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The genomic composition of the microbiome and its relationship with the environment
is an exciting open question in biology. Metagenomics is a useful tool in the discovery
of previously unknown taxa, but its use to understand the functional and ecological
capacities of the microbiome is limited until taxonomy and function are understood in
the context of the community. We suggest that this can be achieved using a combined
functional phylogenomics and co-culture-based experimental strategy that can increase
our capacity to measure sub-community interactions. Functional phylogenomics can
identify and partition the genome such that hidden gene functions and gene clusters with
unique evolutionary signals are revealed. We can test these phylogenomic predictions
using an experimental model based on sub-community populations that represent a
subset of the diversity directly obtained from environmental samples. These populations
increase the detection of mechanisms that drive functional forces in the assembly of the
microbiome, in particular the role of metabolites from key taxa in community interactions.
Our combined approach leverages the potential of metagenomics to address biological
questions from ecological systems.

Keywords: microbiome, metagenomics, functional phylogenomics, co-culture, bacterial interactions, specialized
metabolites

INTRODUCTION

Biological understanding of the microbiome, defined as the set of microorganisms and their
genomes in a particular environment (Boon et al., 2014), is one of the most exciting frontiers
in science. High-throughput sequencing of single markers (16S rRNA gene) and shotgun
metagenomics are now commonly used to describe themicrobiome, revealing the presence of novel
taxa (Wu et al., 2011; Lok, 2015); and increasing our understanding of the intimate interactions
between symbiotic microbiomes and their hosts, in what has been termed the holobiont (Wilson
et al., 2014). In the holobiont, the microbiome functions as an extended pheno/genotype of the host
(Bordenstein and Theis, 2015), their rapid generation times enhancing the host’s ability to adapt
quickly, and likely providing adaptive metabolites or the enzymatic machinery to produce them
(Rosenberg et al., 2010). Indeed, the microbiome and its host likely act as a single evolutionary
unit, of which we know very little of.
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A major challenge to understand the host–microbiome
interaction and the holobiont with its environment, is to
define the intersection between taxonomic and functional
diversity of the microbiome. That is, who are the members of
the microbial community, who is merely co-existing, who is
interacting and how; and how this could impact the evolution
of the holobiont. To date, most metagenomic approaches
on their own, lack sequencing depth to identify taxonomic
groups, assemble and annotate functional pathways, but most
importantly, recover ecologically key taxa and their associated
metabolites that could identify bacterial interactions within the
community.

We are mainly interested in increasing our ability to
provide evolutionary and functionally relevant information

of the microbiome community. We suggest a combined
use of phylogenomic predictions and sub-community co-
cultures in which biodiversity and their interactions are better
understood. In particular, we are concerned with how to simplify
the search for genetic information of functional importance
from metagenomes, and how to simplify the composition of
the microbiome enough that functional annotation can be
interpreted in the context of bacteria-bacteria and bacteria-
host interactions. One product of this combined approach is
to generate functional information (e.g., gene clusters) that is
presumed to have ecological and evolutionary relevance, and
can therefore be used to validate biological hypotheses, by
characterizing them back in an environmental sample or by
downstream experimentation (Figure 1).

FIGURE 1 | A combined phylogenomics and experimental approach to enhance measurement of bacterial interactions within the microbiome.
Starting with an environmental sample, it would be possible to describe its taxonomic diversity, and use this information as well as published information (e.g. related
taxa), to carry out phylogenomic analyses such as Hidden Support, EvoMining or RADICAL (see text for details). The main outcome (bold arrow) of the Functional
Phylogenomics step is to identify genes with unique evolutionary and functional signatures that can be used to design ad hoc media co-cultures, in the form of
information related to specialized metabolites, nutritional requirements or growth conditions. Different sub-community co-cultures can then be designed, and these
could be measured at different time points, from days to years (t1, t2, t3. . .). Contrasting DNA extraction techniques from co-cultures would help reveal various types
of taxonomic groups, measured with metagenomic strategies. Likewise, strain isolation could be carried out to sequence individual genomes in-depth. The main
outcome of the sub-community cultures is information (genomes, genes) that can be annotated in-depth in the context of a simplified but natural community. This
information can be used to re-design the ad hoc media into new sub-communities that target specific groups, used as part of biosprospecting strategies, or as novel
markers that can be used to validate the presence of the community members in the original environmental sample.
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We propose two complementary strategies to achieve the goal
of identifying and using functional and evolutionary meaningful
information to understand the microbiome community. First,
the use of phylogenomic tools to identify gene clusters or gene
families with a distinct evolutionary pattern that can be used
to infer taxonomic patterns and functional roles in the bacterial
community. The main advantage of this computational approach
is that these candidate genes constitute a reduced universe of
evolutionary hypothesis based on function, which can be tested
experimentally and/or with down-stream bioinformatics, rather
than experimenting more broadly in the entire genome or
metagenomic dataset. It differs from current efforts to determine
phylogenetic diversity focused on 16S rRNA gene ormarkers with
phylogenetic signal, such as metagenomic operational taxonomic
units (mOTUs) (Sunagawa et al., 2013); or profiling methods
based on many markers (Nguyen et al., 2014). It complements
methods based in characterizing metacommunity of genes with
some functional relevance (Boon et al., 2014), and methods that
attempt to identify functional genes in the context of partitioning
bacterial genomes into pan/shell genomes (Shi and Falkowski,
2008; van Tonder et al., 2014) or using information theory to
quantify the degree of conflict or incongruence calculated from
different types of data (Salichos et al., 2014), although we argue
that a finer partition beyond a core and pangenome is required to
be able to identify functional genes, perhaps more similar to GO-
based phylogenetic classifications (Chai et al., 2014). It would also
be possible to use metatranscriptomic profiling to help narrow
down gene candidates of adaptive value based on their differential
expression (Franzosa et al., 2014).

Second, we suggest that it is possible to sample sub-
communities of the original environmental sample using
co-culture strategies, under the assumption that functional
interactions mediated by genes and their products will be easier
to detect in more simple, pre-conceived functionally driven
culture conditions. A distinctive advantage of the co-cultures over
traditional microcosms whose reproducibility has been recently
questioned (see e.g., Langenheder et al., 2006; Pagaling et al.,
2014), is that interactions within a complex system may be
better resolved by dissecting it onto sub-communities based on
functional concepts. Functionally important genes identified with
phylogenomic strategies can be used to guide the design of the
co-cultures themselves, in the form of metabolites that can drive
community interactions, nutrients required or even biological
growth conditions (Figure 1). Co-cultures in themselves enable
testing of directed hypotheses, and can generate data that can
be used as a source of novel ad hoc markers, which can be
validated in the original biological sample and used to re-design
new co-cultures that enhance our ability to understand bacteria
interactions (Figure 1).

The implications of knowing key functional players and their
interactions in the microbiome enlightens evolutionary biology,
but can also help solve two major issues in bioprospecting
of secondary or specialized metabolites (Charlop-Powers et al.,
2015; Ling et al., 2015), commonly known as secondary
metabolites or natural products. That is, the discovery of genes
encoding for novel enzymes; and ‘turning on’ biosynthetic genes
directing the synthesis of specialized metabolites in ways that can

be adopted by synthetic biology approaches (Luo et al., 2015;
Figure 1), facilitating the transition from pattern descriptions
into deciphering mechanisms at different levels (Waldor et al.,
2015).

PHYLOGENOMICS TO DETECT AND
CLASSIFY GENES OF FUNCTIONAL
IMPORTANCE IN THE MICROBIOME

We describe three strategies aimed at identifying genes that have
evolutionary and ecological relevance, and identifying hidden
functional diversity within metagenomes in the context of a
phylogeny, based on (a) revealing hidden support of genes within
a concatenated alignment, as the alignment matrix resulting
from the concatenation of all gene/protein partitions that are
orthologous among the targeted genomes; (b) measuring the
emergence of specialized metabolism in a topology to discover
hidden chemical diversity; and (c) identifying clades and gene
categories with incongruent evolutionary signals that suggest
horizontal gene transfer (HGT), genome streamlining, or unique
evolutionary trajectories (e.g., Shi and Falkowski, 2008). In
combination, these phylogenomic methods can reveal ‘functional
units’ that can be identified and classified, also helping to resolve
species delimitations and their phylogeny, although this is not our
main goal.

(a) Hidden Support
Work by one of the co-authors (Cibrián-Jaramillo et al., 2010;
Lee et al., 2011) previously developed a phylogenomic approach
to identify genes of functional importance in plants. We suggest
that this approach can be transferred to bacterial metagenomes
and genomes to identify genes that have different functional
roles, and biological processes putatively involved in species
diversification. In this method, the authors provide a way to study
the behavior of genes used to reconstruct a phylogeny through
analysis of their effect on tree topology and branch support
(Cibrián-Jaramillo et al., 2010). This approach is fundamentally
different than classical phylogenetic analysis because the search
for both orthologs and candidate genes is conducted with
a phylogeny. If one assumes that the tree obtained from
concatenated analysis using these orthologs best represents the
evolutionary history of the taxa involved, then phylogenetic
incongruence between a partitioned functional class of genes
and the organismal phylogeny would suggest that the partition
(gene) has experienced a unique evolutionary history relative to
the organisms. These genes are essentially a set of hypotheses
of functions and evolutionary mechanisms that can be validated
experimentally.

(b) EvoMining
Cruz-Morales et al.1 developed a functional phylogenomics
platform to identify expanded, repurposed enzyme families,
which have been recruited from central metabolism into the
context of specialized metabolism. EvoMining uses single-gene

1http://www.biorxiv.org/content/early/2015/06/08/020503.abstract
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topologies to reveal characteristic phylogenetic signatures of
rapid evolution that can be further analyzed in detail with the
construction of hidden Markov models (HMM) profiles. These
mechanisms leave a phylogenetic signature that can be measured
in a topology by means of both clade formation and sequence
divergence. Functional annotation of the phylogenetic tree,
on the basis of genome-mining approaches (e.g., antiSMASH;
Medema et al., 2011), provides validation and insights for
visual inspection of the data. As this approach does not rely on
sequence similarity searches of previously identified enzymes,
but rather on recapitulation of an enzyme evolutionary process,
it is less sensitive to missing data, which is relevant for low quality
draft genomes (e.g., metagenomes). Subsequently, functional
specificities of identified enzymes can be explored (Noda-García
et al., 2015). An example of how EvoMining can lead to hidden
signals in the context of metagenomics is provided in Figure 2.
We show an EvoMining hit in the enolase enzyme family found in
the highly fragmented genome of Streptomyces sviceus (1 scaffold

of 9 Mbp with 552 gaps and 8X coverage, GI: 297196766). Its
contig containing a recruited enolase (GI: 297146550) typically
involved in glycolysis, had 6 gaps including missing sequence
at its 5′ end. After closing gaps (PCR), the complete sequences
for several phosphonate-related enzymes, namely, alcohol
dehydrogenase (phpC), phosphonopyruvate decarboxylase
(ppd), nicotinamide mononucleotide adenyl transferase (phpF),
carboxy-phosphonoenolpyruvate synthase (phpH, EvoMining
hit), and aldehyde dehydrogenase (phpJ), could be annotated.
Further sequence analysis suggested that indeed this locus
encodes for a putative phosphinate biosynthetic gene cluster
related to the phosphonic tripeptide phosphinothricin. This was
recently confirmed by in-depth comparative genomics analyses
(Blodgett et al., 2015; Figure 2).

(c) RADICAL
The main goal of RADICAL is to reveal aspects of phylogenetic
behavior otherwise not evident in individual gene trees or ‘total

FIGURE 2 | EvoMining example. (A) Phylogenetic reconstruction of enolases extracted from an Actinobacteria genome database. After manual annotation,
homologs believed to be involved in glycolysis were labeled in red. The clade predicted to include enolase homologs involved in natural product biosynthesis,
including that from S. sviceus (EvoMining hit), is shown in blue. (B) Structural organization of the natural product biosynthetic gene cluster identified using
EvoMining on the genome of S. sviceus (top). After manual closure of this locus after sequencing of PCR products (black boxes) the emerging cluster was
annotated and compared with the organization of the biosynthetic gene cluster known to direct the synthesis of phosphinotricin in S. viridochromogenes
(bottom) (Blodgett et al., 2015).
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evidence’ trees (Narechania et al., 2012). RADICAL sequentially
concatenates randomly chosen gene partitions starting with
a single-gene partition and ending with the entire genomic
data set, with a tree built for every successive addition; until
a library of trees is generated representing a large variety of
differently sized random gene partitions. RADICAL analyses in
cyanobacteria using gene subgroups confirmed that there are
elevated levels of incongruence for genes involved in metabolism,
but also showed that the distinction of ‘core’ and ‘pan/shell’
genome is not clear-cut. Furthermore, metabolism genes were
the only functional class of genes supporting the monophyly
of Prochlorococcus, suggesting that if indeed metabolism genes
are affected by HGT more than other types of genes, there is
virtually no support for a cohesive grouping of species within
this clade (Narechania et al., 2012). Support for monophyletic
groups can be used to identify which genes are congruent
with species delimitations based on 16S rRNA genes or highly
conserved markers, including mOTUs (Sunagawa et al., 2013)
to distinguish phylogenetic history from functions due to
community interactions.

Hidden Support and RADICAL are based on concatenation
and topological congruence (Rokas et al., 2003; Gatesy, 2005).
In essence, metagenomic data would be partitioned into
evolutionary units independent of a core and pan-genome
category, to reveal any genes that have different phylogenetic
histories, but also those that affect the topology as a result of
biased, missing data, or errors in annotation. The partition of
metagenomes into evolutionary units is not a trivial task but it
would be possible to deconvolute genes and identify orthologs
from metagenomic data using binning methods that recover
discrete units from metagenomic sequences (Mackelprang et al.,
2011; Sharon et al., 2013; Alneberg et al., 2014); or by calculating
gene abundances across various samples and correlating it with
taxonomic distribution, such that we have taxon-specific profiles
(Carr et al., 2013). A phylogeny-driven Bayesian test for the
presence of an organism in a sample could also be done (Darling
et al., 2014); or a combined strategy of ortholog clustering (e.g.,
OrthoMCL) followed by a phylogeny to identify and single out
orthologs from paralogs (Chiu et al., 2006). Genes resulting
from any of these methods of metagenomic extraction can be
used to construct the trees required for Hidden Support and
RADICAL.

In sum for this section, phylogenomic data would enable
a top–bottom strategy in which we could predict metabolites
from metagenomic sequences that are community interactors or
mediators. We would be able to validate the role of keystone taxa
through annotated gene clusters in bacterial metacommunities,
in particular those that are essential for adaptive bacterial
phenotypes or function as community interactors such as
persister variants in antimicrobial resistance (Amato et al.,
2014) or siderophore biosynthesis (D’Onofrio et al., 2010). It
would be possible to develop markers (e.g., oligos based on
the sequence of the identified functionally important genes)
that can be amplified in an environmental sample or in
an experimental culture as described below, to test their
presence, distribution, and biological role in the microbiome
(Figure 1).

IDENTIFYING AND TESTING THE ROLE
OF FUNCTIONAL INTERACTORS FROM
METAGENOMES

The main question in this section is how do we define
the interactions within a community in the context of the
microbiome? We adopt the definition of community as
‘multispecies assemblages, in which organisms live together
in a contiguous environment and interact with each other’
(Konopka, 2009). Early views of the community in ecology
imply a tight interaction among its members (Clements, 1916)
perhaps akin to the modern idea of the metacommunity
in which there is dynamic movement of genes through
microbial lineages (Boon et al., 2014), but more importantly,
metabolic dependencies between community members (Hug
et al., 2012). Thus, a community can be hypothesized as
metabolic interactions that can be tested in the context of the
microbiome’s environment and/or its relationship with a host
(i.e., holobiont).

The main technical issue, however, is to distinguish
coexistence from a spectrum of interactions among the members
of a set within a niche, viewed as ‘a subset of those environmental
conditions which affect a particular organism, where the average
absolute fitness of individuals in a population is greater than
or equal to one’ (Kearney, 2006). Our main premise is that
microbiome interactions can be described by experimentally
testing and manipulating their role in the community assembly
processes as it is done in eukaryote ecology (Fayle et al., 2015).
In the bacterial microbiome, metabolites and the genes that
underlie their presence and variation could be used as a proxy
for interactions, including the identification of ecologically key
organisms (Mills et al., 1993).

To achieve this we propose the use of functionally driven
sub-community co-cultures, which are preceded by synthetic
co-cultures typically involving arrays of isolates in the format
of two strains at the time. In the best-case scenario, the
latter may come from the same sample but not necessarily
known to interact. Yet, co-cultures are increasingly used to
understand general mechanisms by which bacteria may interact
among themselves and with eukaryotic cells by means of
metabolic exchange (Traxler and Kolter, 2015). The chemotypes
sustaining such interactions can be assessed by high-resolution
analytical approaches, such as imagining mass spectrometry
directly from Petri dishes (Hoefler et al., 2012) and nuclear
magnetic resonance (Wu et al., 2015). Even shallow sequencing
coverage of these sub-populations would be enough to reach
resolution of species diversity and the possibility to measure
novel specialized metabolites directly in the context of the sub-
community. In contrast with metagenomes obtained directly
from environmental sampling, we do not aim to have thorough
ecological representation. Ad hoc co-culture conditions are
simply a proxy for the mechanistic niche in which we
increase metagenomic resolution of a simplified metabolic
niche.

Co-cultures of sub-communities starting from inoculum
directly obtained from environmental samples, can be designed
in various ways. For example, using substrates that enhance
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diversity which are initially enriched for a particular bacterial
genus or species suspected or shown to be prevalent in
environmental samples. Additionally, sub-communities can be
recovered from media that are as similar as possible to the
original hosts or sites (Ling et al., 2015) or based on genome-scale
metabolic network reconstructions from phylogenomic data,
leading to nutritional requirements of key taxa (Barona-Gómez
et al., 2012; Figure 1).

Thus, co-cultures which may be followed through various
time series (days or years) would enable growth of typically
rare species (Pagaling et al., 2014); genomic lineages with
functional traits that are not easily recovered; or species that
sustain metabolic exchanges with other bacterial symbionts.
This could unmask genomic-lineages undergoing evolutionary
processes, for example those driven by differential gene gain-
and-loss. By genome sequencing of those strains, which may
be recovered from the co-cultures, the resolution of the
microbiome using metagenomics would be increased. In contrast
with synthetic populations (Hoefler et al., 2012), these sub-
communities represent an experimental platform to reduce
ecological complexity including at least some of the original
members of the biological sample. They represent a complement
to microcosms in that reproducibility and predictability, and
thus biological resolution, is expected to increase in the co-
cultures. Eventually we would have enough resolution to
detect inactivated genes and pathway degeneration, as well
as appearance of novel pathways, in certain niches that
result from local adaptation (Hittinger et al., 2004), and as
sequencing depth increases, metabolic networks in the context
of the community could be reconstructed (Klitgord and Segrè,
2011).

Metagenomic data from sub-community populations also
provides the possibility of interpreting species distributions
with community ecology methods (reviewed in Gerhold et al.,
2015). As proposed to date, these methods are oversimplified
and are biased due to inaccurate taxonomic annotations of
intrinsically low-resolution data (Gerhold et al., 2015). In
sub-community co-cultures, increased accuracy of functional
annotation would enable testing of trait distribution to infer
the role of competition or facilitative interactions for example,
increasing our understanding of the ecological processes in the
microbiome.

Finally, metagenomic sequencing of co-cultures should be
coupled with sampling strategies that enable explicit hypothesis
of local adaptation and increase the likelihood of identifying
genes and their metabolites with specialized functions in the
community. For instance, sampling with biological replicates
along environmental gradients, contrasting habitats, or within
specialized organs or structures (gut, nodules, specialized roots,
etc) would be examples of targets that could increase ecological
resolution in interpretation of the microbiome interactions.

CONCLUSION

To increase our understanding of the microbiome’s evolutionary
processes, and in particular of the interactions of the microbial
community and its environment and hosts, phylogenomics can
be used to identify functionally important genes, and co-cultures
can be used to approximate sub-community interactions. In
combination, our understanding of the microbiome community
taxa composition and their interactions will be greatly enhanced.
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