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In many analyses of high-throughput data in systems biology, there is a need to quantify

the activity of a set of genes in individual samples. A typical example is the case

where it is necessary to estimate the activity of a transcription factor (which is often not

directly measurable) from the expression of its target genes. We present here ROMA

(Representation and quantification Of Module Activities) Java software, designed for

fast and robust computation of the activity of gene sets (or modules) with coordinated

expression. ROMA activity quantification is based on the simplest uni-factor linear

model of gene regulation that approximates the expression data of a gene set by its

first principal component. The proposed algorithm implements novel functionalities: it

provides several method modifications for principal components computation, including

weighted, robust and centered methods; it distinguishes overdispersed modules (based

on the variance explained by the first principal component) and coordinated modules

(based on the significance of the spectral gap); finally, it computes statistical significance

of the estimated module overdispersion or coordination. ROMA can be applied in

many contexts, from estimating differential activities of transcriptional factors to finding

overdispersed pathways in single-cell transcriptomics data. We describe here the

principles of ROMA providing several practical examples of its use. ROMA source code

is available at https://github.com/sysbio-curie/Roma.

Keywords: module activity, gene set, overdispersed pathway, coordinated pathway, gene expression, proteomics,

transcription factors

1. INTRODUCTION

The current availability of high-throughput genomics techniques such as transcriptomics makes
it possible to accurately measure molecular profiles of a biological system at multiple levels
(Hawkins et al., 2010). Given the large amounts of quantitative data produced by these system-
wide experiments, the interpretation of results in terms of cellular processes and pathways becomes
a crucial issue. Dedicated integrative analyses are needed to synthesize and transform data into
valuable biological insight (Hawkins et al., 2010).

Many biological and clinical applications require the comparison of samples from different
conditions. The objective of the analysis often requires highlighting signaling pathways and
transcriptional programs that distinguish between the compared conditions. A widely used
approach in cancer genomics consists in comparing measurements at the single gene or protein
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level to identify potential indicators of a particular disease
state (biomarkers) or driver genes causally linked to the tumor
initiation and progression (Barillot et al., 2012). In recent years,
it has become clear that in cancer and other systemic diseases the
same pathways can be affected by defects in different individual
genes and that molecular profiles of tumor samples are more
similar at the pathway level than at the gene level (Wang et al.,
2010). Application of pathway-based approaches in the analysis
of genomic data can help capturing biological information that
is otherwise undetectable by focusing on individual genes. The
idea of pathway quantification is widely exploited to extract
biological information from high-throughput data (Levine et al.,
2006; Ramos-Rodriguez et al., 2012; Borisov et al., 2014).

Here we propose an algorithm, released as a software,
Representation Of Module Activity (ROMA), that was designed
to address the issue of quantifying the activity of gene sets
(further referred to as modules) characterized by coordinated
gene expression. These modules can correspond to genes sharing
the same functional annotations or regulatory motifs, genes
belonging to the same pathway or genes forming a group of
frequently coexpressed genes. The idea behind ROMA consists
in quantifying module activity by computing the largest amount
of one-dimensional variance across samples explained by the
genes in the module (property of the first principal component
or PC1). This is interpreted as a result of the action of a hidden
factor on the expression of target module genes and variability
in the activity of this factor in the studied collection of samples.
This setting corresponds to the simplest linear model of gene
expression regulation (for example, see Schreiber and Baumann,
2007; Figure 1).

ROMA implements several novel functionalities compared
to existing related approaches. It allows determining genes
within a group of genes contributing the most to the PC1
definition; it provides several alternative methods for PC1
computation, including weighted, robust and centered versions
of principal component analysis; it estimates the statistical
significance of the amount of variance explained by PC1 in
two different ways; it distinguishes overdispersed and coordinated
modules.

Here overdispersion of a gene set signifies that the amount of
variance explained by PC1 computed for a dataset restricted to
the genes from the set is significantly larger than for a random
gene set of the same size. Coordinated gene set means that
the spectral gap between the first and the second eigenvalues
of the co-variance matrix computed for the restricted dataset
is significantly larger than for a random gene set of the same
size. Overdispersion signifies higher variability of a gene set
even without increased correlations between genes. Coordination
signifies relatively high degree of expression level correlation
between genes in a gene set. Overdispersed set might be not
coordinated: this is interpreted as simultaneous strong influence
of several factors on the expression of the genes in the set.
Coordinated set might be not overdispersed: this corresponds to
a relatively weak but detectable activity of one single transcription
or other factor on gene set expression. The most interesting and
interpretable case is the case of simultaneous overdispersion and
coordination of a gene set.

Naive quantification of the module activity frequently consists
in computing the average or the median expression of the genes
in the module in a given sample or, in opposite, relies on a single
gene marker of module activity. ROMA is particularly suitable
to model cases in which the different genes do not contribute
similarly to the activity of the module, like the case in which some
genes may be more important than others to define the activity
of the module, or the case in which some genes are expected to
negatively correlate with the activity of the module (e.g., p21, an
inhibitor of the cyclin-dependent kinase complexes, may belong
to a module of genes involved in the G1/S transition).

Several pathway quantification methods have been already
proposed to recapitulate the activity of a module by computing
the first metagene in the singular value decomposition (SVD)
of the expression matrix restricted to the genes of the
module (Tomfohr et al., 2005). In Bild et al. (2006) similar
strategy was exploited in order to define the activity of
several cancer-related pathways [MYC, RASA1 (RAS), SRC,
Wnt/β-catenin and loss of RB function] on a large collection
of human cancer transcriptomes. In Fan et al. (2016) the
authors suggested the notion of “overdispersed pathway" in
single-cell transcriptomic analysis framework such that the
measure of activity in a set of genes is quantified by the
statistical significance of the overdispersion explained by the
first (weighted) principal component (PC1), computed for a set
of single-cell transcriptomic profiles. Other methods have been
developed for estimating module activity scores in individual
samples such as single-sample extension of GSEA (ssGSEA)
(Barbie et al., 2009) or OncoFinder (Borisov et al., 2014).

We illustrate the use of ROMA with four examples. In the
first example, we quantify activities of several transcription
factors (TFs) in metastatic and non-metastatic human colon
tumor samples. In the second example, ROMA explores the
transcriptional activity of modules in a comprehensive map of
molecular interactions involving RB/E2F pathway in bladder
cancer. The third application exploits ROMA to quantify
transcriptional activity of targets for the oncogenic chimeric
transcription factor EWS–FLI1 responsible of Ewing sarcoma
initiation. Finally, we show an application of ROMA in the
context of single-cell transcriptomic temporal profiling of
myoblast differentiation (Trapnell et al., 2014).

2. MATERIALS AND METHODS

2.1. First Principal Component as the
Simplest Uni-Factor Linear Model of Gene
Expression Regulation
Let us consider the simplest model of gene regulation in which
it is assumed that the expression of a gene g in sample s
is proportional to the activity of one factor F (which can be
a transcription or any other endogenous or exogenous factor
affecting gene expression) in sample s with positive or negative
(response) coefficient (Figure 1A):

Expression(gene g, sample s) ≈ αF
g Activity

F
s + Bs, (a)
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FIGURE 1 | (A) The simplest linear model of gene regulation: expression of a gene is proportional to the activity of a transcription factor TF. (B) Illustration of two

possible configurations of target genes in the global gene expression space. Here, the points of different color signify the genes participating in different modules. Red

points are symmetrically overdispersed in both directions from the global data distribution center, while the green points are displaced with respect to the global data

distribution center. Computing the principal component passing through the center of the global (represented by dashed area) data distribution allows quantifying both

types of pattern in a similar and comparable way. Moreover, the position of the center of the global data distribution defines the reference point with respect to which

the sign of the projection of a gene onto the principal component can be defined.

where αF
g is the coefficient of response of a gene g to the

factor F, ActivityFs is the activity of the factor F in sample s,
and Bs represents any sample-specific bias in measuring gene
expression, affecting expression of all genes in sample s (Bs is
analogous of the regression intercept in this linear model). In all
further computations, we will assume that

∑

s Expression (g, s) =
0 for all genes. Without this normalization, there is a possibility
that the computed PC1 will only explain the variations in the
basal gene expression (which is frequently the case). By applying
double-centering of the gene expressionmatrix, containing genes
in a gene set Gi, i.e., making both

∑

s Expression (g, s) = 0 and
∑

g∈Gi
Expression (g, s) = 0, one can achieve also Bs = 0. We

do not suppose this normalization in the rest of this manuscript,
because different gene sets can have different shift with respect to
the center of the global distribution, hence, Bs = 0 can not be
achieved for all gene sets at the same time.

Typically neither ActivityFs (activities of the factor in
individual samples) nor αF

g (the strength with which the factor
F affects individual genes) are directly measurable. However, the
simplest model fitting problem

∑

s

∑

g

(

Expression(gene g, sample s)−αF
g Activity

F
s −Bs

)2
→min,

(b)
with constraints

∑

g

(αg)
2 = 1,

∑

g

αg = 0 (c)

is solved by finding the PC1 of the expression dataset
Expression (g, s), g ∈ Gi, s ∈ S restricted to the genes from a
selected gene set Gi over all sample set S. If the data set does not
contain missing values, then Bs = 1

|Gi|

∑

g Expression (g, s). To

find both ActivityFs and αF
g , one can apply the standard iterative

SVD (Singular Value Decomposition) algorithm (e.g., see Gorban
and Zinovyev, 2009), by starting with a random vector ActivityFs

and computing αF
g =

∑

s (Expression (g,s)−Bs)Activity
F
s

∑

s (Activity
F
s )

2 . Then, the

computed αF
g are normalized to satisfy (c), and the new vector of

factor activities is computed: ActivityFs =
∑

g αF
g Expression (g, s).

The iterations are repeated until convergence. The constraints (c)
are needed to guarantee convergence of this simple algorithm
avoiding possible stretching or systematic drift of the αF

g

values.
Throughout the article, we will refer to a gene set Gi as

“module” (accompanied by proper gene weights and signs if
possible, as described below), where the biological interpretation
of a “module" can be any functionally related list of genes, such as
a set of direct targets of a transcription factor or other regulatory
molecule, genes participating in the same signaling pathway as it
is described in pathway databases, set of genomically co-localized
genes, a set of genes containing the samemotif for a transcription
binding site, a set of co-expressed genes as a response to a
particular perturbation, etc.

2.2. Principal Component Computation
with Weights or Fixed Center
Computation of the PC1 can take into account the a priori
estimated relative importance of a gene g in the module Gi.
In order to achieve this, ROMA takes as an input the module
descriptions which consist of a list of genes with a signed

weightw
(Gi)
g specified when possible (positive for “activators” and

negative for “inhibitors” and undefined sign if the role of the gene
is not known). The weights can be assigned only for some of the
module genes with others being assigned the default 1.0 weight
and undefined sign.

The computation of the principal components in ROMA is
performed by the standard weighted SVD iterative algorithm as
described in Gorban and Zinovyev (2009), where the weights

for SVD are taken as the absolute values of the weights |w
(Gi)
g |

of the genes in the module. Introducing weights corresponds to
generalizing the model fitting problem (d) to

∑

s

∑

g

|w(Gi)
g |

(

Expression (gene g, sample s)

− αF
g ActivityFs − Bs

)2
→ min . (d)

Frontiers in Genetics | www.frontiersin.org 3 February 2016 | Volume 7 | Article 18

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Martignetti et al. Quantification of Module Activity by ROMA

Furthermore, in many cases, the activity of a module does
not correspond to overdispersion of the module in the global
gene expression space but to a shift of the genes in a
particular direction (see Figure 1B). It is possible to quantify
simultaneously this configuration of points and the overdispersed
pattern using a simple modification of principal component
computation such that the principal component would always
pass through the center of the global distribution of points. This
corresponds to the following modification of the initial linear
model of gene regulation:

∑

s

∑

g

|w(Gi)
g |

(

Expression (g, s)− αF
g Activity

F
s −C

fixed
s

)2
→ min,

(e)

where C
fixed
s is the global central point of the data distribution.

In this case, we do not assume (c) and it might be that all αgs
will possess the same sign (e.g., all targets being activated by a
transcription factor).

We call this way of computing principal components as “PCA
with fixed center.” It is used by default in ROMA, though
standard PCA (d) can be also used.

2.3. Orienting Principal Components
In the standard principal component analysis, all components are
computed with undefined orientation sign: there is an inherent
mirror symmetry in the optimization problem (d) because
the optimized function is symmetric with respect to αg →

−αg,Activity
F
s → −ActivityFs transformation. In ROMA we use

the a priori information about the signs of genes in the moduleGi

to prefer one of two possible orientations of the PC1. We choose
the orientation of PC1 for which

∑

g∈W(Gi)

w(Gi)
g α(Gi)

g > 0, (f)

where W(Gi) is the set of genes in Gi for which both sign and
weight are defined in the module description.

2.4. Computing Robust First Principal
Component
The computation of the PC1 can be affected even by a single
outlier in the data set. In order to increase robustness of the PC1
computation, we apply here the “leave-one-out" cross-validation
approach (Hastie et al., 2001). We compute the distribution of
Li1 values where Li1 is the variance explained by the PC1 with
the point i removed. The distribution Li1 is converted into a set
of z-values, and all points with the absolute z-value bigger than
zmax are removed from the dataset, where zmax is specified as a
parameter (3.0 by default).

2.5. Estimating Statistical Significance of
the Variance Explained for a Module
The PC1 can be computed for any random set of genes, and it will
assign the hidden factor activity in the samples for any randomly
chosen gene set. In order to avoid overfitting, we perform an
empirical statistical test estimating the probability of a module

to be overdispersed (i.e., to explain in the PC1 more variance
than expected for a random set of genes) or coordinated (i.e.,
to explain in the PC1 more variance compared to the second
principal component than expected for a random set of genes).
Let us denote by L1 the amount of variance explained by the
PC1 and by L2 the amount of variance explained by the second
principal component. It is important to notice that the randomly
expected values of both L1 and L2 strongly depend on the size of
the module for which it is computed. Therefore, we compute the
empirical null distributions for values L1 and

L1
L2

for K randomly
chosen modules of the same size as the tested gene set.

In practice, there is frequently a need to test many module
definitions. Estimating the null distribution for each tested
gene set might lead to very expensive computations in terms
of time. In ROMA, we do not compute the overdispersion
significance scores for all possible module sizes, but instead we
approximate them on predefined grid of size values. In order
to rapidly estimate the significance of both overdispersion score
(L1) and the coordinatedness score ( L1L2 ), we construct the null
distributions for a selected representative list of module sizes.
The representative module sizes are chosen to be uniformly
distributed in the log scale between the minimal size of the
module in the collection and the maximal module size. For
computing the empirical p-value, the null distribution which is
the closest one in terms of size in the log scale is chosen.

2.6. Data Preprocessing for ROMA
The input format for gene or protein expression for ROMA is a
tab-delimited text file with columns corresponding to biological
samples and rows corresponding to genes or proteins. The first
line is assumed to contain the sample identifiers while the first
column is assumed to contain the non-redundant names of genes
or proteins. In addition, ROMA can use description of samples
also in tab-delimited text file format, in which the first row is
assumed to contain the names of the features with which the
samples are annotated and the first column will contain the
names of the samples, in the same format as they are defined in
the first row of the expression data table.

Optionally the input expression data can be centered or
double-centered. If the data table contains missing values, they
can be imputed using the approximation of the data matrix with
missing values by a complete lower-rank matrix. For this, the
user has to specify the rank krank of the approximative complete
matrix. After this, krank principal components are calculated
using the PCA algorithm able to work with missing data values
(Gorban and Zinovyev, 2009). This PCA decomposition is used
to construct the lower rank complete approximative matrix, from
which the missing values in the initial data are imputed. For
further computations, the completed initial data matrix of full
rank is used.

2.7. ROMA Implementation and Workflow
Description
ROMA is implemented as a Java library which can be launched
in command line. For computation of weighted PCA, and PCA
with fixed center, ROMA exploits vdaoengine library. ROMA
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source code with instructions to build and run the application
are available at http://github.com/sysbio-curie/Roma.

The analysis workflow is schematized in Figure 2. The
algorithm requires as an input a genome-wide expression data
matrix and a gmt file with predefined modules. The analysis
comprises a multistep procedure for (i) extracting expression
submatrices corresponding to each module, (ii) quantifying
robust PC1 based module activities and (iii) assessing the
statistical significance of the L1 and L1

L2
values. ROMA provides

as outputs different text files and tables including: a module score
table with the overdispersion scores (L1) and the coordinatedness
scores ( L1L2 ) with corresponding p-values for each module, a
matrix file with rows containing the activity scores of each
module across samples, a table for each module reporting the
projections of genes in the PC1-PC2 space computed for a given
module.

3. RESULTS

As previously mentioned, typical scenarios for applying ROMA
is to measure the activity of a transcription factor. It can also
be applied in other cases, such as finding the activity of a kinase
from phosphoproteomic data, or finding an abstract aggregated
“activity" of a set of functionally related genes (such as genes
belonging to the same pathway), assuming that overdispersed or
coordinated behavior of the genes in the pathway is an indicator
of its active state. We describe the application of ROMA to
multiple case studies. In three of them, the biological information
about the activity of the modules under study was a priori
available and confirmed by ROMA results. The last case study
shows an exploratory analysis by ROMA applied to single-cell
RNA-seq data.

3.1. Notch, Wnt, and p53 Pathways Activity
in Human Colon Cancer
As a first case study, we applied ROMA to quantify the activity
of Notch, Wnt and p53 pathways in invasive and non-invasive
human colon tumors. In a previous study on a mouse model, p53
loss of function and Notch gain of function have been predicted
to have synergistic effect in the induction of the epithelial to
mesenchymal (EMT)-like phenotype (Chanrion et al., 2014).
To investigate in human data the involvement of Wnt, p53,
and Notch pathways in EMT induction, we used a publicly
available gene expression dataset of human colon cancer samples
from The Cancer Genome Atlas (TCGA) project (Muzny et al.,
2012) and compared the activity scores of Notch, Wnt and p53
pathways in metastatic and non-metastatic samples. Genome-
scale expression profiles of 121 tumor samples were used in our
analysis.

Differential expression analysis of single genes involved in
Wnt and Notch signaling pathways did not show significant
changes between metastatic and non-metastatic tumors (see File
S1). Thus, we investigated the involvement of these pathways by
computing with ROMA the activity scores of their downstream
target sets. Levels of pathway activity across tumor samples
revealed that Notch and Wnt pathways were significantly
activated, whereas the p53 pathway was downregulated in
the metastatic compared to non-metastatic tumors (Figure 3).
Molecular Signature Database (Subramanian et al., 2005) was
used to select the sets of target genes for Notch andWnt pathways
(see File S3). Among several available modules, we chose the ones
having the best differential activity score between metastatic and
non-metastatic samples for computing Notch and Wnt pathway
activities. For p53 pathway activity, we used a set of known p53
primary targets (Kannan et al., 2001).

FIGURE 2 | Schematized workflow of the ROMA algorithm.
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FIGURE 3 | The activity scores computed for the Notch, p53 and Wnt pathways in human transcriptome data from TCGA colon cancer samples. The

data points represent primary tumor samples grouped as non-metastatic (blue) and metastatic (red) according to the observation of distant metastases. P-values are

calculated using the two-sample Kolmogorov-Smirnov test between the two groups.

3.2. Dysregulated Signaling Pathways in
Bladder Cancer
We performed the ROMA analysis on a transcriptome dataset
of bladder tumors with clinical information about the stage
of the tumors (Lindgren et al., 2010). Two groups of samples
were selected for comparison, invasive and superficial. Normal
samples are also provided (details can be found in File S1).
The modules of genes chosen for this analysis are those
that are known to be frequently dysregulated in this cancer
and that include, among others, cell cycle and apoptotic
pathways (see File S2). Inside each module, the genes that are
known to be representative of the activity of the module are
specified as positive contributors of the module, e.g., E2F1,
E2F2, and E2F3 are assigned a positive sign in the module
E2F, whereas RB1 is assigned a negative weight. The modules
that appear in the analysis are the ones for which at least
8 genes are found in the dataset. We plotted the module
activity scores for which the L1 p-value was lower than 0.05
onto an influence network (Figure 4) for the three cases:
normal samples, superficial tumors, and invasive tumors. The
influence network was drawn using CellDesigner software with
connections extracted by manual literature mining. We also
plotted the module NF-KB signaling that has a p-value of 0.12,

knowing that the activity of this module cannot be as trusted as
the others.

We find that in normal samples and superficial tumor
samples, the activity for the modules of the E2F1, E2F2 and
E2F3 target genes is lower than in invasive tumors, as opposed
to the target genes of the inhibitory transcription factors E2F4
and E2F6. This is in accordance with what is expected. Indeed, in
the invasive group, tumors show a higher proliferation rate. Also,
TGFb activity is lower in the invasive group than in the superficial
one. Interestingly, the activity of the death signaling pathway
(DDR signaling) is high in normal samples, lower in superficial
tumors and start to be higher again in invasive tumors. RTK
signaling activity, representing growth factors, is low in normal
samples but is found high in both tumor groups. Indeed, genetic
alterations in the EGFR, FGFR3, and RAS pathways are typical of
tumor initiation and progression in bladder.

3.3. Estimating Activity of EWS/FLI-1
Chimeric Transcription Factor in Ewing
Sarcoma
We tested ROMA algorithm on transcriptome time-course
measurements performed on Ewing sarcoma inducible cell
lines after EWS-FLI1 silencing and re-expression (Tirode
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FIGURE 4 | Representation of the module activity of bladder dataset (Lindgren) onto a signaling network that is drawn from literature known facts and

that illustrates the module activity for (A) normal samples, (B) superficial tumors, and (C) invasive tumors.

et al., 2007; Stoll et al., 2013). EWS-FLI1 is a chimeric
transcription factor specific to Ewing sarcoma disease and
responsible for a tumorigenic phenotype. Different studies have

reported opposing transcriptional activity of EWS-FLI1 whether
it binds to transcriptional co-activators (Fuchs et al., 2003)
or transcriptional co-repressors (Sankar et al., 2013). Since
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EWS-FLI1 functions as both an activator and an inhibitor, the
simple average expression of its target genes does not reflect
its active/inactive state (see boxplot in File S1). Instead, weights
obtained when applying ROMA to the expressionmatrix of target
genes provide an appropriate measure of EWS-FLI1 activity (see
File S4).

We studied the effect of EWS-FLI1 on a predefined
signature of dysregulated genes (Hancock and Lessnick, 2008) by
computing the activity score of this set of targets over time. First,
ROMA analysis was performed for the whole set of genes. In this
case, the sign of the weights for some target genes was specified
according to a priori biological knowledge about the regulation of
up and down targets. Secondly, the same analysis was performed
by splitting the initial signature in two separated modules for
the predicted up and down-regulated targets. Among the three
tested modules, the whole signature target set showed the most
significant overdispersion pattern across time points, with L1 =

0.52 (p-value = 0.001). ROMA analysis using down-regulated
targets gave a better overdispersion signal compared to up-
regulated targets (see detailed results in File S1). We expected
the activity scores of the EWS-FLI1 set of targets to show
modulation of the expression of targets of EWS-FLI1 over time.
Results confirmed that the activity scores of both up and down-
regulated target sets properly reflected the dynamics of EWS-
FLI1 expression during the inhibitory (t = 0 − 10 days) and
rescue (t = 10 − 27 days) time series experiments (Figure 5A).
Instead, the average expression of the same set of targets did not
show modulation across the time points.

We tested whether the expression of othermodules than EWS-
FLI1 targets showed a significantly overdispersed pattern upon
EWS-FLI1 inhibition and reactivation. This could reveal relevant
biological functions affected by EWS-FLI1 expression. ROMA
analysis was performed on the EWS-FLI1 transcriptome time-
series using a large collection of predefined signaling pathways

from Molecular Signature Database (MSigDB Liberzon et al.,
2011). In this example, we used a subset of MSigDB limited
to the pathway definitions imported from KEGG (Ogata et al.,
1999), REACTOME (Croft et al., 2014), BIOCARTA (Nishimura,
2001) pathway databases. To these sets, we added 59 definitions
of modules from Atlas of Cancer Signaling Network (ACSN)
(Kuperstein et al., 2015) and the set of potential transcriptional
targets of EWS/FLI-1 chimeric oncogene (Hancock and Lessnick,
2008). In total, this resulted in 1121 modules. Out of all
these modules, 23 had significant overdispersion in time series
measurements with p-value < 0.05 (see File S5). For these
modules, we distinguished two different kinetics in their response
to EWS-FLI1 expression reflected by their activity score, one
having switch-like response similar to EWS-FLI1 signature
targets and a second one similar to a pulse-like response
(Figure 5B).

3.4. Detecting Overdispersed Pathways in
Single-Cell RNASeq Data
Application of module activity estimation is particularly
interesting to determine molecular pathways contributing to the
non-genetic heterogeneity of cell populations in the context of
single cell transcriptomics data analysis (Fan et al., 2016). In order
to demonstrate that ROMA can be used to detect overdispersed
pathways in single cell transcriptomics data, we applied it to a
set of 372 individual cell transcriptomic profiles measured in
several time points after induction of differentiation in a skeletal
myoblast cell culture (Trapnell et al., 2014).

The collection of gene sets used for this example was taken
as in the previous section. ROMA has detected a number
of overdispersed pathways (many more than in the previous
examples) revealing major biological functions contributing to
the cell-to-cell transcriptome variation. As expected, clustering
overdispersed pathways according to their module activity

FIGURE 5 | (A) The activity scores of both up and down-regulated target sets during EWS-FLI1 inhibition (days 0–10) and rescue (days 10–27) time series

experiments. EWS-FL1 time-course related to the dataset was measured and reported in Figure 3A of (33). (B) Smoothed temporal activity profile for two

overdispersed pathways found by ROMA in the analysis of time series expression profile after inhibition of EWS-FLI1.
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score profiles (see Supplementary Materials) distinguished a
large cluster of signatures related to cell cycle and closely
related DNA replication and DNA repair. A large cluster of
50 signatures mixed modules related to apoptosis, respiratory
electron transport, TCA cycle and various metabolism and
catabolism-related modules. A cluster of 10 signatures was
related to translation. Another cluster of 16 signatures contained
modules related to transcription, mRNA splicing and mRNA
processing. Relatively small cluster contained six signatures
related to glucose transport and, surprisingly, metabolism of
non-coding RNA. Two smaller clusters included five gene
signatures related to extracellular matrix organization, and
muscle contraction together with cardiomyopathy (which is
probably more specific to the cellular function of myoblasts).

In Figure 6A we show several examples of overdispersion
pattern observed in the single-cell RNASeq dataset. We observed
that most overdispersed modules obtained high score due to
a systematic shift with respect to the global gene distribution,
such as the leftmost E2F3_TARGETS signature in Figure 6A.
In Figure 6B we show the profiles of module activity scores
across all cells, ordered in time. E2F3_TARGETS signature from
ACSN pathway database probably marks the cells in the active
proliferation state. One can see that the number of proliferating
cells drops at the time point T24 when compared to the time
point T0. However, there remains a significant number of
proliferating cells after T24. Interestingly, the modules can be
classified into those showing clear bimodal distribution of activity

scores and those having unimodal distribution (e.g., see the
KEGG dilated cardiomyophathy profile in Figure 6B). One can
observe also that the variance of module activity scores might
vary significantly from one time point to another (see the same
profile on Figure 6B).

Note that in all of the four analyses presented above, we have
found a large set REACTOME_OLFACTORY_SIGNALING_
PATHWAY overdispersed. Olfactory receptors are known to
be a common confounding signal in many mutation profiling
analyses (Lawrence et al., 2013). It seems that this is also reflected
in pathway overdispersion analysis, based on transcriptomic data
of normal or cancer cells.We are not aware that this phenomenon
was described before.

4. DISCUSSION

Quantifying the activity of biologically related modules is a
widely exploited strategy to extract biological information from
high-throughput data. In the analysis of genomic data, using
gene sets as aggregated variables can help to capture biological
information that is otherwise undetectable by focusing only on
individual genes. We introduced the ROMA algorithm which
deals with this problem of quantifying the activity of modules
by fast and robust computation of the simplest linear model of
gene regulation based on computing the PC1 of the expression
data matrix and estimating the statistical significance of such
approximation.

FIGURE 6 | (A) Examples of overdispersed and non-overdispersed pathways in single-cell RNA-Seq data. Red points are the genes of the pathways, shown in the

projection on the first two principal components computed for these points. Black points show the global distribution projected in the first two principal components of

the pathway. Below the scatterplot, the histogram of gene projections on the PC1 is shown separately for the genes in the pathway (red) and for the global distribution

(black). (B) Module activation score in single cells. The x-axis corresponds to four time points (T0-T72). The black line shows the median module activation score

within the same time point. On the left of the graph the histogram of module activation scores for all cells in all time points is shown.
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We tested ROMA on a first case study to quantify the
activity of Notch, Wnt and p53 pathways in metastatic and non-
metastatic tumors from human colon cancer transcriptome data.
Unlike single gene expression analysis, the ROMA algorithm
has effectively shown the involvement of these pathways in the
metastastic process by detecting their differential activity. In this
study, the sets of downstream transcriptional targets reflect the
activity of the associated pathways better than any individual
gene involved in the signaling cascades. In similar gene set
analysis, ROMA can be considered as a powerful algorithm
to detect coordinated but small changes of several genes in a
pathway.

In our second example ROMA was used to map the
expression profiles of bladder patients on an influence graph
that recapitulates the molecular interactions between different
pathways. The information extracted from the data correlates to
what is known about the tumor progression in bladder cancer.
To complete the analysis, it would be possible to translate the
influence network into a logical model. This would consist in
associating to eachmodule (equivalent to a variable of the model)
a logical rule linking all of his inputs with the logical operators
AND, OR, and NOT. For instance, ROS would be written as
follows: ROS = MPT AND NOT NFkB_targets. Thus, if the
influence network was to be translated into a logical model and
simulated for each patient profile (set of mutations or genetic
alterations known for the genes included in the model) with
accompanying clinical information (stage of the tumor), we
would expect to see the solutions of the simulation, referred to
as stable states, of an invasive patient with active E2F1, E2F2,
and EF3 target variables (equal to 1) whereas the stable states
for patients with superficial tumors with these variables equal to
0. The data analysis performed with ROMA is also one way to
assess that the logical rules are in accordance with the dataset
that is studied and thus that the model represents correctly
the dynamics of bladder tumorigenesis. Another possible use of
ROMA in the context of networkmodeling can be in the selection
of the pathways of interest to include in the model. Constructing
a structural model of a specific complex molecular process can
be based on literature information combined with an exploratory
analysis of pathway databases to identify those pathways that are
active or inactive in a particular cellular condition.

In the third example, we described the application of ROMA
in quantifying transcriptional activity of targets of EWS-FLI1
from time-course measurements. Since this oncogenic TF can
have both inhibitory and activating properties, ROMA analysis
was performed first for the whole set of known target genes and
secondly by splitting the set in two separated modules for the
up and down regulated targets. The whole signature target set
was the most significantly overdispersed. This is consistent with
the fact that a larger set of co-regulated genes, regardless of the
regulation sign, is expected to generate a stronger overdispersion
signal. This is an advantageous property of ROMA compared
to other gene set testing methods, such as GSEA, that estimate
the significance of enrichment score by considering separately
the positively and negatively scoring gene sets. Also, several
TFs can have both inhibitory and activating function; ROMA
can be applied without information about the sign of the TF

effect on its targets. In time series data, the scores calculated
on the sets of targets can give information on the kinetics of
the transcriptional response. The activity scores of targets reflect
the dynamics of EWS-FLI1 expression during the inhibitory and
rescue experiments.

In the fourth example, ROMA is applied to detect
overdispersed pathways in single cell transcriptomics data.
This is particulary interesting application of unsupervised
ROMA approach, because it potentially allows quantifying the
non-genetic heterogeneity of a cell population on pathway level.
Multiple gene sets have been shown to be overdispersed in this
case: therefore, clustering them based on the activity profiles
over the cell population helps identifying the major functional
aspects contributing to cell-to-cell variance.

In many studies ROMA can be applied to unravel the effective
status of a TF protein from the expression of its target genes. The
predicted activity values can be validated experimentally. if the
active form of a transcription factor or other factor is known and
can be measured (i.e., by mass spectrometry measurements), or
the factor represents a measurable phenotypic read-out (such as
cell growth or age).

Oncogenes and tumor suppressor regulatory genes, such as
p53, often carry mutations in their DNA sequences. However,
such DNA changes do not always have a clear effect at the
phenotypic level. On the other hand, the function of oncogenes
or tumor suppressors can be compromised by other mechanisms
than DNA mutations, like for example alterations in DNA
methylation. Computing activity score of transcriptional target
sets is a useful method to assess the active or inactive status
of regulatory oncogenes or tumor suppressors. We can also
imagine to label tumor samples in a more reliable manner by
relying both on the targets activity score and on DNAmutations.
Our previous study shows that the estimated activity of p53 in
tumor samples is better associated to the clinical outcome than
expression or mutation status of p53 alone (unpublished data).
Recent advances in chromatin immunoprecipitation with next-
generation DNA sequencing (ChIP-Seq) have provided large
collections of detected TFBSs with high sensitivity that facilitate
the comprehensive annotation of TF targets sets.

The idea of applying ROMA in order to investigate the
effect of regulatory molecules can be generalized in order to
study other classes of regulators, such as kinases, phosphatases,
microRNAs, etc. The availability of large-scale proteomics
and phosphoproteomics data gives unprecedented knowledge
about post-transcriptional and post-translational regulation
happening in the cell. The ROMA algorithm can be applied
to analyze quantitative phosphoproteomics profiles and identify
overdispersed patterns of predefined sets of proteins sharing
common phosphorylation sites. By exploiting this information it
would be possible to infer active or inactive kinases/phosphatases.

Multiple types of analyses using ROMA can be performed
in order to explore microRNA regulation. First, microRNA
genes appear often organized in genomic clusters that are not
randomly composed, meaning that this clustered structure is
evolutionary conserved and is likely to be related to miRNAs
coordinated regulatory action. Comparing expression level of
clustered miRNAs in different conditions, the variation in the
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abundance of each individual miRNA of the cluster can be
weak and not detectable by standard statistical hypotheses
testing applied to individual miRNA expression levels, while
the overdispersed expression pattern of the entire cluster can
produce a statistically significant signal and reveal its differential
activity.

ROMA can also be useful for the identification of microRNA
regulation by expression analysis of target genes. The module
approach is particularly suitable to infer miRNA regulatory effect
from target expression profiles, since miRNA effect is subtle at
the level of individual target but affects a large number of genes
(Martignetti et al., 2015).

ROMA can be used in combination with unsupervised
methods for metagene extraction from omics data such as
Independent Component Analysis (ICA) for helping component
interpretation (Zinovyev et al., 2013; Biton et al., 2014).

In the future it would be interesting to generalize the linear
model of ROMA method onto a non-linear case, through
application of non-linear versions of principal component
analysis such as principal curves (Gorban and Zinovyev, 2001;
Gorban et al., 2008) or principal trees (Gorban and Zinovyev,
2009). Indeed, distributions of gene expression profiles are
demonstrated to contain non-linearities (Drier et al., 2013) and
branching points. For example, a variant of principal curve
approach was suggested in Trapnell et al. (2014) in order to
recapitulate the non-linear dynamics of myoblast differentiation.
Non-linearity leads to the situation when there exists no one
single set of genes contributing the most to the definition of
module activity: this set will depend on a particular region of the
gene expression space. This will complicate the interpretation of
the module activity: however, many ideas introduced in ROMA
(estimating statistical significance of overdispersion, robust
modification of non-linear PCA, etc.) will remain applicable.

To conclude, we prove that ROMA is useful when applied to
different biological case studies. ROMA will contribute to the
set of tools routinely applied in systems biology according to
the application examples outlined before. In the future, we will
provide a Graphical User Interface to facilitate the use of the
ROMA algorithm, in the form of a Cytoscape app (Smoot et al.,
2011; Saito et al., 2012).
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