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The sequencing of the transcriptomes of single-cells, or single-cell RNA-sequencing,

has now become the dominant technology for the identification of novel cell types

and for the study of stochastic gene expression. In recent years, various tools for

analyzing single-cell RNA-sequencing data have been proposed, many of them with

the purpose of performing differentially expression analysis. In this work, we compare

four different tools for single-cell RNA-sequencing differential expression, together with

two popular methods originally developed for the analysis of bulk RNA-sequencing data,

but largely applied to single-cell data. We discuss results obtained on two real and

one synthetic dataset, along with considerations about the perspectives of single-cell

differential expression analysis. In particular, we explore the methods performance in four

different scenarios, mimicking different unimodal or bimodal distributions of the data, as

characteristic of single-cell transcriptomics. We observed marked differences between

the selectedmethods in terms of precision and recall, the number of detected differentially

expressed genes and the overall performance. Globally, the results obtained in our study

suggest that is difficult to identify a best performing tool and that efforts are needed to

improve the methodologies for single-cell RNA-sequencing data analysis and gain better

accuracy of results.

Keywords: single-cell RNA-seq, differential expression, differential distributions, benchmark, assessment

INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) has emerged a decade ago as a powerful technology
for identifying and monitoring cells with distinct expression signatures in a population, and for
studying the stochastic nature of gene expression; a task, this latter, possible only at single-cell
level. Compared to bulk RNA-seq, scRNA-seq data are affected by higher noise deriving from both
technical and biological factors. Technical variability mostly originates from the low amount of
available mRNAs that need to be amplified in order to get the quantity suitable for sequencing. This
process may lead to amplification biases or “dropout events,” when the amplification or the capture
are not successful (Kolodziejczyk et al., 2015; Stegle et al., 2015; Bacher and Kendziorski, 2016).
Biological variability, instead, rises mainly from the stochastic nature of transcription (Chubb
et al., 2006; Raj et al., 2006). Moreover, scRNA-seq has revealed multimodality in gene expression
(Shalek et al., 2013) originating from the presence of multiple possible cell states within a cell
population. The high variability of scRNA-seq data, the presence of dropout events that leads to
zero expression measurements, and the multimodality of expression of a number of transcripts,
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create some challenges for the detection of differentially
expressed genes (DEGs), which is one of the main applications
of scRNA-seq and the focus of the present work.

Many single-cell studies make use of methods for differential
expression analysis originally developed for handling bulk RNA-
seq data, e.g., (Brennecke et al., 2015; Tasic et al., 2016;
Wang et al., 2016), which do not explicitly address the above
challenges. A variety of methods has been recently proposed to
analyze differential expression in scRNA-seq data (Bacher and
Kendziorski, 2016). Most of them explicitly model the probability
of dropout events, consider the multimodal nature of scRNA-seq
data, or include a model of transcriptional burst.

Among the most popular scRNA-seq methods, Model-
based Analysis of Single-cell Transcriptomics, MAST (Finak
et al., 2015), explicitly considers the dropouts using a bimodal
distribution with expression strongly different from zero or “non-
detectable,” and proposes a generalized linear model (GLM) to fit
the data. Single-Cell Differential Expression, (SCDE; Kharchenko
et al., 2014), models the counts of each cell as a mixture of
a zero-inflated Negative Binomial distribution and a dropout
component. Last, it uses a Bayesian model to estimate the
posterior probability that a gene is differentially expressed in one
group with respect to another. Monocle (Trapnell et al., 2014) is a
tool originally designed for scRNA-seq data analysis for ordering
cells based on their differentiation stage and extended to identify
genes that are differentially expressed across different conditions.
Data are fitted with a generalized additive model (GAM) and
a Tobit model is used to account for dropout events. Another
recently developed tool, Discrete Distributional Differential
Expression, D3E (Delmans and Hemberg, 2016), fits the bursting
model of transcriptional regulation (Chubb et al., 2006; Raj et al.,
2006) to the data and compares the gene expression distribution
in one group with respect to another giving estimates of burst
size, duty cycle, frequency, and mean of transcription. Single-
cell Differential Distributions, scDD (Korthauer et al., 2016),
is based on a multimodal Bayesian modeling framework for
explicitly modeling the multimodal distributions of single cells
and testing for differentially distributed genes associated with
this multimodality. Bayesian Analysis of Single-Cell Sequencing
Data, BASiCS (Vallejos et al., 2016), estimates the normalization
parameters jointly across all genes by modeling spike-ins and
endogenous genes as two Poisson-Gamma hierarchical models
with shared parameters, and determines gene-specific posterior
probabilities to identify highly variable genes.

Although a number of methods for the detection of DEGs in
scRNA-seq have been developed, their performance on common
benchmarks remains largely unclear. One recent study (Jaakkola
et al., 2016), compared two scRNA-seq tools, MAST (Finak
et al., 2015) and SCDE (Kharchenko et al., 2014), together with
three tools traditionally used for the analysis of bulk RNA-seq
data, Differential Expression analysis for Sequence count data,
DESeq (Anders and Huber, 2010), Linear models for microarray
and RNA-Seq data (Limma; Smyth, 2004), and Reproducibility-
Optimized Test Statistic ROTS (Seyednasrollah et al., 2015),
using three real datasets to assess their performance. In this study,
we extended this comparison to four tools specifically developed
for scRNA-seq data analysis (Table 1), MAST (Finak et al., 2015),

SCDE (Kharchenko et al., 2014), Monocle (Trapnell et al., 2014),
and D3E (Delmans and Hemberg, 2016). Together with these
tools, we also evaluated two of the most popular tools originally
developed for DE analysis of bulk RNA-seq data (Table 1), DESeq
(Anders and Huber, 2010) and edgeR (Robinson et al., 2010).

In addition to real scRNA-seq datasets (Islam et al., 2011;
Grün et al., 2014), we used simulated datasets for our assessment.
Using simulated data gives some advantages over the use
of real data. Namely: (i) it provides a complete knowledge
of positive, i.e., truly differentially expressed, and negative,
i.e., truly not differentially expressed, genes; (ii) it gives the
possibility to run replicated experiments, thus statistically
testing the difference of the assessment scores; (iii) it allows
testing different data scenarios. In this work, we specifically
addressed the multimodality of scRNA-seq data, assessing
methods performance on four different scenarios, as defined in
Korthauer et al. (2016), related to different data distributions of
the two conditions to be compared (Figure 1):

1. Unimodal distributions with different means (DE);
2. Bimodal distribution with different proportions of cells in

the two components and equal component means across
conditions (DP);

3. Unimodal distribution for one condition and bimodal
distribution for the other, with one overlapping component
and with equal component means across conditions (DM);

4. Unimodal distribution for one condition and bimodal
distribution for the other, with different component means
across conditions (DB).

Among the above listed scRNA-seq tools, BASiCS (Vallejos et al.,
2016) and scDD (Korthauer et al., 2016) were not included
in our comparison. BASiCS requires as input a set of spike-
ins expression values, therefore it was not applicable to all the
datasets used in our study. On the other side, scDD requires R
version 3.4, which is a version of R under development and not
stable.

MATERIALS AND METHODS

Real Datasets
To assess the performance of the selected methods we used
the dataset published by Islam et al. (2011) consisting of
48 mouse Embryonic Stem Cells and 44 mouse Embryonic
Fibroblasts analyzed using scRNA-seq, in parallel with a study
by Moliner et al. (2008), conducted using the same cell types
and culturing conditions, and followed by the validation of
microarray expression measurements with qRT-PCR. Similarly
to what was previously done by others (Kharchenko et al.,
2014; Jaakkola et al., 2016), we used the top 1,000 DEGs from
Moliner et al. as “positive control” to test the ability of the
benchmarked tools to detect true positive genes. ScRNA-seq
data, containing raw counts for 22,928 genes (excluded 8 spike-
ins), were retrieved from GEO database with accession number
GSE29087.

We used a second scRNA-seq dataset, published by Grün et al.
(2014), as negative control. This dataset consists of 80 single cells
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TABLE 1 | Tools compared in this study.

Tool Model Programming

language

Operating system Parallel

execution

MAST; Finak et al., 2015 Generalized linear hurdle model R ≥ 3.3 Unix/Linux, Mac OS, Windows Yes

SCDE; Kharchenko et al., 2014 Mixture of a negative binomial distribution

and low-level Poisson distribution

R ≥ 3.0.0 Unix/Linux, Mac OS, Windows Yes

Monocle; Trapnell et al., 2014 Generalized additive model R ≥ 2.10.0 Unix/Linux, Mac OS, Windows Yes

D3E; Delmans and Hemberg, 2016 Transcriptional bursting model Python* Unix/Linux, Mac OS, Windows No

DESeq; Anders and Huber, 2010 Negative binomial distribution R* Unix/Linux, Mac OS, Windows No

edgeR; Robinson et al., 2010 Negative binomial distribution R ≥ 2.15.0 Unix/Linux, Mac OS, Windows No

MAST, SCDE, Monocle, and D3E have been specifically developed for the analysis of scRNA-seq data. DESeq and edgeR have been originally designed for bulk RNA-seq data analysis.

(*) No information available about the version.

FIGURE 1 | Examples of the four classes of differential distributions, as defined in Korthauer et al. (2016), including on top-left the traditional

differential expression (DE), the differential proportions of cells in multimodal distributions (DP) on top-right, the differential modality (DM) on

bottom-left and both differential modality and proportions (DB) on bottom-right.

and 80 pool-and-split (P&S) samples cultured both in serum and

two-inhibitor (2i) media. Briefly, P&S samples were generated
by pooling ∼1 million single cells, splitting them into single-
cell equivalents (∼20 pg) of RNA and then sequencing in the
same way as single cells. Starting from the 80 P&S samples, we
randomly sampled 10 times the 40 samples as control condition
and the other 40 samples as testing condition, thus generating
10 independent datasets. These datasets were used as “negative
control” for differential expression analysis, as no DEGs are
expected in any of these comparisons. The raw counts of scRNA-
seq data, for a total of 12,476 genes (excluded 59 spike-ins), were
retrieved from GEO database with accession number GSE54695.
Data were converted to UMI counts as described in the original
publication (Islam et al., 2011): the total number of sequenced

transcripts was calculated as −K ln
(

1− ko,i�K

)

, where K

denotes the total number of UMIs and ko,i denotes the number
of observed UMIs for gene i.

Simulated Datasets
The simulated datasets were generated using the scripts provided
with scDD package in the recently published study by Korthauer
et al. (2016). More in details, 10,000 genes were simulated
for two conditions with sample size of 100 cells each. 8,000
genes were simulated as not differentially expressed using
the same distribution (unimodal for half of the genes and
bimodal for the remaining) in the two conditions. Specifically,
the unimodal genes were generated from the same Negative
Binomial (NB) distribution, while the bimodal genes were
generated from a two-component NB mixture. The remaining
2,000 genes were simulated as differentially expressed accordingly
to the four types of differential expression, DE, DP, DM,
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and DB, defined in section Introduction consistently with
Korthauer et al. (2016). Five-Hundred DEGs for each group
were generated. The datasets were obtained by running the
script simulateSet.R and using as starting data the synthetic
dataset scDatEx provided by the authors together with the
package. All parameters for simulation were set as defaults and
data were rounded to the nearest integer. The procedure was
repeated 10 times in order to produce 10 independent synthetic
replicates.

Methods for Differential Gene Expression
Analysis
We tested four methods developed for differential expression
analysis of genes between single-cell populations: MAST (version
1.0.5) (Finak et al., 2015), SCDE (version 1.99.1) (Kharchenko
et al., 2014), Monocle (version 2.2.0) (Trapnell et al., 2014), and
D3E (version 1.0) (Delmans and Hemberg, 2016). In addition,
we tested two widely used DE methods originally developed
for bulk RNA-seq data, DESeq (version 1.26.0) (Anders and
Huber, 2010) and edgeR (version 3.12.1) (Robinson et al.,
2010). For all methods, raw data were provided as input and,
except for what specified below, all the tools were run using
the default parameters. Differential expression measures were
retained significant when adjusted p-values were below a False
Discovery Rate (FDR) cut-off of 0.05. Precision and Recall
metrics were calculated as, respectively, the number of true
positives among all positive calls and the number of true positives
among the true number of DEGs.

MAST
MAST employs a generalized linear hurdle model to account
simultaneously for stochastic dropouts and characteristic
bimodal expression distributions in which expression is either
strongly non-zero or non-detectable. The rate of expression
Z, and the level of expression Y, are modeled for each gene g,
indicating whether gene g is expressed in cell i (i.e., zig = 0
if yig = 0 and zig = 1 if yig > 0). A logistic regression model
for the discrete variable Z and a Gaussian linear model for the
continuous variable (Y | Z = 1) are considered:

logit
(

Pr
(

Zig = 1
))

= Xiβ
D
g

Pr
(

Yig = y|Zig = 1
)

= N(Xiβ
C
g , σ

2
g )

where Xi is the design matrix. The fraction of genes that are
expressed and detectable in each cell, called cellular detection
rate (CDR), can be explicitly modeled as a covariate (a column
in the design matrix Xi), allowing a joint estimate of nuisance
and treatment effects. In order to improve the inference for genes
with sparse expression, the model parameters are fitted using an
empirical Bayesian framework. Finally, differential expression is
determined using the likelihood ratio test.

In our assessment, MAST with both the adjustment for
CDR and the omission of this covariate (MASTNotCDR) were
included.

SCDE
SCDE models the read counts computed for each gene using
a mixture of a NB distribution and a Poisson distribution.

The NB distribution models the transcripts that are amplified
and detected, whereas the low-magnitude Poisson distribution
models the unobserved or background-level signal of transcripts
that are not amplified (i.e., dropout events). Although, the
dropout component could be modeled as a constant zero (i.e.,
zero-inflated negative binomial process) the use of a low-
magnitude Poisson process allows accounting for both the
dropouts and some background signals that are typical of
transcriptionally silent genes. A subset of robust genes (i.e., genes
that are detected in multiple cross-cell comparisons) is used
to fit, using an EM algorithm, the parameters of the mixture
models. For the differential expression analysis, the posterior
probability that the gene shows a fold expression difference
between two conditions is computed using a Bayesian approach.
An empirical p-value to test for significance of expression
difference is determined by normalizing to unity the posterior
distributions.

Monocle
Monocle is a tool originally designed for single-cell RNA-seq data
analysis for ordering cells by progress through differentiation
stages (pseudo-time). The tool is able to identify genes that
change significantly over the time and that are differentially
expressed across different cell types or conditions. The mean
expression level of each gene is modeled with a GAM which
relates one or more predictor variables to a response variable as

g (E (Y)) = β0 + f1 (x1) + f2 (x2) + . . . + fm (xm)

where Y is a specific gene expression level, and the xi’s are
predictor variables. The function g is a link function, typically
the log function, while the fi’s are non-parametric functions,
such as cubic splines or some other smoothing functions. The
observable (log-transformed) expression level Y is modeled using
a Tobit model censored below a user defined expression detection
threshold. Monocle’s GAM is thus

E (Y) = s
(

ϕt

(

bx, si
))

+ ε

where ϕt

(

bx, si
)

is the assigned pseudo-time of a cell and s is
a cubic smoothing function with (by default) three degrees of
freedom. The error term ε is normally distributed with a mean
of zero. The tool also supports testing for differential expression
between groups. In these tests, the GAM employs the class labels
as predictor variables, with no smoothing. Finally, the test for
differential expression is performed using an approximate χ2

likelihood ratio test.
Since we are interested only in the comparison of genes

among different conditions, the temporal ordering feature
was not used in our study. When creating newCellDataSet
at the beginning of the analysis we used the parameter
expressionFamily = negbinomial() for each dataset. We were not
able to estimate the data dispersion since the function performing
the parametric fit failed both on simulated and real data and
it was not possible to modify it for a local fit and/or a pooled
estimation of dispersion.
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D3E
D3E consists of two separate modules: a module for comparing
expression profiles using the Cramér-von Mises, the likelihood
ratio test, the Kolmogorov-Smirnov test or the Anderson-Darling
test and a module for fitting the transcriptional bursting model
(Peccoud and Ycart, 1995; Chubb et al., 2006; Raj et al., 2006).
This latter provides biological insight into the mechanisms
underlying the change in expression. Initially, the input read
counts are normalized using the DESeq algorithm procedure
and genes that are not expressed in any of the cells are
removed. Second, the Cramér-von Mises (CvM) test (default),
the Kolmogorov-Smirnov (KS) or the Anderson-Darling test
can be used to detect differential expression. Alternatively, the
transcriptional bursting model is fitted for each gene to the
expression data in both conditions and the change in parameters
between the two conditions is tested using the likelihood ratio
test.

In our study, D3E analyses were performed using both the
Cramér-von Mises test (default option) and the Kolmogorov-
Smirnov test.

DESeq
DESeq assumes that the number of reads in a bulk RNA-seq
sample j that are assigned to gene i can be modeled by a negative
binomial distribution withmean and variance estimated from the
data. For each gene, the expectation value of the observed counts
for gene i in sample j, i.e., the mean µij of the NB distribution,
is modeled as the product of the (unknown) expectation value of
the true concentration of reads and a size factor sj accounting for
the sequencing depth. The variance of the NB distribution σ 2

ij is

modeled as the sum of a shot noise terms (µij) and a raw variance
term:

σ 2
ij = µij + s2j vi,ρ(j)

The raw variance term is proportional to the square of the scaling
factor sj and to the expected true concentration of reads vi,ρ(j).
For each gene, the statistical test is performed defining, for each
gene i, the total read counts for each of the two conditions (e.g.,
KiA and KiB, for conditions A and B) and computing, under the
null hypothesis, the p-value as the probability of the events KiA =

a and KiB = b for any pair of numbers a and b, given that a + b
equals the observed sum of counts.

Since DESeq is able to manage only non-zero data, in the
specific cases of Grün and Islam datasets a pseudo-count of
+1 was added to zero counts. Estimation of dispersion was
performed using the “local” option.

edgeR
Similar to DESeq, edgeR models the computed read counts
using a NB distribution. For each gene, the mean µ of the
NB distribution is the product of the total number of reads
and the (unknown) relative abundance of that gene in the
current experimental condition. The variance σ

2 is related to
the mean by σ

2 = µ + αµ2, requiring the estimation of
the over-dispersion parameter α. The method estimates the
gene-wise dispersions using a conditional maximum likelihood
procedure, conditioning on the total read count of each gene

(Smyth and Verbyla, 1996) and an empirical Bayes procedure
to shrink the dispersions toward a consensus value. For each
gene, the differential expression test is performed using the GLM
likelihood ratio test (Robinson and Smyth, 2008).

In our tests, edgeR was run estimating the Tagwise dispersion,
using the glmFit function to fit the data and glmLRT to compare
the two conditions.

RESULTS

Results on Simulated Datasets
The number of selected DEGs resulting from the analysis of
simulated data ranged, on average, from 1,021 to 1,741 with
a number of true positives from 1,018 to 1,534 (Table 2). In
general, all the tools underestimated the number of DEGs with an
average of ∼1,378 called DEGs. D3E_CvM detected, on average,
the highest number of DEGs with the highest variability among
the ten different tests.

For each tool, we calculated the precision and recall values as
described in Section Materials andMethods. The precision-recall
(PR) curves of the different methods are shown in Figure 2A.
The values of Area under the Recall Precision Curve (AURPC)
obtained by the tools specifically designed for scRNA-seq data
analysis tends to be high (Figure 2B), with median value equal
to 0.914, 0.903, 0.902, and 0.885 for MAST, SCDE, D3E_KS, and
Monocle, respectively. Bulk methods showed median AURPC
equal to 0.895 and 0.899, for DESeq and edgeR, respectively.

All methods performed similarly in ranking DEGs, with
the exception of Monocle (dark green line), which showed
very low precision values for the first genes selected at
differentially expressed and high variability between the ten
different performed tests. When looking separately at precision
and recall values (Figures 2C,D), MAST, SCDE, and DESeq
reported the highest values for precision (median of, respectively
0.995, 0.998, and 0.994), which were even higher than the chosen
cut-off of 0.95, but the lowest for recall (median of, respectively
0.574, 0.508, and 0.555). Contrarily, bothD3E_CvM andD3E_KS
together with Monocle showed lower values for precision with
median, respectively of 0.866, 0.909, and 0.935, and higher recall
with respect to the other tools (median between 0.70 and 0.80).

TABLE 2 | Mean number of DEGs (± standard deviation) detected by each

of the assessed tools below the FDR cut-off of 0.05.

Tool No. DEGs No. true DEGs

(mean ± sd) (mean ± sd)

MAST 1,153.00 ± 15.19 1,148.10 ± 15.72

MASTNotCDR 1,149.00 ± 15.55 1,144.10 ± 15.72

SCDE 1,021.30 ± 25.64 1,018.10 ± 24.92

Monocle 1,576.70 ± 8.47 1,471.30 ± 17.17

D3E CvM 1,741.00 ± 34.28 1,507.30 ± 7.78

D3E KS 1,700.70 ± 23.22 1,534.40 ± 16.70

DESeq 1,122.60 ± 16.95 1,116.20 ± 17.75

edgeR 1,564.50 ± 15.50 1,471.10 ± 16.75

The third column reports the average number of true DEGs (± standard deviation) among

the total number of detected DEGs.
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FIGURE 2 | Results of the analysis of simulated data. (A) Global PR curve for all tested tools. (B) Boxplots of global AURPC. (C) Boxplots of global Precision.

(D) Boxplots of global Recall.

edgeR resulted in intermediate values of precision (median equal
to 0.941) and recall (median equal to 0.735) with respect to all
other tools.

The significant difference among tools’ performance scores
were assessed by a Kruskal-Wallis test (Kruskal and Wallis,
1952) followed by a paired Wilcoxon rank test (Wilcoxon, 1946).
For AURPCs we obtained a Kruskal-Wallis p-value equal to
1.46e-12, with Wilcoxon p-value always lower than 3.7e-02 for

the comparison of MAST and MASTNotCDR with any other
method. For precision, we obtained a Kruskal-Wallis p-value
equal to 1.22e-12, with Wilcoxon p-value always lower than
3.90e-03 for the comparison of MAST, MASTNotCDR, SCDE,
and DESeq with any other method. For recall, we obtained a
Kruskal-Wallis p-value equal to 1.75e-13 with Wilcoxon p-value
always lower than 0.58e-03 for the comparison of Monocle, D3E
and edgeR with any other method.
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FIGURE 3 | Boxplots of Precision and Recall of simulated data for all tools, reported for the four Differential Distributions classes.

In order to understand the ability to detect DEGs in the
four different scenarios DE, DP, DM, and DB, we evaluated
precision and recall separately on the four classes of DEGs
defined in Section Materials and Methods. In general, all tools
performed better for the DE and the DM classes, which had the
highest precision and recall values with respect to the other two
classes (Figure 3). For the DE class, MAST showed the highest
precision together with SCDE and DESeq; whereas the highest
recall values were observed for Monocle and edgeR. For the DP
class, precision resembled the results obtained for the DE and the
DM classes, but MAST had a drop in recall, which was instead
the highest for D3E. Also in the case of DB class, the trend
for precision was essentially the same of the other classes, but
recall significantly dropped for all methods. Globally, in terms
of precision, MAST and SCDE and DESeq outperformed the
other tools (Kruskal-Wallis p-value always lower than 1e-08 for
the four classes and paired Wilcoxon test p-value always lower

than 2.70e-02 when comparing MAST, SCDE, or DESeq with any
other method). edgeR and Monocle had the highest recall values
for DE, DM, and DB classes (Kruskal-Wallis p-value equal to
7.89e-09, 8.01e-11, and 4.93e-16 followed by a paired Wilcoxon
test p-value always lower than 5.85e-03, 5.82e-03, and 5.88e-
03, for DE, DM, and DB, respectively, when comparing edgeR
and Monocle with any other method), whereas D3E performed
better than other in recall for the DP class (Kruskal-Wallis p-
value equal to 1.32e-13 followed by a pairedWilcoxon test p-value
always lower than 5.88e-03 when comparing D3E with any other
method).

Results on Real Datasets
The analysis of Islam dataset resulted in a number of detected
DEGs ranging from 271 to 8,401, depending on the tool
(Figure 4). D3E with CvM test (hereafter D3E_CvM) and MAST
without CDR covariate (MASTNotCDR) detected the highest
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number of DEGs compared to other tools. The intersection of
DEGs with Moliner’s reference list of the top 1,000 ranking genes
accordingly to qRT-PCR (Figures 4, 5), was higher for D3E_CvM
(707 common genes) and MASTNotCDR (691 common genes),
followed by edgeR (561), and DESeq (459). On the contrary,
MAST, SCDE, and Monocle showed lower intersection. Figure 4
also shows on the top of each red bar, the fraction of genes, within
the reference list, called as significant, and, on the top of each blue
bar, the ratio between the intersection with Moliner’s reference
list and the total number of called DEGs for each tool. This ratio
can be roughly considered a true positive ratio score, although
keeping in mind that, besides the validation by qRT-PCR, the
number and the identity of true DEGs is not known. Notably,
even having the highest intersection with Moliner reference list,
tools as MASTNotCDR and D3E have the lowest values of ratio
due to the high numbers of called DEGs. The number of DEGs
present in the Moliner’s gene list and consistently called by
all the compared tools was only 23 (Figure 5), due to the low
intersection of MAST DEGs with Moliner’s gene list. Indeed,
when considering common genes among all tools but MAST, 214
commonDEGs were obtained. The highest pair-wise intersection
(135 common DEGs) was shown by D3E and MASTNotCDR,
which were the tools with the highest numbers of called DEGs
(Figure 4). It is interesting to report that a small number of DEGs
were called specifically by each tool with null intersection with
other tools (Figure 5).

FIGURE 4 | Results of the analysis of Islam dataset using as benchmark

dataset the list of top 1,000 DEGs of Moliner et al. (2008). Stacked

barplots of detected DEGs are shown for all tools. The coral bar indicates the

intersection with Moliner reference list. On the top of each coral bar is reported

the ratio of detected Moliner genes among the total 1,000 assumed to be true

positives. On the top of each blue bar is reported the ratio between the

intersection with Moliner’s reference list and the total number of called DEGs.

The 10 datasets derived from Grün et al. (2014) sampling the
P&S samples were then used as negative control to additionally
evaluate the performance of the tools, with an expectation of zero
DEGs. In general, all the tools showed good performance, as they
did not detect DEGs in any of the ten P&S datasets, with the
exception of D3E_KS and D3E_CvM that consistently detected,
in each of the 10 tests, 271 and 422 DEGs, respectively.

Running Time
We performed all the analyses on a HPC cluster consisting
of 6 octa-core IBM Power7 processors, 640 Gb of RAM and
running SUSE Linux Enterprise 11. All the analyses were carried
out using R version 3.3.2 and, for D3E, python version 2.7.6.
The LoadLeveler job scheduling system version 4.1 was used
designing a job for each test and assigning 8 cores to the job, when
the tool supported parallel execution, as in case of MAST, SCDE
and Monocle. We also used LoadLeveler to calculate the Run
Time, which is defined as the difference between exiting time and
starting time. Summary statistics are shown in Table 3, in case
of both parallel (8 cores) and serial (1 core) execution. Among
the tested scRNA-seq tools, MAST was the fastest to run (on
average ∼4 min with 8 cores and ∼17 min with 1 core), whereas
Monocle andD3Ewere themost computationally intensive (∼7 h
and ∼4 days with 1 core, respectively). Tools supporting parallel
execution in general achieved a considerable speed up, especially
Monocle. The remaining bulk methods were generally fast, as
they did not include any heavily time-consuming steps.

DISCUSSION

Design of the Study
In this work, we evaluated the performance of six differential
expression analysis methods on two published scRNA-seq
datasets (Islam et al., 2011; Grün et al., 2014) and 10 simulated
scRNA-seq datasets (Korthauer et al., 2016).

The scRNA-seq dataset published by Islam et al. (2011) was
employed for the assessment, using a list of 1,000 top ranking
DEGs obtained from a quantitative experimental validation
through qRT-PCR as positive controls (Grün et al., 2014;
Kharchenko et al., 2014), as previously done by others (Jaakkola
et al., 2016).

Grün et al. scRNA-seq dataset (Grün et al., 2014) was instead
used as “negative control” for differential expression, as it makes
available P&S samples, consisting of pooled RNA from thousands
of mouse Embryonic Stem Cells split into equivalent volumes.
Indeed, no overall changes in gene expression are expected
between any of these samples since the P&S procedure generates
replicates that in principle are not expected to show any biological
variability.

Since real datasets can provide only partial information in
terms of positive and negative controls, we decided to use also
simulated data to assess the different methods’ performance.

Synthetic datasets were generated using the R scripts provided
by Korthauer et al. along with their package scDD (Korthauer
et al., 2016). The simulation was undertaken to allow an unbiased
evaluation of precision and recall of each tool in detecting
differential expression, focusing on both global results and
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FIGURE 5 | Intersection plot of the tools under comparison. The coral-colored histogram located next to the tools’ names, corresponds to the coral bar of

Figure 4, as it reports for each tool the intersection size (i.e., number of DEGs in common) with Moliner’s reference list. The green-colored histogram shows the

intersection of Moliner’s reference list with different combinations of tools. The “dot matrix” below the figure shows these different combinations by indicating with

black dots the tools considered in the intersection and with gray dots the tools that do not contribute to the intersection.

specific gene categories, namely DE for traditional differential
expression, DP for differential proportions of cells in two-
components distributions, DM for differential modality with one
overlapping component and DB for both differential proportions
and differential modality.

Among the six assessed tools, MAST, SCDE, Monocle and
D3E, were recently developed for the analysis of scRNA-seq data;
while the remaining two, DESeq and edgeR, are among the most
popular tools used for the analysis of bulk RNA-seq data, and are
currently applied also for scRNA-seq. Originally, we tested also
DESeq2 (Love et al., 2014); however, since it achieved consistently
lower performance than its previous version both in term of
precision and recall, we decided to use DESeq.

Number of Detected DEGs
Looking globally at our results, the six analyzed tools had very
different behavior in terms of the number of detected DEGs. All
tools were conservative in calling DEGs on simulated datasets, as
the average number of called DEGs was around 70% of the true
number of simulated DEGs and the proportion was consistent
across different methods.

TABLE 3 | Summary statistics of run time for all tools on simulated data.

Tool Run time (parallel) (avg ± sd) Run time (serial) (avg ± sd)

(dd:hh:mm:ss) (dd:hh:mm:ss)

MAST 00:00:03:52 ± 00:00:00:65 00:00:16:57 ± 00:00:03:47

SCDE 00:00:19:25 ± 00:00:02:02 00:01:26:75 ± 00:00:10:08

Monocle 00:01:05:04 ± 00:00:07:08 00:07:04:44 ± 00:00:11:05

D3E_CvM – 04:19:39:46 ± 00:01:39:35

D3E_KS – 04:18:41:22 ± 00:01:13:33

DESeq – 00:00:26:14 ± 00:00:02:12

edgeR – 00:00:03:23 ± 00:00:01:10

We reported mean and standard deviations of ten tests performed.

The results were consistent across tools even when
considering the number of detected DEGs in Grün datasets,
with the exception of D3E. Indeed, all the tools selected 0
genes as differentially expressed, whereas D3E was the only one
consistently detecting, across the 10 P&S datasets, of the same
DEGs and in particular, 271 genes with KS test and 422 with
CvM test.
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On the other hand, when analyzing Islam dataset, the number
of called DEGs was very different (from 271 to 8,401) across the
different tools used, with MASTNotCDR and D3E calling the
highest number of DEGs.

Control of Precision and Recall
We tested the ability of each tool in detecting true DEGs or
experimentally validated DEGs, in terms of precision, both on
simulated and Islam real dataset (Islam et al., 2011). In case of
the real dataset, the results were difficult to interpret given the
fact that we cannot be sure if the 1,000 genes in the Moliner’s
reference list are actually true positives and if there are not any
other DEGs in the dataset (Moliner et al., 2008).

Globally, the estimated percentage of true positive on
simulated data ranged between 0.84 and 0.99, whereas on real
data it ranged between 0.08 (for MASTNotCDR and D3E_CvM)
and 0.22 (for MAST).

Among the assessed tools, SCDE outperformed the other
methods in terms of precision but, consistently, had a drop
in performance in terms of recall, both on real and simulated
datasets. In particular, on simulated data, the average observed
precision was above the 95% required as input, based on
a FDR threshold of 5%, highlighting a good but slightly
conservative control of false positive, with a consequent loss in
recall.

MAST had a contradictory behavior on simulated with respect
to real dataset. As SCDE, on simulated data the precision for
MAST was above the required cut-off while the recall dropped
to lower values with respect to SCDE. In case of the real dataset,
the inclusion of the CDR covariate highly affected the results,
with a lower number of called DEGs with respect to all the other
tools when including it, and a higher number of detections when
excluding this covariate. In both cases, however, the intersection
size with Moliner’s reference gene list (Moliner et al., 2008) was
small.

Monocle showed a good trade-off between precision and recall
on simulated datasets, with average precision, however, slightly
lower than 95% and a number of false positive genes ranked at top
differentially expressed gene positions, which contributed to the
decrease of its average area under the precision-recall curve. On
real datasets, however, the tool was among the best performing
ones in terms of intersection size with Moliner’s reference gene
list (Moliner et al., 2008).

D3Ewas the tool with the poorest control of false positive rates
on simulated datasets, while performing best in terms of recall.
This trend was consistent also when analyzing the real dataset,
as it had the highest recall but the lowest precision, considering
both Moliner’s reference list (Moliner et al., 2008) as benchmark
for true positive calls and P&S negative control datasets D3E
resulted to be the worst performing tool probably because it’s
not designed to account for data multimodality. Anyway, this
tool includes in the computation the fit of the model of the
transcriptional burst, feature that is very interesting but not tested
in this study as the synthetic data did not simulate this feature of
transcription.

Surprisingly, bulk methods worked well with simulated
scRNA-seq data and showed good performance in handling the

multimodal nature of such kind of data. Indeed, both DESeq and
edgeR, reported a good trade-off between precision and recall
both on real and simulated datasets.

It is worth noting that the relative performance of themethods
used both in our study and in Jaakkola et al. (2016) are consistent,
with SCDE outperforming DESeq and MAST, even if Islam
dataset has been processed in a different way in the two studies.

Performance on Data with Different
Modalities
As regards the comparison of methods performance on different
type of data distributions, in general all the tools performed better
on DE and DM than on DB and DP classes. DB class was the
most difficult class for differentially expressed gene identification;
however, it is probably a rare case scenario in real data. MAST,
SCDE, and DESeq were the best tools in terms of precision in
all the four classes, with recall higher than 75% for DE and DM
classes, but lower than 30% for DP and DB classes.

Computational Performance
In terms of computational performance, all tools performed
reasonably well but D3E. Bulk tools had some of the shortest
execution time, as they did not include any heavily time-
consuming single-cell modeling step. Among the assessed
scRNA-seq tools MAST, SCDE and Monocle support parallel
execution, which significantly shorten the computational time
needed to perform the analysis. In particular, Monocle becomes
∼7 times faster using eight cores.

Limitations of the Study and Concluding
Remarks
Globally, considering our test design, none tool emerged as
the best one. Some of the scRNA-seq tools (MAST and SCDE)
performed best in terms of precision but had a drop in
performance in terms of recall. Others (Monocle and D3E)
had an average trade-off between precision and recall but did
not reach the desired cut-offs for any of these measures. All
tools performed well with Grün datasets, regarding the ability
in detecting true negatives, with the exception of D3E, which
reported a number of DEGs. Finally, bulk methods showed
comparable performance with respect to single-cell tools, also in
handling the multimodality of simulated data.

Even if our results are encouraging, they are still preliminary
and there are some limitations of our approach. The analysis
on synthetic datasets is limited to the two-class comparison,
with differential expressed genes belonging to four differential
distributions, but, for example, the dropout component was not
considered in the data simulation. This could partially explain
why the performance of bulk methods does not differ much from
those of single-cell tools, and could be an interesting aspect to
investigate more in depth. Anyway, in the tested real dataset,
where the dropout phenomenon could be somehow present, the
performance of the bulk methods is still comparable to that
of single-cell tools. This could suggest that the modeling of
the dropout component has a minor role in the accuracy of
differential expression analysis.
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Together with the dropout phenomenon, in future works
it would be interesting to consider aspects such as different
preprocessing strategies and normalization techniques, studying
the effects of these steps on the accuracy of single-cell differential
expression analysis.
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