lower (mean = 0.873) than tropical
vs. temperate (mean = 0.969) (Mann-Whitney U, p < 2.2 e-
16). We also found difference between temperate assemblages
(Mesopotamian, Chiquimil, Andalhuala, Cerro Azul, and Monte
Hermoso; mean = 0.899) and tropical vs. temperate dissimilarity
(Mann Whitney U, p < 2.2e-16).

The number of PBDB collections was used to generate accu-
mulation curves for the tropical assemblage (Figure 5). Each
collection represents a geographic and stratigraphic point where
the fossils have been found and provide a good proxy for sampling
effort. We excluded from the analysis the Acre collection with
unknown stratigraphic provenance. The accumulation curves
show that generic richness for tropical assemblages is underesti-
mated, even for the better known assemblage of La Venta.

TEMPORAL AND SPATIAL DISTRIBUTION PATTERNS OF GABI
The cumulative first appearance datum (FAD) of non-native
taxa for both NA and SA continents (Figure 6A, Supplementary
Table 2) shows that first migrations are recorded in the tem-
perate region (cumulative FAD mean = 2 by 10 Ma), repre-
sented by the ground sloths Thinobadistes (Mylodontidae) and
Pliometanastes (Megalonychidae) recorded at McGehee Farm,
Florida (Hirschfeld and Webb, 1968; Webb, 1989). During the
late Miocene (12–5 Ma), the number of FAD is similar between
the tropics (cumulative FAD mean = 6 by 5 Ma) and temperate
(cumulative FAD mean = 7 by 5 Ma). In the tropics, the old-
est records of migrants are those from the Acre region in Peru
(Campbell et al., 2010; Prothero et al., 2014) of disputable age
(Alberdi et al., 2004; Lucas and Alvarado, 2010; Lucas, 2013).
During the Pliocene (between 3 and 4 Ma) there is an increase in
the number of FAD at higher latitudes (cumulative FAD mean =

FIGURE 5 | Accumulation curves estimated with random method for

the tropical faunal associations, shaded areas represent the 95%

confidence interval.
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FIGURE 6 | (A) Cumulative first appearance datum (FAD) of GABI
participants in North and South America for each million year since 12 Ma;
red, FADs record in the tropics; blue, FADs record in the temperate regions.
Solid circles represent the mean and dashed lines the standard deviation.
(B) Number of collections with records of land mammals in the
Paleobiology Database (PBDB) for each million year since 12 Ma; red,
collections in the tropics; blue= collections in the temperate region.

21), but this is not recorded in the tropics (cumulative FAD
mean = 9). Finally, during the Pleistocene (2–1 Ma) a higher
number of FADs are recorded in tropical and temperate regions.
Most of the collections in the PBDB with records of land mam-
mals in the Americas are in the temperate region and are younger
than 4 Ma (Figure 6B).

DISCUSSION
MIDDLE AND LATE MIOCENE–PLIOCENE MAMMAL FAUNAS FROM SA
The NMDS1 shows that a strong temporal component establishes
the dissimilarity relationships among the faunas. In addition, an
important influence of the geographic position is reflected in the
distribution of the faunas along the NMDS2 axis. There is a posi-
tive relationship between the Bray-Curtis dissimilarity values and
the distance between faunas (Figures 4 A,B).

For the middle Miocene, Colloncuran–Laventan faunal asso-
ciations, a differentiation between the tropical assemblages of La
Venta and Fitzcarrald, and the southern Quebrada Honda and
Collón Curá was observed (Figure 4A). The middle latitude fauna
Quebrada Honda appears unique, although it is closer to the
slightly older and temperate Collón Curá than to the contempo-
raneous tropical faunas of La Venta and Fitzcarrald (Croft, 2007;
Tejada-Lara et al., in press). The reconstructed paleoenvironment
for the middle Miocene Monkey Beds assemblage at La Venta con-
sidered an estimated annual rainfall between 1500 and 2000 mm

using diet, locomotion and body size indices of the mammal
community (Kay and Madden, 1997a,b).

For the late Miocene assemblages, the NMDS indicates a high
dissimilarity between the tropical faunas of Urumaco and Acre.
For the Urumaco mammal assemblage, xenarthrans and rodents
are the most conspicuous elements, but further studies on other
clades promise to document a higher diversity than currently rec-
ognized. The temperate assemblages of Chiquimil, Andalhuala,
Cerro Azul, and Monte Hermoso cluster together and the
Mesopotamian is between this group and Acre (Figure 4A).

After taking into account the differences in sample size,
we found that the dissimilarity values of tropical assemblages
(mean = 0.830 for middle Miocene, and mean = 0.879 for
late Miocene) and late Miocene temperate assemblages (mean =
0.899 for late Miocene) are lower than the values for tropical
vs. temperate assemblages (mean = 0.956 for middle Miocene
and mean = 0.969 for late Miocene) (Figure 4C). Consequently,
the Bray-Curtis dissimilarity between faunas of the same age and
biome is lower than between faunas of different biomes (tropical
vs. temperate); although, the mean dissimilarity values in all cases
are high (>0.8).

As shown by the accumulation curves (Figure 5), the generic
richness of the tropical assemblages studied are underestimated.
A more comprehensive knowledge of tropical faunas is needed to
better understand the paleodiversity patterns and paleobiogeog-
raphy in the new world.

TEMPORAL AND SPATIAL DISTRIBUTION PATTERNS OF GABI
The cumulative FAD across time of GABI participants in each
continent shows that the GABI was a gradual process that began
in the late Miocene (∼10 ma) (Figure 6A). The early phase of
GABI (pre GABI sensu Woodburne, 2010) is characterized by a
small number of migrants, with a mean cumulative FAD = 6
between 4 and 5 Ma in the tropics and a cumulative FAD = 7
in the temperate region. The land connection between the two
continents occurred at the Isthmus of Panama, located within the
tropical zone. Therefore, it would be expected that the Neotropics
record the earliest GABI immigrants, but older immigrants have
been found at higher latitudes.

The findings reported by Campbell and colleagues (Campbell
et al., 2010; Frailey and Campbell, 2012; Prothero et al., 2014) in
the Acre region of the Amazon basin, assigned to late Miocene
(∼9 Ma) sediments would represent the oldest NA immigrants.
However, the dromomerycine artiodactyl, peccaries, tapirs, and
gomphotheres have not been found in other late Miocene local-
ities in SA and these findings await further clarifications. In SA,
the most frequent pre-GABI elements are procyonids recorded
in several late Miocene–Pliocene (Huayquerian–Chapadmalalan)
SA localities since ∼7.3 Ma (Cione et al., 2007; Reguero and
Candela, 2011; Forasiepi et al., 2014). The evidence of the fos-
sil record combined with the living species distribution suggests
that much of the evolutionary history of procyonids occurred in
the Neotropics, possibly in SA (Eizirik, 2012). Molecular studies
have predicted that the diversification of the group occurred in
the early Miocene (∼20 Ma), with most of the major genus-level
lineages occurring in the Miocene (Koepfli et al., 2007; Eizirik
et al., 2010; Eizirik, 2012). This scenario requires a bias in the
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fossil record, claims an evolutionary history for procyonids in SA
that largely precedes the GABI, and suggests an arrival into SA
long before previously thought as for several other mammalian
clades (Almendra and Rogers, 2012; and references therein).

Since 4 Ma, the number of FAD at higher latitudes rapidly
increases and this trend continues during the Pleistocene. In con-
trast, the number of FAD in the tropics remains low during the
Pliocene (cumulative FAD mean = 9 by 2–3 Ma), but rapidly
increases during the Pleistocene. A large difference in the num-
ber of PBDB collections across time and latitude is observed for
land mammals for the last 12 Ma (Figure 6B). Most records come
from higher latitudes and are younger than 4 Ma, by the time
the FAD increases; this suggest that temporal and geographic
patterns of GABI are influenced by the sampling bias toward
high latitudes and the higher number of Pliocene–Pleistocene
records.

The migration of northern taxa into SA after the completion
of the land bridge by ∼3 Ma was correlated with supposed expan-
sion of savannas and grasslands in the Neotropics during glacial
periods (Webb, 1991, 2006; Leigh et al., 2014). The expansion of
savannas during glacial times has been questioned (Behling et al.,
2010). If this is the case, the Andes could have served as route
of migration of northern taxa toward temperate environments in
SA (Webb, 1991), as NA taxa seem to have been more success-
ful in temperate biomes whereas SA taxa dominate in the tropics
(Webb, 1991, 2006; Leigh et al., 2014).

CONCLUSIONS
The dissimilarity analysis primarily grouped the faunal assem-
blages by age and secondarily by geographic distribution. The
dissimilarity values among the fossil faunal assemblages ana-
lyzed support the differentiation between tropical and temperate
assemblages in SA during the middle Miocene (Colloncuran–
Laventan) and late Miocene (Huayquerian–Montehermosan).
The mid-latitude, middle Miocene assemblage of Quebrada
Honda has higher affinities with the slightly older and temper-
ate Collón Curá than with the tropical assemblages of La Venta
and Fitzcarrald. For the late Miocene, the temperate assemblages
of Chiquimil, Andalhuala, Cerro Azul, and Monte Hermoso clus-
ter together, while the Mesopotamian is between this group and
the tropical assemblages of Acre and Urumaco.

The cumulative FAD across time and latitude shows that fau-
nisitc movements related to GABI began during the late Miocene
(∼10 Ma) with the oldest records found at higher latitudes. The
number of FAD remained relatively low until 4–5 Ma when FAD
starts to increase, peaking during the Pleistocene.

The study of paleodiversity patterns and paleobiogeography in
the Americas is challenged by the sampling bias toward higher
latitudes and the still scarce data from tropical faunas. The inter-
pretation of the temporal and geographic patterns of GABI is
likely influenced by these sampling issues.
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