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Clusters of genes in co-expression networks are commonly used as functional units

for gene set enrichment detection and increasingly as features (attribute construction)

for statistical inference and sample classification. One of the practical challenges of

clustering for these purposes is to identify an optimal partition of the network where

the individual clusters are neither too large, prohibiting interpretation, nor too small,

precluding general inference. Newman Modularity is a spectral clustering algorithm that

automatically finds the number of clusters, but for many biological networks the cluster

sizes are suboptimal. In this work, we generalize Newman Modularity to incorporate

information from indirect paths in RNA-Seq co-expression networks. We implement a

merge-and-split algorithm that allows the user to constrain the range of cluster sizes:

large enough to capture genes in relevant pathways, yet small enough to resolve distinct

functions. We investigate the properties of our recursive indirect-pathways modularity

(RIP-M) and compare it with other clustering methods using simulated co-expression

networks and RNA-seq data from an influenza vaccine response study. RIP-M had higher

cluster assignment accuracy than Newman Modularity for finding clusters in simulated

co-expression networks for all scenarios, and RIP-M had comparable accuracy to

Weighted Gene Correlation Network Analysis (WGCNA). RIP-M was more accurate

than WGCNA for modest hard thresholds and comparable for high, while WGCNA was

slightly more accurate for soft thresholds. In the vaccine study data, RIP-M and WGCNA

enriched for a comparable number of immunologically relevant pathways.

Keywords: sequence analysis, RNA, gene expression profiling, newman modularity, weighted gene correlation

network analysis, WGCNA, algorithms

INTRODUCTION

Modularity is a property of many complex systems where the components of the system
are organized into functional subunits or modules. Modular organization can be observed in
engineered systems like hardware components of a computer, packages in software, or parts of a
vehicle. But modularity is also observed in evolved systems like DNA into chromosomes, spatial
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regions of the brain into specialized functions, or genes into
transcriptional regulation networks (Shen-Orr et al., 2002). It
is commonly held that cellular organization and biochemical
function is modular in nature (Hartwell et al., 1999; Mitra
et al., 2013). There are likely multiple selective pressures that
lead to modularity in evolved systems, one of which may be
the frequency of a changing environment (Parter et al., 2007).
Intuitively, if an environment is relatively static, an evolving
system has the luxury to build large modules, whereas in a rapidly
changing environment, there is a greater advantage to building
and reusing smaller, robust functional subunits (modules).

RNA-Seq is a next-generation sequencing technology for the
genome-wide quantification of gene expression that is rapidly
growing in prevalence and has some advantages over microarrays
in characterizing transcriptomes (Ozsolak and Milos, 2011;
Hitzemann et al., 2013). There are also many challenges to
analyzing RNA-Seq data and few studies have investigated the
network properties of RNA-seq based co-expression networks
(Ballouz et al., 2015). One of the perennial statistical challenges
of clustering data-driven networks (e.g., gene co-expression) is
how optimally to determine the appropriate number and size
of clusters. Hierarchical clustering relies on the relative distance
between genes or samples, represented as trees. Clustering can
be described as “cuts” of these trees, which can result in single
clusters that encompass the majority of genes, or conversely,
many small (potentially singleton) clusters. Accordingly, one
of the motivations of the Weighted Gene Correlation Network
Analysis (WGCNA) strategy is to avoid small clusters, enabled
by parameters to specify a minimum module size and merge
cut height (Langfelder et al., 2013). Model-based clustering
uses likelihood and model-complexity to guide the user to an
appropriate number of clusters andmay be put into a hierarchical
framework (Guo et al., 2010), but the size of the clusters may still
have extremes.

Newman Modularity is a spectral clustering algorithm that
performs multiple binary splits of the network and determines
cluster memberships by optimizing a quadratic-form of the
difference between observed and expected connections (under
null model assumptions). Submodules are found automatically
through recursive binary splits (Newman, 2006). Automated
cluster number estimation is an attractive feature of modularity
(data-driven); however, when applied to the RNA-Seq co-
expression networks in the current study, modularity identifies
a small number of large components that encompass the bulk
of genes (e.g., Figure 8). To uncover the biologically relevant
substructures, larger modules must be split and smaller modules
merged in an optimal way.

The implicit goal of spectral clustering is to find a balance
between groups in order to find more realistic communities and
avoid trivial solutions (Bolla, 2011). For example, the potential for
trivial solutions led to the proposal of normalized cut penalties to
avoid minimal cut clusters that contain a single node separated
from the rest of the nodes (Shi and Malik, 2000). In the case
of gene co-expression networks, large modules may lead to the
enrichment of functional categories that are too broad to be
biologically informative for the given study. For example, when
we use various settings of a hard threshold, Newman Modularity

results in modules with over 1000 genes. Such large clusters
should be further resolved to map onto more specific functional
categories. At the same time, very small clusters may need to
be broadened to identify statistically significant overlap with
functional biological categories.

In the current study, we develop a generalized indirect-paths
form of modularity and incorporate it into a merge-and-split
algorithm we call “recursive indirect-paths modularity” (RIP-M).
The RIP-M algorithm varies the order of finite power series of
the adjacency matrix, which adaptively merges small clusters by
incorporating indirect path evidence for module membership.
Recent studies using powers of the adjacency matrix include
subgraph centrality (Estrada and Rodriguez-Velazquez, 2005)
and network deconvolution (Feizi et al., 2013). The subgraph
centrality method used a sum of local moments of the adjacency
matrix powers to derive a new centrality algorithm. Local
moments use the diagonal of eachmatrix power. In our approach,
we compute a modified modularity, as opposed to centrality, and
we use the diagonal and off-diagonal of the power series up to a
finite order. Also, our algorithm adapts the power series order to
change the size and number of clusters. Network deconvolution
reduces the noise in a network by assuming an infinite power
series of the direct network, which allows one to invert the
observed network to reverse the effect of transitive information
flow from the theoretical indirect paths. Our approach adapts the
order of the power series in subnetworks (modules) to reduce and
magnify transitive effects within and between subnetworks in the
observed network and thereby modify the size and number of
clusters.

Including higher powers of the adjacency matrix increases
the flow of information between a given pair of genes based
on shared indirect connections, which, along with recursive
splitting, allows RIP-M to develop modules with sizes near a user
defined range. The goal of the RIP-M algorithm is to provide
a user with the flexibility to specify a “Goldilocks” range that
penalizes module sizes from being too large or too small for
the biological questions being asked. We compare the accuracy
of RIP-M with Newman modularity and WGCNA on simulated
co-expression networks with homogeneous and heterogeneous
cluster sizes. We compare the accuracy of methods for
hard and soft thresholds, and we compare the methods
based on functional enrichment of relevant pathways on real
RNA-Seq data.

METHODS

In this section, we describe our new community detection
algorithm, RIP-M, and our evaluation strategy based on
simulated co-expression data and real data from an RNA-
Seq experiment of an influenza vaccine study. Our aim is
to detect communities or clusters of genes that are related
by correlation across subjects in a gene expression study. To
construct the network, we begin with a matrix of Pearson
correlation coefficients

(

−1 ≤ ρij ≤ 1
)

between the expression
levels of genes i and j. We then define a binary adjacency matrix
Aij ∈ {0, 1} by the condition

∣

∣Aij

∣

∣ ≥ τ , where τ is a threshold.
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FIGURE 1 | RIP-M algorithm pseudocode.

The value of τ is one factor that influences the size distribution of
modules. We discuss the selection of τ and soft thresholds below.

Recursive Indirect-Paths Modularity
(RIP-M)
Our RIP-M algorithm is a modification of Newman Modularity.
RIP-M iteratively merges and splits modules to obtain a desired
range of module sizes. If a module is larger than a user-defined
threshold, the module is split based on iteration of modularity

to this submodule. Merging is based on the application of
Modularity to a power series of the adjacency matrix, which
encodes indirect paths between nodes and has the effect of
reassorting nodes into larger modules. We first review the
relevant properties of Modularity.

Newman Modularity
Modules of an adjacency matrix, Aij, are determined by recursive
binary partitions of the nodes in the network. The base of the
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FIGURE 2 | Example of simulated correlation matrices with 10 clusters (A,B) and 20 clusters (C,D) of 400 nodes with heterogeneous (A,C) and

homogeneous (B,D) cluster sizes. The block diagonal clusters are random uniform numbers between rsignal,min and 1. Outside the blocks, the correlations are

random uniform numbers between 0 and rnoise,max. The chosen signal and noise parameters are rsignal,min = 0.2 and rnoise,max = 0.8, respectively, to simulate a

large amount of overlap between signal and background.

recursive algorithm is the binary partition of the network. The
partition is encoded in a vector si ∈ {−1, 1}, where si = 1 if
node i is in the first community and si = −1 if node i is in the
second community. The vector s is obtained by maximizing the
modularity Q:

Q =
1

4m

∑

ij

(

Aij −
kikj

2m

)

sisj, (1)

where ki, kj are the degree of nodes i and j, andm = 1
2

∑

i ki. The
quantity kikj/2m is the expected number of edges between the
nodes i, j for an Erdos-Renyi random network. We may rewrite
Q in a quadratic matrix form as:

Q =
1

4m
sTB s, (2)

where the matrix Bij = (Aij −
kikj
2m ). In order to maximize

the modularity efficiently, one relaxes the requirement that

the elements of s be dichotomous and one computes s as the
dominant eigenvector of B. The values s are then dichotomized
into 1 and −1 by taking the sign of the elements of the
dominant eigenvector. This algorithm determines the initial
binary partition of the network and is used recursively to form
additional partitions.Within a subgroup of nodes g in a partition,
the change in Q,△Q, is computed by maximizing B(g):

△Q =
1

4m
sTB(g)s, B(g) =

∑

i,j∈g



Bij − δij
∑

k∈g

Bik



 (3)

where B(g) is the subgroup modularity matrix properly
accounting for the degree of nodes prior to binary splitting.
Recursive partitioning stops when△Q is sufficiently small.
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FIGURE 3 | Example dendrograms from the simulated correlation matrices with 10 clusters (A,B) and 20 clusters (C,D) of 400 nodes with

heterogeneous (A,C) and homogeneous (B,D) cluster sizes. The simulated cluster blocks can be seen in Figure 2.

Generalized (Indirect-Paths) Modularity (IP-M)
We can generalize Equations (1–3) by writing Q as a function of
a path matrix or power series of the adjacency matrix to order n:

P(n) = A+ A2 + · · · + An. (4)

For a binary (non-weighted) adjacency matrix, an element of
P(n) represents the number of paths with length smaller or equal
to n between nodes i and j. This transforms the input network
for modularity to a network weighted by indirect connections.
For example, two nodes may not be directly connected, but
multiple shared nodes may suggest that the two nodes should
be in the same community. We find that this has a merging
effect on communities. Then we can write the generalized-paths
modularity as:

Q
(

P(n)
)

=
1

4m(n)

∑

ij





(

P(n)
)

ij
−

k
(n)
i k

(n)
j

2m(n)



 sisj. (5)

We include the “n” superscripts to remind the reader that the
degrees are computed for the path matrix P (Equation 4), not
the original adjacency matrix A. For a given path order n, the
algorithm for computing modularity is the same as Equations
(1–3), but using P (Equation 4) instead of A. Next, we describe
the RIP-M algorithm, which recursively splits large communities

and varies the order n in Q
(

P(n)
)

(Equation 5) to automatically

reassort clusters that are too small. The number of indirect paths

(n) adapts within the recursion to attempt to achieve modules in
the specified range.

RIP-M Algorithm
The recursion in RIP-M is implemented as a stack in the R
language, described in pseudocode (Figure 1). The first input
is the (weighted or un-weighted) adjacency matrix. In our
simulation studies, we test hard and soft thresholding of the
absolute value of the correlation matrix. A soft threshold is a
transformation of the correlation matrix that raises values to a
given power, element-wise. In applications, we show that the
hard threshold, τ , and the soft-threshold power play important
roles in determining the size of clusters. The target range of
the module sizes is specified by the parameters minModuleSize
and maxModuleSize. Modules below minModuleSize are placed
together and fed into generalized modularity for merging
with increasing orders of the indirect-paths power series P(n).
The order increases and the merging iteration continues until
maxMergeOrder is reached or the module-size target is reached.
Modules above maxModuleSize are put in the stack to be split in
subsequent iterations. Modules in the target range are added to
the return module list.

Hierarchical WGCNA
Here, we review aspects of the WGCNA method that are
relevant for comparison with modularity and the RIP-M
method introduced in the current study. WGCNA is a
hierarchical clustering method frequently used for clustering
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FIGURE 4 | Comparison of clustering accuracy using hard correlation threshold for random uniform simulated heterogeneous (A,C) and homogeneous

(B,D) cluster sizes with 10 clusters (A,B) and 20 clusters (C,D). The signal and noise parameters are rsignal,min = 0.2 and rnoise,max = 0.8, respectively. 100

replicate simulations are created and clustering is carried out for each of the hard threshold cutoffs of the correlation matrix (horizontal axis). The accuracy of the

clustering methods (average on the vertical axis) is based on the Rand index of the cluster identities compared with the true simulated cluster identities.

gene co-expression networks. It uses agglomerative hierarchical
clustering with average linkage, but it uses a dynamic tree cutting
to try to balance the size of clusters (Langfelder et al., 2013).
This sometimes results in genes that are unassigned to any
cluster. WGCNA also includes optional transformations of the
correlation matrix, such as hard and soft thresholds and signed
and unsigned networks. Parameters for these transformations
may be guided by fitting a scale-free degree distribution. An
important feature of WGCNA is the Topological Overlap Matrix
(TOM) for assigning similarities between genes:

tij =

{

|N1(i) ∩ N1(j)| + aij
min{|N1(i)|,|N1(j)|} + 1−aij

if i 6= j

1 if i = j
,

where |N1(i)| is the number of neighbors of node i and aij is
the corresponding element in the adjacency matrix. This first
term in the numerator is the number of genes that genes i and
j share as common connections. This term takes advantage of
indirect evidence that two genes are similar. The denominator is
a normalization factor. WGCNA also includes generalized TOM
(GTOM) to perform hierarchical clustering with higher order
indirect connections. The TOM matrix is transformed into a
distance matrix for hierarchical clustering. We vary GTOM and
thresholding parameters to identify the most uniform cluster
sizes.

Methods for Cluster Comparison
Simulated Data
We simulate co-expression networks with known partitions or
communities, and we compare clustering algorithms based on
their accuracy in assigning nodes to their correct partitions. We
create 100 replicate simulations for a given set of simulation
parameters. We compare the accuracy of each method based
on the Rand index (Rand, 1971). For all pairs of nodes,
the Rand index determines whether the pair has the same
cluster label predicted by the clustering algorithm and compares
this concordance with the concordance in the true simulated
clusters. We use two simulation strategies, both based on noisy
block diagonal structures but with different noise distributions:
random uniform and the beta distribution.

In the uniform random strategy, the background of the
correlation matrix is composed of random uniform numbers
between 0 and rnoise,max. This matrix is an example of a
Wigner matrix (its entries are independent, uniformly bounded
random variables, and we force the matrix to be symmetric;
Bolla, 2011). On top of the background noise, we superimpose
the clusters as block diagonal matrices composed of random
uniform numbers between rsignal,min and 1. Clusters become
more difficult to resolve as the noise and signal limits
overlap (i.e., as rblock,min becomes larger and/or rblock,max

becomes smaller). In our simulations, we use highly overlapping
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FIGURE 5 | Comparison of clustering accuracy using hard correlation threshold for beta-distributed noise simulated for heterogeneous (A,C) and

homogeneous (B,D) cluster sizes with 10 clusters (A,B) and 20 clusters (C,D). The beta noise parameters are (3, 2) for the signal and (2, 3) for the background.

One hundred replicate simulations are created and clustering is carried out for each of the hard threshold cutoffs of the correlation matrix (horizontal axis). The

accuracy of the clustering methods (average on the vertical axis) is based on the Rand index of the cluster identities compared with the true simulated cluster identities.

parameters (rnoise,max = 0.8 and rsignal,min = 0.2) to
make the community detection more challenging. We force
the matrix to be symmetric, but it may not be positive
definite.

The second simulation strategy uses a beta distribution with
parameters (3, 2) for the signal and (2, 3) for the background
noise. These parameters result in similarly challenging signal
to noise as in the random uniform strategy, but with a less
abrupt transition between clustered genes and non-clustered
genes. In addition, we map the final correlation matrix to nearest
positive definite matrix (Cheng and Higham, 1998). Since, we
expect real co-expression data to display variation in the number
and size of clusters, we simulate co-expression networks with
heterogeneous (example in Figures 2A,C) and homogeneous
(example in Figures 2B,D) cluster sizes. The challenge to cluster
detection of the noise parameters can be seen in the flat hierarchy
(small distances separating the simulated clusters) in Figure 3.

RNA-Seq Data
RNA-seq measures gene expression by sequencing, yielding
the abundance of each transcript present in a sample. We
applied each clustering method to RNA-Seq data from an
influenza vaccine study of 105 individuals performed at theMayo
Clinic (Rochester, MN). All study participants provided written
informed consent, and all study procedures were approved by
Mayo Clinic’s Institutional Review Board. Gene abundances

were computed from transcriptomic sequencing using the MAP-
RSeq bioinformatics pipeline tool (Kalari et al., 2014). The
Illumin HiSeq 2000 (Illumina, San Diego, CA) sequencing reads
were aligned to the human genome build 37.1 using TopHat
(1.3.3) and Bowtie (0.12.7). Counting genes and mapping the
reads to individual exons was carried by HTSeq (0.5.3p3) and
BEDTools (2.7.1), respectively. Total number of counts per
gene was obtained from the mRNA expression. Quality control
was assessed pre- and post-normalization graphically with
minus- vs.-average and box-and-whisker plots. The GC content
and gene length adjustments were also evaluated graphically.
Normalization of the gene counts was done with Conditional
Quantile Normalization (CQN), which accounts for differences
in library size and also adjusts for GC content and gene length
(Hansen et al., 2012). These normalized values were used for
subsequent analyses.

Gene expression levels were measured at Day 0 (before
vaccination) and 3 days after vaccination. Clustering was
performed on the difference of the log2 CQN normalized data
between Day 3 and Day 0. Before clustering, we filtered to
the top 4956 transcripts showing the largest variation across
timepoints and largest read counts. Due to the perturbation
of the gene network by a vaccine, we expect increased activity
among immune system pathways. Thus, we used immunological
pathways from the Reactome FI database to compare the
enrichment from clustering methods of relevant biological
pathways for the vaccine immune response experiment (Vastrik
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FIGURE 6 | Comparison of clustering accuracy using soft thresholds for random uniform simulated heterogeneous (A,C) and homogeneous (B,D)

cluster sizes with 10 clusters (A,B) and 20 clusters (C,D). The signal and noise parameters are rsignal,min = 0.2 and rnoise,max = 0.8, respectively. One hundred

replicate simulations are created and clustering is carried for varying soft threshold powers, which involves taking the element-wise powers of the correlation matrix.

The accuracy of the clustering methods (on the vertical axis) is based on the Rand index of the cluster identities compared with the true simulated cluster identities.

et al., 2007). We calculated the fraction of overlap of each module
with immunological gene sets and used the hypergeometric p-
value to quantify significance of enrichment.

RESULTS

Simulation Results
We compared the average accuracy of Newman Modularity,
RIP-M and WGCNA to find the correct number of clusters
and the correct cluster identities of all 400 simulated genes
based on the Rand index. We simulated 100 replicate datasets
of co-expression data simulated with 10 and 20 heterogeneous-
sized clusters (e.g., Figures 2A,D, respectively) and 10 and 20
homogeneous-sized clusters (e.g., Figures 2B,C, respectively).
We specified a minimum cluster size of 10 and maximum of 50
for the RIP-M and WGCNA algorithm parameters. This range
is more of a guideline than a strict rule because cluster sizes
routinely go outside the range for both algorithms, and we find
that the simulation results are not sensitive to this range. In
addition to comparing homogeneous and heterogeneous cluster
sizes, we comparedmethods based on hard and soft thresholding,
which are common noise-reduction techniques for co-expression
network clustering.

Hard Threshold Results
A hard threshold yields a binary adjacency matrix with elements
equal to 1 when the correlation is above the threshold,

and 0 otherwise. The threshold eliminates lower correlations
that are more likely to be noise (due to chance). For hard
thresholding, RIP-M has a consistently higher accuracy than
WGCNA and Newman Modularity across all thresholds and
simulation parameters (Figures 4, 5). In the uniform random
noise simulation (Figure 4), as the threshold increases, RIP-M
reaches its maximum accuracy more quickly than the other
methods. When the threshold is 0.8 in the uniform random
uniform simulations (Figure 4), all of the methods are able
to find the correct clusters with high accuracy because all
noise connections are pruned at this threshold. This occurs at
this particular threshold because we use rsignal,min = 0.2 and
rnoise,max = 0.8 for the simulated signal and noise parameters,
respectively. Many true within-cluster connections are also
pruned at the 0.8 threshold, but this does not hinder the
algorithms from detecting the community structure. In the
simulations with beta-distributed noise (Figure 5), the hard
threshold has a smoother effect on the cluster identification
accuracy, but the accuracy trends are similar to the uniform
random simulation strategies.

Soft Threshold Results
A soft threshold involves taking even powers of each element
of the correlation matrix. Taking even powers gives negative
correlations the same weight as positive correlations, but for
simplicity we only simulate positive correlations. Higher powers
force lower correlations closer to zero, reducing their role in

Frontiers in Genetics | www.frontiersin.org 8 May 2016 | Volume 7 | Article 80

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Rahmani et al. Recursive Indirect-Paths Modularity

the cluster analysis. For soft thresholds (Figures 6, 7), WGCNA
has slightly higher Rand index accuracy than RIP-M and both
have higher accuracy than Newman Modularity. The accuracy
of RIP-M and WGCNA is flat across soft threshold powers,
whereas Newman Modularity tends to increase in accuracy with
increasing threshold.

Influenza Vaccine RNA-Seq Results
To compare performance on real data, we applied RIP-M
and WGCNA to an RNA-Seq co-expression network for an
influenza vaccine experiment. Gene expression for subjects was
measured before and 3 days after receiving influenza vaccine. We
computed the log2 fold change between Days 3 and 0 for each
subject’s transcripts and then we removed transcripts showing
low magnitude or variation across all subjects, which left 4956
transcripts. We calculated the Pearson correlation between all
pairs of transcripts across all 105 subjects, and we applied the
absolute value to the coefficients to treat activation and repression
connections the same in the network.

To illustrate the types of extremes that can be observed in
cluster sizes, we applied Newman Modularity to the RNA-Seq
network for a range of hard threshold values (τ ). For each value
of τ , Modularity finds a giant component (Figure 8), which was
the original motivation for the RIP-M modifications. We then
swept the hard threshold parameter (τ ) over a range of settings to
identify clusters for RIP-M and WGCNA with limited small and

large components. We specified a minimum cluster size of 100
and maximum of 300, with the goal of obtaining approximately
25 uniform clusters (average size of 200). This target was not quite
achieved for RIP-M or WGCNA (Figures 9, 10), but these hard
thresholds yield the closest approximations. TheWGCNA cluster
sizes are more extreme than RIP-M, but of course the true size
distribution is unknown.We provide rationale for choosing these
clustering parameters in the Discussion.

In order to assess the biological relevance of the RIP-M
and WGCNA influenza RNA-Seq clusters, we tested geneset
enrichment of known immune system and other functional
pathways that we predict may be related to vaccine response.
We used the Reactome Functional Interaction (FI) database to
identify enriched biological pathways in the genesets defined by
each cluster (Vastrik et al., 2007). We calculated the fraction
of overlap of each module with immunological gene sets
and used the hypergeometric p-value to quantify significance
of enrichment. We mapped each RIP-M module (Figure 9)
and WGCNA cluster (Figure 10) onto the most enriched
immunological gene set and sort them by cluster size. For
example, “Influenza Life Cycle(R)” is enriched in one of the larger
partitions of both methods, and “Cytokine-Cytokine Receptor”
is enriched by both methods in more intermediate-sized clusters.
To look beyond only the most immunological pathway in each
cluster, we used a q-value cutoff of 0.1 for all RIP-M modules
and WGCNA clusters. With this threshold, we identified 27

FIGURE 7 | Comparison of clustering accuracy using soft thresholds for beta-distributed noise simulated for heterogeneous (A,C) and homogeneous

(B,D) cluster sizes with 10 clusters (A,B) and 20 clusters (C,D). The beta noise parameters are (3, 2) for the signal and (2, 3) for the background. One hundred

replicate simulations are created and clustering is carried for varying soft threshold powers, which involves taking the element-wise powers of the correlation matrix.

The accuracy of the clustering methods (on the vertical axis) is based on the Rand index of the cluster identities compared with the true simulated cluster identities.
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FIGURE 8 | Newman Modularity module sizes for flu vaccine RNA-Seq co-expression network for a range of hard thresholds (τ). The modules from each

run (from 4965 transcripts) are labeled by their hub gene (gene with highest within module degree). Modularity finds large components for each value of τ.

immunological gene sets enriched by both algorithms. The RIP-
M modules are enriched for an additional 17 immune gene sets
that are distinct from WGCNA clusters, and WGCNA clusters
are enriched for 10 immune gene sets that are distinct from
RIP-M. This suggests that additional biological insights may be
obtained through a combined clustering approach.

Hierarchical methods like WGCNA have a natural tree-based
visualization of the relationships between genes. With RIP-M,
it is more natural to visualize the relationships as a network
graph (Figure 11). To balance the volume of information
displayed on the graph with its interpretability, we collapsed the
individual gene connections within a module onto one node and
label the nodes based on their most enriched immune system
pathway. Edges between collapsed nodes are weighted based
on the number of edges between genes in each module. The
aggregation of genes within modules/pathways and aggregation
of the connectivity may increase sensitivity to detect regulation
between pathways. For example, IGF-1 has been shown to
promote cytotoxic activity in human natural killer cells (Ni
et al., 2013), and our influenza vaccine pathway network
(Figure 11) shows a strong connection between “IFG1 Pathway”
and “Natural killer cell mediated cytotoxicity.” Connections at
the individual gene level within the two pathways may miss this
relationship.

DISCUSSION

RIP-M is an extension of Newman Modularity for community

detection that provides additional flexibility to identify
substructure in modules that may be more relevant to the
application domain. We compared and assessed this approach
to find functional communities of genes in RNA-Seq gene

co-expression networks; however, RIP-M is not limited to this
application domain. We extended Newman Modularity to
operate on indirect-path networks (IP-M) in order to increase

information flow between nodes in the network and thereby
merge modules with sizes that fall below a user specified size,
below which biological pathway enrichment may be difficult
to detect. Instead of using only the adjacency matrix, A, in the

modularity B matrix, we use a power series of A (Equation 4),
which represents higher order indirect connections between
genes. Incorporating these indirect connections has the effect
of merging smaller modules together into more reasonable
sizes. The merging process, however, may leave large network
components that contain unresolved substructure that have
more specific biological function. Thus, we combined the IP-M
merging capability with a splitting algorithm to decompose
large modules and resolve finer functional pathways. We
balanced the merging and splitting operations recursively in
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FIGURE 9 | RIP-M module sizes for flu vaccine RNA-Seq co-expression network. Each of the 27 modules (from 4965 transcripts) is labeled by its most

enriched immune system pathway (on the left) and by its hub gene (gene with highest within-module degree) on the right. Hard threshold τ = 0.2 of the absolute value

of Pearson correlation was selected. The hard threshold choice was guided by the goal of having modules without extreme sizes, with a minimum size of 100 and

maximum of 300. Parentheses in pathway names indicate source of annotation (Reactome, KEGG, NCI-PID, and BioCarta).

a modified version of modularity we call Recursive Indirect-
paths Modularity. We compared this algorithm with standard
modularity and hierarchical WGCNA on simulated correlation
networks and real RNA-Seq co-expression from an influenza
vaccine study.

It is common practice to use hard and soft thresholds to
remove noise (reduce false-positive edges) from co-expression
networks. We find that thresholds can also affect the number
and size of clusters. A byproduct of this noise reduction is that
some true direct connections may be lost (increase in false-
negative edges). Using RIP-M, evidence for connections between
nodes may be recovered from the adjacency matrix through
evidence from indirect connections. Some pairs of genes that
fall below the correlation threshold due to weak experimental
or biological signal may show stronger indirect support for
being linked based on evidence from the number of shared
neighbors. We show that including higher-order connections in
the generalized indirect-paths modularity has a merging effect
on modules; some connections between nodes are strengthened
and nodes from smaller clusters are rearranged into larger
clusters.

The results on simulated and real co-expression data suggest
that RIP-M has some advantages over Newman Modularity,
on which RIP-M is based. For hard and soft thresholding
of the simulated correlation matrices with homogeneous and
heterogeneous cluster sizes, RIP-M and WGCNA have higher
accuracy than Newman Modularity for finding the correct
number of communities and correct partition identities of the
nodes. In the simulated and real RNA-Seq co-expression data,

Modularity has a tendency to create partitions with a small
number of communities with some giant components, compared
to WGCNA and RIP-M, which tend to resolve the co-expression
networks into more intermediate sized clusters. WGCNA and
RIP-M find comparable cluster numbers for simulated and real
data. For the real data, WGCNA and RIP-M modules enrich
for many of the same immunologically relevant pathways. Both
methods enrich for some distinct immunological pathways, and
there may be an advantage to taking the union of enriched
pathways by both methods to carry forward for additional
statistical analysis.

With the expectation that genes involving the immune system
will be most stimulated by vaccination, we compared methods
based on enrichment of communities of genes in immune
functional pathways. RIP-M and WGCNA communities were
enriched with the majority of the same immunological pathways,
and each method found some unique pathways. Replication
studies of these pathways will lead to a better understanding
of the clustering mechanisms that lead to biologically useful
communities and whether a hybrid approachmay take advantage
of unique mechanisms of each approach. We used enrichment of
immunological pathways in the Reactome FI database; however,
these pathways involve complex signaling and other interactions,
and their genes are thus likely to have connections to multiple
pathways, not simply connections within one pathway. This
complexity adds to the noise of identifying partitions in this
gene expression experiment, and in general one expects gene
cluster membership to be fuzzy. Future work should involve
testing for enrichment in other biological studies where the gold
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FIGURE 10 | WGCNA cluster sizes for flu vaccine RNA-Seq co-expression network. Each of the 20 clusters (from 4965 transcripts) is labeled by its most

enriched immune system pathway (of the left) and by its hub gene (gene with highest within module degree) on the right. These clusters contain 2543 of the original

4965 because 2422 fell into the “unassigned” cluster. Algorithm parameters and hard threshold were swept with the goal of finding a module size distribution without

extremely small or large modules. Parentheses in pathway names indicate source of annotation (Reactome, KEGG, NCI-PID, and BioCarta).

standard pathways may be more circumscribed or includes less
heterogeneity, such as model organisms.

RIP-M and WGCNA allow the user to constrain cluster sizes.
In this sense, RIP-M is similar to clustering algorithms that
have the number of clusters as an input, like WGCNA, which
may be suboptimal for data where cluster sizes fall outside the
range. However, RIP-M and WGCNA are permitted to return
cluster sizes outside of the user specified range (remaining true to
actual relationships within the data).We simulated homogeneous
and heterogeneous-sized clusters, where some cluster sizes fall
outside the specified range, and RIP-M retains high accuracy. If
no cluster size preference is provided (a wide range of cluster
sizes is used by default), the RIP-M algorithm will still look
for indirect evidence for connectivity and attempt to perform
merging and splitting to find the best partition of the genes
according to the relationships present within the supplied data. In
the simulation studies, RIP-M is able to accurately find modules
when the underlying data is composed of either heterogeneous or
homogeneous cluster sizes.

Algorithm parameter selection is an important issue in
clustering that is not unique to RIP-M, as WGCNA has a similar
number of parameters that may be adjusted. In the real data, our
choice of τ = 0.2 was influenced by simulation results (Figures 4,
5), but more by the fact that it resulted in clusters with the
most uniform sizes. Increasing τ in the real data did not have a
drastic effect on the number of clusters. We chose 25 as our target
number of clusters because, of the roughly 5000 filtered genes,
uniform clusters would contain approximately 200 genes each,
which is a common number for geneset enrichment analysis. For

example, the C7 immunologic signatures in MSigDB use geneset
sizes of 200 (Godec et al., 2016). The C7 genesets correspond to
top or bottom genes (FDR < 0.25 or maximum of 200 genes) for
each comparison of conditions in immunologic gene expression
experiments. In Chaussabel et al. the authors used k = 30
in k-means clustering of the coordinated gene co-expression
across multiple immune phenotypes to create modules of genes
suggestive of coordinated biological activity (Chaussabel et al.,
2008). WGCNA recommends setting hard and soft thresholds
based on scale free degree distribution, but, like our approach,
this may lead to undesirable cluster assignments of genes. After
deciding on a target of 200 genes, we then chose minimum and
maximum cluster size parameters 100–300 in RIP-M because this
range brackets the average module size target. Using different
RIP-M parameters resulted in similar final cluster compositions.
Our reported clusters with the choice of τ = 0.2 had the most
uniformly distributed sizes.

Another application of gene partitioning into modules is
to use the collective information as a feature in a machine
learning classifier of a phenotype or outcome. It has been shown
for genetic association studies of multi-genic disorders that
associations tend to be found in similar functional pathways
(Franke et al., 2006). This suggests that constructing an attribute
from the genes in a module or functional pathway may
improve the ability to predict phenotypic class or variance
while also reducing the multiple-hypothesis burden. Future
study is needed to assess the potential advantage of combining
clustering approaches with attribute construction approaches,
such as single subject GSEA, GSVA (Hanzelmann et al.,
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FIGURE 11 | RIP-M pathway-collapsed network for RNA-Seq influenza vaccine data with 4965 transcripts showing highest variation. For each of the 27

RIP-M modules, genes and their within-module edges are collapsed into one node and labeled by its top immune system pathway. The radius of each node is

proportional to the number of genes in the module. The weight of each edge is the total number of edges between genes of the two modules. The top five connections

are shown for each module for clarity. The modules were obtained by hard threshold τ = 0.2 of the absolute value of Pearson correlation. Colors were chosen based

on pathway-type: yellow T-cell, B-cell, NK-Cell; green cytokine; purple inflammatory; blue immunodeficiency; orange influenza life cycle; red TLR and complement.

2013) or within-cluster hubs, for use as attributes in machine
learning algorithms to improve their ability to predict disease
susceptibility, immune response or other relevant outcomes.
One may also combine RIP-M or other clustering methods with
outcome information through differential co-expression analysis
(Lareau et al., 2015).

We have extended the Newman Modularity method for
community detection by including indirect-path information
when computing modules and by creating the RIP-M merge-
split algorithm that provides additional flexibility to identify
network substructure. We tested RIP-M on synthetic and real
RNA-Seq gene co-expression networks, identifying interpretable
and biologically descriptive modules. For example, our results
show a clear concentration of gene expression activity in
several complementary areas of biological function important
for both innate and adaptive immunity. The day 3 expression
data delineates connections between several major pathways
including JNK signaling in CD4 T cells and T cell receptor
signaling, or B cell receptor signaling and B cell survival. It
also illuminates the complex interplay between different immune

processes such as IL-23 signaling (driving Th17 responses); IFNg,
TNFa, and IL-12 (driving Th1 responses); anti-inflammatory
signaling through TGF-b, IL-10, and the combination of IL-3
and IL-7 signaling known to drive hematopoietic production of
lymphoid progenitor cells in both mice and humans (Grabstein
et al., 1993; Puel et al., 1998; Crooks et al., 2000). RIP-M
shows higher accuracy than Newman Modularity, and RIP-M’s
performance is comparable to WGCNA. Like WGCNA, RIP-M
allows calibration of cluster sizes, but without removing genes.
We believe RIP-M will be a valuable addition to the tools of
computational biology for finding context-specific sets of genes
for further pathway and integrative analysis.

AVAILABILITY

The raw data used in this study is available on ImmPort
at https://immport.niaid.nih.gov/ under study number SDY67.
Code for RIP-M and the normalized data used in this study
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are available at our website: http://insilico.utulsa.edu/index.php/
ripm/.
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