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Biological age is a concept that takes into account the heterogeneity of the aging
process in different individuals that results in differences in survival and variations
in relative health. Any measure of biological age must be better than chronological
age at predicting mortality. Several quantitative measures of biological age have been
developed. Among them are frailty indices, one of which called FI34 is discussed
here in greater detail. FI34 increases exponentially with age reflecting decline in health
and function ability. It readily depicts different patterns and trajectories of aging,
and it is moderately heritable. Thus, it has been used to identify a genomic region
on chromosome 12 associated with healthy aging. FI34 has also been useful in
describing the metabolic characteristics of this phenotype, revealing both sex and
genetic differences. These differences give rise to specific, testable models regarding
healthy aging, which involve cell and tissue damage and mitochondrial metabolism.
FI34 has been directly compared to various metrics based on DNA methylation as a
predictor of mortality, demonstrating that it outperforms them uniformly. This and other
frailty indices take a top-down, systems based view of aging that is cognizant of the
integrated function of the complex aging system.
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INTRODUCTION

We all notice the passage of time when we inspect our faces in the mirror as the years go by. For
many, this progression is punctuated by disease, and often advancing age is marked by chronic
disease and degeneration. Indeed, the major risk factor for diseases such as macular degeneration,
type 2 diabetes, atherosclerosis, cancer, pulmonary disease, Alzheimer’s disease, osteoporosis, and
arthritis is aging (Sierra, 2016). All of these diseases are accompanied by chronic inflammation, but
we do not know whether this inflammation is a cause or a consequence of these maladies. What
has become clear over the past decade or so is that the contributors to these disorders at the cellular
level are damaged molecules and organelles (Lopez-Otin et al., 2013).

Aging at the cellular level translates to aging of the organism at the physiologic level. Physiologic
functions decline with age. Nerve conductance velocity, maximum heart rate, kidney function,
pulmonary function, and maximum aerobic capacity all decline, at a greater rate with age
in more or less that order (Shock, 1967). Cognitive function in the absence of disease does
not escape this rule. However, crystallized intelligence (vocabulary) tends to remain constant
throughout adulthood, while fluid intelligence which encompasses processing speed, working
memory, and long-term memory appears to decrease monotonically starting at age 20 (Park and
Bischof, 2013). This cross-sectional view of cognition during the lifespan masks marked individual
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variation in cognitive decline (McArdle, 2011). Individuals show
trajectories that include both increases and decreases in cognitive
function even in very old age. These individual differences suggest
that genetic and environmental factors affect functional decline
with age. For example, decline in learning ability during aging
is modulated by the ε4 allele of APOE (Papenberg et al., 2015).
This allele also interacts with life events, an environmental factor,
to impact negative affect in centenarians (Martin et al., 2014).
Individual profiles in age-related changes are also found for
physical function, just as they are for cognitive function.

The organism is complex presenting itself as a non-linear
dynamic system. This is because it is composed of a multitude of
interacting components. During aging, this complexity declines;
in other words, the number of interactions declines. At the level
of various physiologic systems in the body, this translates into
a transition from a highly irregular output to a less complex
and predictable pattern. In terms of function ability, this is
mirrored in a decrease in functionality, and with time it results
in frailty. Thus, the interactions between body components lead
to emergent properties at higher levels of organization that are
not simply the sum of the component parts (Sleimen-Malkoun
et al., 2014). At all levels, there is a decline in connectivity and
functionality with age, rendering the organism less robust and
resilient.

There are tipping points in a human’s lifespan at which
the individual can continue to age healthily/successfully or
decline into frailty and finally disability. A systems approach is
necessary to understand this transition. This conceptualization
is not just a theoretical construct. It has been shown that
there are at least five distinct trajectories of disability during
the last year in the life of nonagenarians (Gill et al., 2010).
These include no disability, catastrophic disability, accelerated
disability, progressive disability, and persistently severe disability.
It is important to identify the genetic and environmental factors
that determine which trajectory an individual will take. In order
to do this, we need a top-down measure that quantitatively
describes the biological age of an organism. Several approaches
for quantification of biological age have been proposed, and they
are mentioned below. This provides context for the remainder
of this article which describes a measure of healthy aging, FI34,
which we have used extensively for the genetic and phenotypic
characterization of this phenotype, with a focus on energy
metabolism.

QUANTITATIVE MEASURES OF
BIOLOGICAL AGE

Several quantitative measures of biological age have been
proposed and used to varying degrees in the past. Many of them
discriminate healthy from unhealthy aging. Centenarians have
been categorized as survivors, delayers, or escapers, on the basis
of the presence of disease (Evert et al., 2003). However, this
classification is not generally useful because most individuals
do suffer from various disorders as they age. Successful aging
has been quantified as a low level of disease and disability,
relatively high physical and cognitive functioning, and an active

engagement in life activities (Rowe and Kahn, 1997). On the other
hand, the clinical syndrome of frailty is defined by the presence of
at least three of the five deficits: weight loss, exhaustion, muscle
weakness, slow gait, and low physical activity (Fried et al., 2001).
This frailty phenotype assumes a compromise in functional
reserve and dysregulation that predisposes to the inability to
recover from stress and can lead to disability.

Frailty indices, also called deficit indices, have been widely
used in aging studies. They incorporate as many as 100 health and
function variables that access a broad array of physiologic systems
(Mitnitski et al., 2001; Rockwood and Mitnitski, 2007; Rockwood
et al., 2007). They sum these deficits and grade the individual
on a scale of 0–1, in which the latter denotes the presence of all
deficits. The utility of this approach is that it takes into account
the heterogeneity of aging across individuals. In addition to this
uncomplicated treatment, multivariate frailty indices have been
applied using a clustering approach to define different forms of
frailty (Dato et al., 2012).

Biomarkers have been used in the place of deficits to fashion
measures of biological aging. Allostatic load conceptualizes the
cumulative biological burden as the body adapts to life stress.
It is operationalized through the measurement of 10 or more
biomarkers that are meant to assess several regulatory systems
and processes (Seeman et al., 2001). Biomarkers have also
been used in a statistical approach that fits them optimally
to age, across all biomarkers; this procedure works well when
chronological age is used to center this fitting (Levine, 2013).
A similar approach has been applied to longitudinal data to
generate estimates of both biological age and the rate of biological
aging (Belsky et al., 2015). A different application of biomarkers
involves their use in a multivariate measure of departure from
the centroid of a healthy-aging population (Milot et al., 2014).
Hierarchical clustering approaches have also been applied to
identify patterns of biomarker age changes that predict survival
(Sebastiani et al., 2017). Recently, DNA methylation markers
have been used in the place of serum biomarkers to generate
multivariate measures of age (Hannum et al., 2013; Horvath,
2013).

Biomarkers are actually used as endophenotypes of the
organismal aging phenotype. Their use assumes that they reflect a
biological process that results in the manifestations of aging of the
organism that increase the risk of mortality. Serum biomarkers
are not the only kind of biomarkers that have been applied to
biological aging. Suites composed of measures of physical and
cognitive function, as well as physical examination and laboratory
values have been used to identify principal components that
are endophenotypes of a long and healthy life (Matteini et al.,
2010).

DERIVATION AND PROPERTIES OF FI34

A frailty index composed of 34 health and physical and cognitive
function variables, called FI34 has been developed (Kim et al.,
2013). It includes 34 symptoms, diseases, and disabilities, and
it is expressed as a fraction, from 0 to 1, of the total presented
by an individual (Supplementary Table 1). Its validation and
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use in the study of healthy aging has been documented, and
this is briefly reviewed below because of the value of FI34
in the development of an understanding of human healthy
aging at the genetic and phenotypic levels. FI34 is better than
chronological age as a predictor of mortality. Indeed, there is
a 27% increase in the hazard of death for every 0.1 increase in
FI34 (p < 0.004), while for every 1.0 year of age this hazard
increases 1.7% (p = 0.124), by Cox regression (uncensored).
This is important because any measure of biological age must
be better than chronological age at predicting survival to be of
value in quantitating the heterogeneity in aging of individuals
in the population. FI34 is a measure of healthy aging, as
lower values of this metric represent fewer health and function
deficits.

FI34 increases with chronological age across a population,
and this increase is best described by an exponential function
(see Kim et al., 2013). The increase in FI34 with age was compared
for the offspring of long- and short-lived parents. The former
had at least one parent who lived past the age of 90, while in
the latter neither parent lived past the age of 75. Interestingly,
the rate of increase in FI34 was greater for the offspring of
short-lived parents at any given age. For example, it was 20%
compared to 12% for offspring of short- and long-lived parents,
respectively, at age 70. Overall, FI34 was 63% (p = 0.0002)
larger in the former, across all ages. Hierarchical clustering of
the variables in FI34 reveals that the patterns of aging they
describe are visibly different for offspring of short- and long-lived
parents. Not surprisingly then, FI34 is moderately heritable, with
an additive (narrow sense) genetic component of 0.39. Consistent
with the heterogeneity of individual age-trajectories of physical
and cognitive function, mentioned earlier, longitudinal analysis
of FI34 across individuals displays substantial plasticity (Kim
and Jazwinski, 2015). This plasticity suggests the operation of
both genetic and environmental factors, raising the possibility of
manipulating healthy aging.

GENETIC CONTRIBUTIONS TO
HEALTHY AGING

Based on its heritability, FI34 has been used in a genome-
wide linkage scan to search for loci associated with healthy
aging (Kim et al., 2015). One such quantitative trait locus
(QTL) was found on chromosome 12 (12q13-14). Fine mapping
of this locus was then performed in a different population,
using over 300 single-nucleotide polymorphisms (SNP). This
divided the 1 Mb QTL into three healthy aging-associated sites
(HAS). As it turned out, many of these SNP are also associated
with longevity in a highly significant manner (Kim et al.,
2015).

HAS-1 (∼20 kb), HAS-2 (∼140 kb), and HAS-3 (∼70 kb)
are located in intergenic regions at 12q13-14 (Kim et al., 2015).
HAS-1 has previously been associated with several diseases
(coeliac, type 1 diabetes, rheumatoid arthritis, multiple sclerosis),
and it has protein-coding genes in its vicinity. It has the
features of an enhancer, and this function has been validated
experimentally in multiple cell lines. Among the regulatory

signatures in this region are histone modifications characteristic
of regulatory elements including promoters, transcription factor
binding sites, DNase I hypersensitive sites, and CpG islands. One
of the signature SNP is located in a CCAAT/enhancer binding
protein (C/EBP) binding site, displaying enhancer activity in
luciferase reporter assays. HAS-2 also possesses marks typical
of a strong enhancer, but it lacks the histone modifications
typical of promoters which is consistent with the lack of
protein-coding genes in its vicinity. The chromatin features
of HAS-2 coincide with enhancer activity across several cell
lines. Several SNP in HAS-2 are associated with transcription
of genes on different chromosomes. On the other hand, HAS-
3 has the chromatin features of a repressor. It has a long
intergenic non-coding RNA (lincRNA) sequence, and it contains
multiple Polycomb-repressed blocks in one cell line. Two
genes flanking this genomic region are validated targets of
Polycomb silencing. It would appear that HAS-2 and HAS-3
may act on distant genomic regions, as enhancer and repressor,
respectively. Altogether, the genomic annotations recited here
conjure up the operation of regulatory elements that affect
the expression of a network of genes associated with healthy
aging.

METABOLIC PHENOTYPE ASSOCIATED
WITH FI34

Ultimately, our goal is to understand the factors that contribute
to a healthy aging trajectory, as opposed to one that leads
to disability. We wondered whether there is an energetic
cost associated with healthy aging. Total energy expenditure
(TEE) is composed of three components: resting metabolic rate
(RMR), activity energy expenditure (AEE), and diet-induced
thermogenesis. These components make up 60–70%, 20–30%,
and about 10% of TEE, respectively. AEE and maximum aerobic
capacity (VO2 max) together make up the energy reserve, which
is the total energy that can be devoted to physical activity. TEE,
RMR, and AEE all decline with age (Kim and Jazwinski, 2015).

FI34 increases with age, so one would expect that TEE, RMR,
and AEE measures of energy metabolism would have a reciprocal
relationship to FI34. However, RMR increases as FI34 becomes
larger (Kim et al., 2014). This association is maintained even after
adjustment for age, sex, body composition, circulating insulin-
like growth factor 1 (IGF-1), circulating thyroid hormones (T3
and T4), and TEE. It still remains when circulating creatine kinase
(CK) levels are included as a covariate. In fact, body composition
in the form of fat-free mass (FFM) and fat mass (FM), as well as
CK, are significant predictors of FI34 along with RMR.

The complicated association of FI34 and RMR gains some
clarity when it is separately examined in males and females
(Figure 1). It becomes evident that in the nonagenarians
examined here the positive relationship of FI34 and RMR plays
out somewhat differently in males and females. In the former, CK
levels are also involved, while in females it is body composition
(FFM and FM). Clearly, the overall age-related decline in RMR
is only applicable to healthy nonagenarians, while in unhealthy
ones (higher FI34) it is reversed. It has been proposed that this
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FIGURE 1 | Body composition and creatine kinase levels are
associated with FI34 in females and males, respectively. (A) Female and
(B) male nonagenarians were compared. FI34 is the outcome variable
presented as a standardized coefficient in multiple linear regressions. The
explanatory variables are CK, FFM, FM, and RMR. The sample size (N) and
the coefficient of determination (R2) with p-value are shown. ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001, for the standardized coefficients for each variable.
Based on data from Kim et al. (2014).

RMR increase constitutes a device to maintain homeodynamics
in the oldest-old as their health deteriorates (Kim and Jazwinski,
2015).

In sum, there is a metabolic cost to unhealthy aging/frailty in
both males and females. It manifests itself as an increase in RMR
for maintenance of integrated body function. This constitutes a
metabolic compensation that allows the organism to make do in

a worsening situation. The increase in RMR in males is associated
with an increase in circulating CK levels, which are a measure
of tissue damage. In females, increased RMR is associated with
a decline in muscle mass (FFM). Furthermore, females display
a related decrease in physical activity levels (Kim and Jazwinski,
2015).

GENETIC INPUTS TO THE METABOLIC
PHENOTYPE OF FI34

There are also genetic differences underlying the differences in
association of FI34 and RMR in males and females. Circulating
CK levels in males (not females) are associated directly with
cardiac problems and inversely with healthy kidney function,
supporting the notion that CK levels reflect tissue damage (Kim
et al., 2016b). Physical activity appears to have a protective
effect. Potential regulatory variants in the genes XRCC6 and
LASS1 are associated with lower circulating CK levels in males
but not in females (Kim et al., 2016b). [XRCC6 has been
associated with telomere length during aging (Kim et al., 2012),
and LASS1 has been associated with longevity and healthy
aging (Jazwinski et al., 2010).] Interestingly, XRCC6 encodes
Ku70 which is known to prevent cell death by binding Bax, a
protein that activates a mitochondrial cell death pathway. LASS1
encodes ceramide synthase whose product ceramide triggers
apoptosis in caspase-dependent and -independent pathways.
This prompts a model in which metabolic and genomic stress
associated with unhealthy aging in males lead to a decrease
in Xrcc6p and increase in Lass1p activity resulting in cell
death, and this is associated with increased heart problems,
decreased kidney function, and other damage, and the related
increase in RMR that we found. The effects of the variants
in the two genes on transcription are consistent with this
model.

In females, the genetic factors contributing to the observed
increased RMR when FI34 increases are different than in males
(Kim et al., 2016a). Mitochondrial activity appears to be involved
more directly. Regulatory variants in the promoter of the UCP2
gene that can affect transcription factor binding and expression
of the gene are associated with FI34. This association is not
found in males. The mitochondrial uncoupling protein Ucp2
encodes a mitochondrial inner membrane transporter (Vozza
et al., 2014). Increased Ucp2 activity portends a switch from
glucose to glutamine utilization as fuel, and it coincidentally
lowers mitochondrial membrane potential and the ATP:ADP
ratio. Variation in the uncoupling protein gene UCP3 is also
associated with FI34 in females but not in males. The SNP
examined is located in the 3′-untranslated region (3′-UTR) of
the gene, and it is known to increase its expression. This SNP
interacts with RMR to affect FI34, suggesting that the net effect
is to increase the rate or intensity of mitochondrial activity (Kim
et al., 2016a). These alterations in mitochondrial metabolism
promoted by increased Ucp2 and Ucp3 protein activities would
compensate for loss of muscle mass in females. The genetic
analyses described here further support the importance of energy
metabolism in healthy aging.
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FIGURE 2 | Comparison of effect sizes for hazards of death. Cox proportional hazards regressions were applied to the survival data of 262 subjects ages
60–103 and are presented as Z scores. Age, FI34, DNA methylation age (DNAm Age), Age Acceleration Difference (Age Diff), and Age Acceleration Residual (Age
Resid) are the covariates. (A) All subjects, (B) nonagenarians (N = 161). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. This figure has been adapted from Kim et al. (2017)
under the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

FI34 AND DNA METHYLATION AGE AS
MEASURES OF BIOLOGICAL AGE

DNA methylation markers have been proposed as measures of
aging. In particular, DNA Methylation Age and its derivatives Age
Acceleration Difference and Age Acceleration Residual, based
on methylation at 353 specific CpG sites have gained particular
traction recently (Horvath, 2013; Horvath et al., 2015; Marioni
et al., 2015; Chen et al., 2016; Christiansen et al., 2016; Perna
et al., 2016). They have been compared side-by-side recently
as measures of biological age, based on their ability to predict
survival (Kim et al., 2017). In the presence of age as a covariate,
these DNA methylation related measures were not significant
predictors of survival, while FI34 retained significance. In fact,
it retained significance even in the presence of these DNA
methylation related measures (Figure 2). What is more, only FI34
was a predictor of survival in nonagenarians; age itself was not a
predictor. Thus, FI34 is a robust predictor of the hazard of death,
containing information that age alone does not, while the DNA
methylation related measures merely reflect chronological age
with no significant added information. This suggests that a firm
biological rationale is important before sophisticated statistical
treatment is applied.
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