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Tumorigenesis is a multi-step process, involving the acquisition of multiple oncogenic
mutations that transform cells, resulting in systemic dysregulation that enables
proliferation, invasion, and other cancer hallmarks. The goal of precision medicine
is to identify therapeutically-actionable mutations from large-scale omic datasets.
However, the multiplicity of oncogenes required for transformation, known as
oncogenic collaboration, makes assigning effective treatments difficult. Motivated
by this observation, we propose a new type of oncogenic collaboration where
mutations in genes that interact with an oncogene may contribute to the oncogene’s
deleterious potential, a new genomic feature that we term “surrogate oncogenes.”
Surrogate oncogenes are representatives of these mutated subnetworks that interact
with oncogenes. By mapping mutations to a protein–protein interaction network,
we determine the significance of the observed distribution using permutation-based
methods. For a panel of 38 breast cancer cell lines, we identified a significant number
of surrogate oncogenes in known oncogenes such as BRCA1 and ESR1, lending
credence to this approach. In addition, using Random Forest Classifiers, we show
that these significant surrogate oncogenes predict drug sensitivity for 74 drugs in the
breast cancer cell lines with a mean error rate of 30.9%. Additionally, we show that
surrogate oncogenes are predictive of survival in patients. The surrogate oncogene
framework incorporates unique or rare mutations from a single sample, and therefore
has the potential to integrate patient-unique mutations into drug sensitivity predictions,
suggesting a new direction in precision medicine and drug development. Additionally,
we show the prevalence of significant surrogate oncogenes in multiple cancers from The
Cancer Genome Atlas, suggesting that surrogate oncogenes may be a useful genomic
feature for guiding pancancer analyses and assigning therapies across many tissue
types.

Keywords: network, oncogenic collaboration, breast neoplasms, drug sensitivity, survival

INTRODUCTION

In oncogenic collaboration, multiple cellular systems are dysregulated as key hallmarks in
tumorigenesis, reflected in multiple mutations targeting multiple cellular systems (Hanahan
and Weinberg, 2000, 2011). Given this oncogenic collaboration, a key problem is prioritizing
targeted therapies in individuals, which is compounded by the lack of highly prevalent oncogenes
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in patient populations. Even well known driver oncogenes
such as BRCA1 and BRCA2 have a relatively low prevalence
(∼12%) in breast cancer populations (Cancer Genome Atlas
Network, 2012). These rare or infrequent mutations comprise
the majority of mutations in cancer populations, and are known
as the ‘long-tail’ of mutations (Looking Across Many Cancer
Genomes, 2013). Unfortunately, most statistical methods, such as
MutSigCV and MuSiC (Dees et al., 2012; Lawrence et al., 2013),
are frequency-based and do not incorporate these rare mutations,
often assigning them as “passenger,” or non-driver mutations due
to rarity in the patient population.

We postulate that the long-tail mutations themselves have
network effects by influencing interactions with neighbors
in the protein network. By surveying a set of oncogenes and
their immediate neighbors on a protein–protein interaction
(PPI) network, we show that within a sample, neighboring
mutations cluster around known oncogenes. We summarize
these mutational clusters/subnetworks as a single ‘surrogate
oncogene’ and suggest that they may cooperate toward
dysregulation of the oncogene (Figure 1). Additionally,
using surrogates, we account for oncogenic collaboration
and show that surrogate oncogenes predict drug sensitivity
in cell lines with accuracy equal to features that predict
subtype.

BACKGROUND

Network Approaches to Integrating
Mutation and Copy Number Alteration
(CNA) Data
A number of network-based approaches for assessing the
functional impact of mutations have been used to analyze
cancer genomic data (for a summary see Gulati et al., 2013).
These network-based approaches essentially search for oncogenic
collaboration by highlighting important interactions within the
network of interest. Most approaches utilize a PPI network
such as the Human Protein Reference Database (HPRD), or
STRING, although there are several that use transcriptional
networks. By annotating mutations on these networks, the
network-based methods aim to ascribe certain properties to these
mutations, such as connectivity or path distance to key signaling
proteins. We have examined four network-based approaches
for integrating these data: MEMo (Ciriello et al., 2011, 2013),
HotNets (Vandin et al., 2012), DriverNet (Bashashati et al.,
2012), and network based stratification (NBS; Hofree et al., 2013)
(Table 1). The algorithms vary with respect to five aspects: (1)
search strategy, (2) networks used, (3) statistical framework,
(4) whether subtypes can be defined by the algorithm, and (5)
whether the output can be individualized on a per-sample level.

FIGURE 1 | Example of a Surrogate oncogene, PRKCA, observed within the AU565 cell line. The diamond node is the surrogate oncogene itself, and the
circles are immediate neighbors in the PPI network that show genomic alterations (light blue = mutation, pink = copy number gain, green = copy number loss). The
number of mutated neighbors (13) was shown to be significant (p-value = 0.0223) compared to the count of 10000 permutations of a randomly mutated network.
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TABLE 1 | Comparison of network-based methods for integrating mutation and copy number alteration (CNA) data.

Method MeMO
(Ciriello et al., 2011,
2013)

DriverNet (Bashashati
et al., 2012)

HotNets (Vandin et al., 2012) NBS (Hofree et al., 2013) Surrogate oncogene

Search strategy Mutual exclusivity Expression driven Diffusion-based Diffusion-based Oncogene focused

Networks used PPI PPI Pathway-based Multiple PPI

Statistical testing Clique analysis Bipartite graph based
statistics

Permutation None (clustering based) Permutation

Defined subtypes None None None Network clustering Survival tree

Individualized No No No No Yes

In contrast to these other approaches, we suggest a within-
individual (that is, within a single sample) based approach to
genomic alterations. We examine a set of known oncogenes in
order to investigate the possible role of neighboring mutations
in their regulation as possible oncogenic collaborators. We term
the nodes in the subset that have a significantly higher than
randomly expected number of mutated neighbors as surrogate
oncogenes. Surrogate oncogenes are thus representatives of
these mutated subnetworks. Because these nodes have high
connectivity, we define a statistical background model for
deciding whether the number of neighboring mutations that an
oncogene has is significantly greater than expected by chance
(Figure 2B). We suggest surrogate oncogenes as a new model
of oncogenic collaboration that can indicate an oncogenic
role for unique mutations previously classified as passenger
mutations. Additionally, we show that surrogate oncogenes
are associated with drug sensitivity, subtype, and survival,
which indicates their potential for use in precision medicine
applications.

METHODS

Mutation and Copy Number Data
The breast cancer cell lines used in this study are described in
Neve et al. (2006). Copy number and mutation data for the breast
cancer cell lines were obtained from the DREAM 7 breast cancer
drug sensitivity challenge and the Integrative Cancer Biology
Program (ICBP) Data Portal (https://nciphub.org/resources/622)
(Heiser et al., 2012; Daemen et al., 2013; Costello et al., 2014).
Copy number data were derived from segmented Affymetrix
SNP 6.0 arrays processed using the GISTIC 1.0 copy number
algorithm. Only genes that were in high confidence peaks of
amplifications and deletions were included. Mutations in cell
lines were called through comparison with the NCBI 37 reference,
and filtered by occurrence in dbSNP. Allele counts went through
a mutation calling pipeline and were filtered for high base quality
(≥10), high neighborhood base quality (≥10), and high mapping
quality (≥20) of associated reads. The likelihoods of all possible
genotypes at a site were calculated, and use as the input for

FIGURE 2 | Surrogate oncogene workflow (A) and statistical framework (B).
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a Bayesian model that incorporated the prior probability for
the reference call, and incorporated the heterozygous rate of
the human genome. All heterozygous or homozygous mutants
alleles were then filtered by the following metrics: genotype
quality (≥100), total depth (≥8), and mutant allele strand bias
(p-value < 0.005). Additionally, all mutations were filtered
by whether the SNP occurred in dbSNP, a database of SNP
variants. For the TCGA patients, copy number (as GISTIC files)
and somatic mutation (as MAF files) data were obtained from
the PanGEA PanCancer portal1 in the form of GISTIC files
and Mutation Annotation Format (MAF) files, with additional
GISTIC information derived from the Broad Institute website.

Workflow for Surrogate Analysis
The workflow for surrogate oncogene analysis is shown in
Figure 2A. GISTIC (Mermel et al., 2011) files are used to
select genes that are amplified or deleted in each sample.
Mutations for each sample are derived from the MAF files
(Mutation Annotation Format (MAF) Specification, 2014). These
genomic alterations are then superimposed onto a protein–
protein interaction network (HPRD release 9). For a set of
oncogenes of interest, termed the surrogate oncogene set (see
below), we apply the surrogate analysis on a per-sample basis.
Finally, statistically significant surrogate oncogenes are used as
input features to a Random Forest (RF) classifier to predict
whether a cell line is relatively sensitive or insensitive to a
particular drug. We compare our classifier results to those of
the classifier based on the genes used to determine the PAM50
molecular subtype, another molecular feature set used to predict
drug sensitivity in breast cancer (Parker et al., 2009).

Selection of Surrogate Oncogene Set
The selection of the surrogate gene set is tumor-specific and
based on a network expansion approach using an initial seed
set. Within breast cancer, this initial seed gene set was derived
by selecting two sets of genes from the TCGA Breast Tumor
paper: the most frequently mutated genes in all samples, and the
most frequently mutated genes within the molecular subtypes
(Cancer Genome Atlas Network, 2012). This initial seed set
of 54 genes was expanded by including immediate neighbors
from HPRD filtered by their connectivity to the seed set. Those
neighbors with at least two connections to genes in the seed set
were included, a threshold that was decided through examining
the frequency distributions of number connections to the seed
set (Supplementary Figure S1). The total number of genes in
the surrogate set is 180. For the additional cancers in TCGA,
we obtained similar lists of genes from other similar analyses
in the scientific literature and expanded them using the same
network strategy (BLCA: n= 88, GBM= 40). We noticed similar
distributions of first connected neighbors to each seed set.

Drug Sensitivity Data
Drug sensitivity data was from Heiser et al. (2012) in the form
of Growth Inhibition at 50 percent (GI50) data, a measure of
the concentration of the drug required to inhibit growth by

1http://cbio.mskcc.org/cancergenomics/pancan_tcga/

50 percent. For each drug, GI50 data was discretized using
equiprobable binning into equal-sized bins of high and low
sensitivity. This strategy was chosen to address a known bias in
the RF algorithm to choose the larger group in an unbalanced
design (Breiman, 2001).

Statistical Framework for Surrogate
Oncogenes
A permutation-based framework was used to determine
significance of a surrogate oncogene (Figure 2B). Within
a sample and for each gene in the surrogate set, we asked
whether the number of neighboring mutations is higher than
a background null distribution. The background distribution
for each surrogate oncogene was derived by randomly mutating
the entire PPI network with the same number of mutations
as observed in the sample. A p-value was calculated from the
proportion of permuted samples that have the observed number
of neighboring mutations or higher.

Prediction of Drug Sensitivity using
Surrogate Oncogenes
Statistically significant surrogate oncogenes were then used as
input features to a RF classifier, in addition to mutations within
the surrogate oncogene set for each of the 74 drugs tested. We
refined the classifiers by running the RF algorithm, calculating
Mean Gini Importance (a purity-based metric) to rank the
features, and then re-running the RF classifier with the top
10% of ranked genes. Using this procedure increased the overall
accuracy of the classifier. Cross-validation error was calculated as
the out-of-bag (OOB) error for the RF classifier. We performed
classification based on the PAM50 gene set to assess performance
of our drug sensitivity predictions. We then compared across the
PAM50 expression features and the surrogate/mutated features.

Association of Surrogate Oncogenes
with Clinical Features
We also tested the association of surrogate oncogenes with
two clinically relevant features: molecular subtype and survival.
PAM50 molecular subtype calls were obtained for both the
breast cancer cell lines and TCGA Breast Cancer patients from
Synapse2. Statistically significant surrogate oncogenes were used
in a Fisher’s test of association with molecular subtype for both
the cell lines and patients. Additionally, surrogate oncogenes
were considered as binary features (0 = absent, 1 = present,
alpha = 0.05) and survival trees were generated using the rpart
(4.1-10) package in R (R version 3.1). The initial survival tree was
pruned to four nodes total using a complexity criterion and the
subsequent groupings were plotted as a Kaplan–Meier survival
curve.

Surrogate Oncogene Explorer
We created a web application to visualize surrogate oncogenes
in the form of an interactive heatmap3. Alpha, the level of

2https://www.synapse.org
3https://tladeras.shinyapps.io/surrogateShiny/
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FIGURE 3 | Surrogate oncogenes within Breast Cancer Cell Lines. The heatmap above shows significant (p < 0.05) surrogate oncogenes (rows) for each cell
line (columns) as light blue boxes. Additionally, if a genetic alteration was observed in that oncogene, the box is colored pink, or if it has both a significant surrogate
and is also altered, it is colored purple. Cell lines and surrogate oncogenes are ordered by clustering on both rows and columns of the surrogate features.
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FIGURE 4 | Surrogate oncogenes in TCGA Cancer Patients. Heatmap is ordered and annotated identically to Figure 3.

significance, can be chosen in order to assess the effect on overall
significance. Surrogate features and cell lines can be ordered by
different qualities (e.g., number of mutations observed in a cell
line, total number of connections in a surrogate) in order to
assess their effect on the analysis. Individual surrogate oncogenes
within a cell line can be visualized and downloaded. Mutations
in the surrogate oncogenes themselves can be overlaid on the
significant genes in the heatmap in order to provide additional
information.

Code Availability
The current R code requires GISTIC files and MAF files as
input. The code is open-source and currently available at https://
github.com/laderast/. A full description of the surrogateMutation
package using the TCGA breast cancer patient data is included
there.

RESULTS

Surrogate Oncogenes are Highly
Prevalent in Breast Cancer Cell Lines
We observed an average of 17 surrogate oncogenes per sample
across the breast cancer cell lines (Figure 3), with a range
from 2 in MCF10F to 50 in BT20. Within a cell line, the

number of surrogates observed is not correlated with the total
number of genetic alterations in the cell line (data not shown).
Similarly, across the surrogate oncogene set, the prevalence
of the oncogene from a surrogate oncogene set across the
cell lines is not always associated with the total degree, or
connectedness of the oncogene (Supplementary Figures S2 and
S3). For example, BRCA1 (significant in 21/44 cell lines) has
moderately high connectivity (101 neighbors) compared to the
mean connectivity of all surrogate oncogenes (47 neighbors).
However, BRCA1’s connectivity is not as high as TP53 (237
neighbors) and YWHAG (240 neighbors). RB1, a highly
connected (123 neighbors) tumor suppressor gene essential for
cell cycle progression is also significant in a large number of the
cell lines.

Surrogate Oncogenes Occur in Patient
Populations
We initially analyzed the TCGA breast cancer cohort (n = 487)
in order to assess whether surrogate oncogenes were a
generalizable phenomenon that also occur in patient samples.
Surrogate oncogenes are highly prevalent within the breast tumor
population, with a mean number of 21.2 significant surrogate
oncogenes per tumor (n = 487) (Figure 4). As compared to
the breast cancer cell lines, the number of mutated/altered
neighbors is lower in patient samples. Additionally, copy number
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FIGURE 5 | Error rates for random forest classifiers for surrogate features and PAM50 features.

alterations comprised a larger percentage of neighbors in the
patient population than in cell lines (87% and 30%, respectively).
Additionally, we conducted a similar analysis for bladder cancer
(BLCA, mean surrogates 3.52, n = 97), and glioblastoma
(GBM, mean surrogates 3.12, n = 265) and showed that for
each of these cancers, surrogate oncogenes are statistically
significant across a wide variety of patients (Supplementary
Tables S1–S3).

Surrogate Oncogenes Incorporate Low
Frequency or ‘Long-tail’ Mutations
By summing the frequency of neighboring mutations for a single
surrogate across all patients, our analysis can incorporate rare
mutations in the patient population. For BRCA1 in the cell lines
(Figure 7), some neighbors are frequently mutated across all
samples (TP53, SMAD2, and RB1), whereas others are rarely
mutated (STAT1, STAT3, ABL1). Note that these infrequent
mutations are highly connected to other neighbors of BRCA1,
suggesting that they may have a strong influence on the BRCA1
subnetwork.

Surrogate Oncogenes are Associated
with Molecular Subtype in Breast Cancer
Cell Lines and Patients
Table 2 shows the results of a Fisher’s exact test of
association between individual oncogenes from significant

TABLE 2 | Surrogate oncogenes associated with molecular subtype in
breast cancer cell lines (p-value < 0.05).

Surrogate oncogene Basal Claudin-low Luminal

BRCA1 1.000 0.232 0.040

ESR2 0.302 1.000 0.036

ETS2 0.022 1.000 0.053

MAP2K4 0.086 1.000 0.035

PML 0.740 0.220 0.013

TEP1 0.012 0.314 0.150

YWHAG 1.000 0.023 0.356

p-values for Fisher’s exact test are reported for each subtype, significant values are
in bold.
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FIGURE 6 | Survival Tree analysis for surrogate oncogenes in TCGA breast cancer patient data (A and B, n = 456) and TCGA bladder cancer (C and D,
n = 84) patients of the various nodes (groupings) defined by the survival trees (A and C) are color coded in the corresponding survival plot. The red
group, which does not have a MAPK14 or a HSPCB surrogate, has noticeably longer survival (Log-rank p-value = 9.79 x 10-8) than those with these two (blue and
yellow) surrogate oncogenes for breast cancer patients. For bladder patients, ELF3+ patients show noticeably lower survival than ELF3- patients (p-value 0.0281,
n = 26), with ELF3+/YWHAZ+ patients having overall lower survival than ELF3+/YWHAZ- patients.

surrogate oncogene sets and PAM50 Molecular Subtypes
for 41 of the cell lines. Of the three subtypes available
in the cell line dataset (basal, claudin-low, and luminal),
a number of surrogates are associated with a subtype.
For example, there is significant association between
BRCA1, ESR2, MAP2K4, and PML surrogate oncogenes
and luminal subtype. Surrogates are also associated with
PAM50 subtype calls in the TCGA Breast Cancer patients
(n = 487, Supplementary Table S4). Because of the
larger number of samples, a larger number of surrogates
show an association with each subtype. Caution must be
made in the analysis of surrogate oncogenes using gene
set analysis methods, as the surrogate set is preselected
from known oncogenes and is biased. Overrepresentation
analysis, such as gene enrichment analysis (GSEA), assumes
an unbiased set of genes and thus is not an appropriate
framework for analyzing the surrogate set (Subramanian et al.,
2005).

Surrogate Oncogenes are Predictive of
Drug Sensitivity in Breast Cancer Cell
Lines
We report overall mean OOB error rate over all 72 drugs
in our study to assess the performance of drug sensitivity
predictors based on surrogate oncogenes. OOB error is the
Random Forest equivalent of cross validation error, a measure of
generalizability of features used in the classifier. Using surrogate
oncogenes as features alone in our RF classifier, we achieve a
mean OOB error of 32.1% in predicting whether a cell line
is sensitive or insensitive to a drug. In contrast, predictors
based on gene mutations yield predictors with a mean OOB
error of 43.5%. Overall, the mean OOB error for the combined
surrogate/mutated features was nearly identical to the PAM50
expression features (30.9% versus 29.1%, respectively) across all
72 drugs (Supplementary Table S5; Figure 5). These results
suggest that the generalizability of both the PAM50 expression
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and the surrogate features are roughly equivalent. We also
generated a predictor based on linear combinations of PAM50
and surrogate gene RF models, but no combinations yielded
improved performance.

Surrogate oncogenes as features consistently predict cell line
sensitivity better than the PAM50 features for a number of
drugs. In particular, they consistently predict drug sensitivity
better for the platinum-based drugs (Cisplatin, Oxaliplatin, and
Carboplatin). This may be due to the fact that these drugs affect
a large number of targets, suggesting that network-based features
may be more predictive than single oncogenic features.

Surrogates are Associated with Patient
Survival
We performed a survival tree analysis to find prognostic
features associated with overall survival in the TCGA breast
cancer and bladder cancer cohorts. This is highlighted to
show the utility of approach for potential clinical applications.
For the breast cancer data, there were significant differences
in survival based on the surrogate oncogenes (Log-rank
p-value = 9.79 × 10−8; Kaplan–Meier survival curve
Figures 6A,B). Having both MAPK14 and HSPBC (HSP90)
surrogate oncogenes tends to be associated with shorter

survival compared to having only MAPK14 mutations.
Interestingly, we noted that the MAPK14+/HSPBC– group
(green), appears to have overall longer survival than the
MAPK14–/HSPBC– group. Within bladder cancer patients,
ELF3+ surrogate status is significantly predictive of lower
survival (p-value 0.0281, n = 26, Figures 6C,D). We note
that limited survival annotation impacts the sample size
and so these results will need to be validated in future
studies with larger cohorts and more complete follow-up
data.

DISCUSSION AND CONCLUSION

Surrogate oncogenes are a newmodel of oncogenic collaboration,
where mutations in proteins that directly interact with oncogenes
may affect the function or regulation of oncogenes. This
model incorporates rare or unique mutations in an individual
sample. By aggregating these neighboring mutations into
genomic features we term surrogate oncogenes, we established
a network-based background model to filter on statistical
significance. We show that surrogate features are predictive
of drug sensitivity in breast cancer cell lines. Finally, we

FIGURE 7 | Across cell line comparison of BRCA1 in cell lines shows unique and rare mutations are incorporated in the analysis. The center diamond
node is BRCA1, the surrogate oncogene of interest. Neighbor nodes are all mutated, and coloring reflects the frequency of occurrence (dark blue = high frequency,
white = rare or unique) of that mutated neighbor across all samples. Note that many of the infrequent mutations and alterations (such as STAT1, STAT3, ABL1, and
AR are highly interconnected with other mutations in this network, suggesting these infrequent mutations may be highly influential to BRCA1.
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show that these surrogate features are prevalent in a number
of cancer types in TCGA, including breast, bladder, and
GBM.

Many cancers lack highly prevalent driver mutations
that can be targeted therapeutically. In this paper, we have
shown that surrogate oncogenes incorporate rare or unique
mutations not present in larger populations. Such mutations are
often disregarded as “passenger” or unimportant mutations
that do not carry information. By incorporating their
contribution to a surrogate oncogene, we potentially gain
more predictive power associated with drug sensitivity and
outcome. For example, for individual patients, the inclusion
of rare or unique mutations into the surrogate calculation
may make a surrogate oncogene significant, implicating it
as a possible feature to be associated with drug sensitivity or
survival.

We have shown that surrogate oncogenes are useful predictors
of drug sensitivity, on par with PAM50 subtype, which is
in line with previous studies (Heiser et al., 2012). This is a
surprising result, given that surrogate features are categorical
and that the expression features used in the PAM50 classifier
are continuous expression values. There are at least two reasons
why combining the PAM50 and surrogate mutation predictions
does not increase our prediction accuracy. First, there is a high
correlation between copy number status and expression data,
so the two predictors contain redundant information. Second,
we may be reaching the upper limits of the prediction in terms
of the drug sensitivity problem for the cell lines, so there
is little benefit to combining PAM50 and surrogate oncogene
information.

However, subtypes derived from NBS, a related technique,
also are highly predictive of survival, suggesting that aggregating
mutations by their network influence provides information not
present in mutations in the oncogenes themselves (Hofree et al.,
2013).

The prediction of drug sensitivity, in general, is complicated
by the GI50 distributions. Many of the drugs are not evenly
distributed across the sensitivity spectrum. For example, 22 of
the 30 cell lines have very low GI50 values for methotrexate,
making the high and low bins uneven for this compunds.
Eleven of the drugs show a left-sided, or negative skewness,
and 13 of the drugs show right-sided or positive skewness.
Such uneven bins bias the RF predictor towards the larger
bin, thereby potentially throwing off the accuracy of the
predictor. Based on this factor, we decided to bin the drug
response data into even groups of sensitive and resistant
samples.

Although there are many cases of alterations and mutations
in a target that give rise to drug sensitivity, such as
HER2 amplification for HER2 inhibitors such as lapatinib
(Bedard and Piccart-Gebhart, 2008; Chakrabarty et al., 2010;
Chapman et al., 2011; da Cunha Santos et al., 2011; Baselga
et al., 2012; Zecchin et al., 2013), there are many cases of
targeted drug sensitivity that do not map to mutations and
alterations in the drug target (Garnett et al., 2012). Using
frequency-based methods to find such one-to-one gene/drug
associations is complicated by the long tail of mutations

and alterations (Garnett et al., 2012). To some extent,
these cases may be driven by unique and rare mutations
in interacting proteins that confer sensitivity to the target.
Surrogate oncogene analysis allows for the incorporation of
such rare and unique mutations into the interpretation of drug
sensitivity.

A cell line with a surrogate oncogene in a druggable
target does not necessarily show sensitivity toward
that target. To some degree this is expected, as single
surrogate oncogenes do not represent the entire network
of proteins that may affect drug sensitivity. Instead, it is
clear that a combination of surrogates is predictive of drug
sensitivity and may be more representative of the influential
network.

Using survival analysis, we show that surrogate features
are predictive of survival in the TCGA breast and bladder
patients, which indicates the potential clinical utility of
surrogate oncogene gene sets for patients. Additionally, we
have shown that surrogates are associated with molecular
subtype in both the cell line and patient data. This suggests
that the aggregation of genomic features into surrogate
oncogenes captures additional biology behind these molecular
subtypes, and should be further investigated in future
studies.

One complication of our analysis is that surrogates
themselves represent nested and dependent entities. As
expected of oncogenes, which tend to be highly connected
in the protein-protein interaction network, a large number
of mutations for one surrogate oncogene may participate
in another surrogate oncogene. The appropriate adjustment
for multiple comparisons under these type of nested
dependencies is unclear and requires future methodological
evaluation. A current method for adjustment under
nested dependencies-that of Benjamini–Yekutieli–is not
appropriate, as the dependencies are different for each
surrogate oncogene (Benjamini and Yekutieli, 2001).
Because of the possibility of false positives, experimental
validation of survival and drug sensitivity using drug
screening assays is needed to validate findings from this
approach.

Despite this complication, our findings indicate that surrogate
oncogenes can act as a model of continuous haploinsufficiency.
Berger et al. (2011) suggest that the two-hit model of
recessive tumor suppressor genes (TSGs) should be considered
a continuum, influenced by the expression level of the TSGs.
Our surrogate model suggests one such mechanism for the
regulation of expression levels in TSGs, in that mutations in
interacting proteins may affect the regulation and function of
proteins.

In summary, by aggregating mutation and copy number data
onto PPI networks, we have shown the prevalence of a new type
of genomic feature, the surrogate oncogene. Surrogate oncogenes
incorporate oncogenic collaboration of rare and infrequently
altered genes by summarizing their influence at the oncogene
level. Surrogate oncogenes are associated with molecular subtype
and are predictive of survival in patients and drug sensitivity in
cell lines.
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“p-value” is the pvalue called by the method, and “isMutated” indicates whether
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TABLE S2 | Surrogate oncogenes for TCGA Breast Cancer (BRCA)
Patients. Column titles are identical to Supplementary Table S1.

TABLE S3 | Surrogate oncogenes for TCGA Glioblastoma (GBM) Patients.
Column titles are identical to Supplementary Table S1.

TABLE S4 | Fisher’s Test of Association of surrogate oncogene status with
PAM50 subtype for TCGA BRCA patients. Test was conducted identically to
Table 2 in main text.

TABLE S5 | Error Rates in prediction of drug sensitivity status using
random forests using Surrogate Features versus PAM50 expression. The
better set of features is called for each drug, and the gene target information, if
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