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Critical cancer mutations are often regional and mosaic, confounding the efficacy
of targeted therapeutics. Single cell mRNA sequencing (scRNA-seq) has enabled
unprecedented studies of intra-tumor heterogeneity and its role in cancer progression,
metastasis, and treatment resistance. When coupled with DNA sequencing, scRNA-seq
allows one to infer the in vivo impact of genomic alterations on gene expression. This
combination can be used to reliably distinguish neoplastic from non-neoplastic cells,
to correlate paracrine-signaling pathways between neoplastic cells and stroma, and to
map expression signatures to inferred clones and phylogenies. Here we review recent
advances in scRNA-seq, with a special focus on cancer. We discuss the challenges
and prospects of combining scRNA-seq with DNA sequencing to assess intra-tumor
heterogeneity.
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BACKGROUND

Next-generation sequencing (NGS) based studies have identified critical genetic alterations in a
variety of malignancies (Brennan et al., 2013; Hoadley et al., 2014; Bai et al., 2015; Furnari et al.,
2015; Ceccarelli et al., 2016; Cancer Genome Atlas Research Network, et al., 2016; Wang J. et al.,
2016). However, relatively few targeted therapeutics are curative. Intra-tumor heterogeneity has
emerged as an essential parameter confounding the delivery of a complete treatment (Saunders
et al., 2012). Assessing tumor heterogeneity from bulk RNA or DNA extractions is limited to either
inter-tumor comparisons (Cancer Genome Atlas Research Network, 2008; Müller et al., 2015),
or comparisons across a small number of stereotactic biopsies (Gerlinger et al., 2012). Obtaining
multi-region biopsies during complex cancer surgeries represents a major challenge. Moreover,
inferring the contribution of specific tumor sub-clones and/or stromal cell-types from these data
is a computationally difficult task, with a degree of uncertainty (El-Kebir et al., 2015; Turajlic et al.,
2015).

The past decade has seen rapid advances in protocols for the faithful reverse-transcription (RT)
and amplification of RNA from individual cells (Tang et al., 2009; Zong et al., 2012; Chapman
et al., 2015). Microfluidic and other methods for single-cell isolation and library preparation have
brought high-throughput single-cell RNA-sequencing (scRNA-seq) into the mainstream (Patel
et al., 2014; Ting et al., 2014; Kim et al., 2015; Min et al., 2015; Hou et al., 2016; Li et al., 2016; Tirosh
et al., 2016b; Gerber et al., 2017; Winterhoff et al., 2017). The limitations and uses of these novel
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data are still being defined. However, most state-of-the-art
algorithms for analyzing sequencing data were not designed
with single-cell studies in mind (Stegle et al., 2015; Bacher and
Kendziorski, 2016).

Computational biologists are racing to keep up (Tanay and
Regev, 2017). Novel analysis tools for single-cell cancer studies
are being rapidly developed (Garmire et al., 2016). Already,
scRNA-seq has led to groundbreaking insights into clonal
tumor evolution (Navin et al., 2011), metastatic dissemination
(Lawson et al., 2015), the development of chemo-resistance
(Kim et al., 2016), and interactions between tumor and stromal
cells (Choi et al., 2015). In this review, we summarize current
advances in the acquisition and analysis of scRNA-seq data
from samples of tumor tissue. We focus on the integration of
orthogonal assays and future directions for scRNA-seq in cancer
research.

SINGLE-CELL RNA SEQUENCING IN
COMPLEX TUMOR-TISSUE

With only approximately 1pg of RNA in a single cell, and
a median transcript abundance of fewer than 100 copies per
gene, unbiased library-generation from such a small amount
of starting material is challenging (Macaulay and Voet, 2014).
The technical limitations of library generation for single-cell
RNA-seq include non-uniform transcript coverage (3′ bias), and
non-linear library amplification. Strategies are being actively
developed to minimize these effects (Kolodziejczyk et al.,
2015).

Two recent publications compared protocols for single-cell
library-generation (Svensson et al., 2016; Ziegenhain et al., 2017).
Both papers compared sensitivity and accuracy across protocols,
using synthetic-RNA spike-in controls as a gold-standard. The
advantage of using a gold-standard is the ability to assess
not just sensitivity (which could be inferred without spike-in
controls), but also accuracy. If cDNA copy-number accurately
reflects mRNA abundance in single cells, then these data can be
used quantitatively to compare expression within and between
individual cells. The caveat of these studies is that synthetic-RNA
spike-in controls are subject to library-preparation effects,
treatment effects and other technical biases not observed
when cloning cDNA from tissue-derived RNA (Risso et al.,
2014).

Nonetheless, these two studies found that Smart-Seq2 was the
most sensitive method. For example, almost twice as many genes
per cell were detected via Smart-Seq2 when compared to Drop-
seq, given similar sequencing depths. These two approaches
represent two ends of the spectrum, in terms of trade-offs
between transcriptome coverage and number of cells profiled.
Methods that use standard oligo-dT primers (e.g., Smart-seq2),
as compared to mRNA-capture beads (e.g., Drop-seq), have
greater transcriptome coverage in terms of the number of
distinct genes-sequenced, and greater coverage of the 5′ end
of individual transcripts. The latter is especially useful when
studying expressed mutations in cancer samples. Protocols
like Smart-seq2 are typically applied in multi-well plate or

microfluidic-chip based platforms that have a throughput of
hundreds of cells. Droplet-based methods capture thousands of
cells at a time.

Not surprisingly, batch effects have been observed when
comparing batches of cells captured in separate assays (Tung
et al., 2017). Specifically, the proportion of measured genes
typically accounts for the major proportion of observed
variability between batches (Hicks et al., under review). Best
practices of experimental design, such as randomized blocking,
are advised whenever possible. Statistical methods can also be
used to adjust for batch effects a posteriori (Finak et al., 2015).

The effect of tissue dissociation on the efficiency of single-cell
cDNA-library generation remains poorly understood. Some
cell-isolation protocols for scRNA-seq may be biased toward
certain cell types. For example, microfluidic platforms for
automated library construction use chips which are graded to
isolate cells of a given size (Müller et al., 2016). Biases present
in droplet-based scRNA-seq platforms, for or against certain cell
types, have not yet been fully investigated. Tumor disassociation
protocols often involve cell selection by straining and/or density
gradients (Venteicher et al., 2017). Fluorescence-activated
cell sorting approaches to cell isolation followed by library
preparation via Smart-seq2 provide perhaps the most flexible
approach to apply scRNA-seq a specific, tumor-infiltrating cell-
type of interest.

With the advent of droplet-based methods, there has been a
trend to sequence more cells at lower coverage. This leads to a
lower library-complexity per cell, and gives rise to the question:
how many cells are required to obtain representative results
from scRNA-seq data? As little as 50 cells have been shown to
be sufficient to achieve a per-gene coefficient-of-variation that
is comparable to a standard bulk RNA-seq experiment when
sequencing a cell line (Shapiro et al., 2013). In another recent
scRNA-seq study, only five cells from a patient-derived xenograft
were required to represent 70% of the genes found in a bulk
extraction (Kim et al., 2015), and robust transcriptome-wide
correlations between single-cell and bulk experiments were
observed when the sample sizes were increased to 35–50 cells.
However, in both examples, cells were derived from relatively
homogeneous populations.

Sample-size estimation in complex tissue, such as biopsies of
patient tumors with a high degree of stromal infiltrate, remains
an open problem. Given the wide range in cellular heterogeneity
across cancer types, a one-size-fits-all recommendation as to
sample size is likely impossible. However, techniques from
capture statistics can be used to estimate sample sizes ad hoc, from
pilot studies (Daley and Smith, 2013). Standards for sequencing
depth per cell and methods to assess single-cell library complexity
are beginning to emerge (Daley and Smith, 2014; Wu et al., 2014;
Grün and Van Oudenaarden, 2015; Bacher and Kendziorski,
2016; Diaz et al., 2016). The majority of genes expressed in a
cell are detected at a read-depth of 250,000–500,000 reads (Wu
et al., 2014; Bacher and Kendziorski, 2016). If the goal is to
survey cell diversity in an unbiased fashion, classify cell types
by expression profile, and infer the proportions of each cell
type, then even 50,000 reads per cell have been shown to be
sufficient (Pollen et al., 2014). On the other hand, greater depth of
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coverage per cell is required to rigorously distinguish neoplastic
from stromal cells, or to triage cells by the presence or absence
of expressed mutations. We now discuss how low sequencing
depth, low cDNA library complexity, and other technical factors
impact the ability to fully integrate DNA sequencing with
scRNA-seq.

QUANTIFYING EXPRESSED MUTATIONS
IN scRNA-seq

In principle, single-nucleotide variants (SNVs) and small
insertions/deletions (INDELs) in expressed regions can be
detected in scRNA-seq. In contrast to the detection of SNVs from
exome sequencing (exome-seq), there are additional challenges
inherent to quantifying SNVs in scRNA-seq (Piskol et al., 2013).
Calling SNVs de novo from RNA sequencing (RNA-seq) is
challenging, even from deeply sequenced bulk-RNA extractions.
Variability in gene expression and allele-specific expression
contribute significantly to the error rate (Castel et al., 2015). For
scRNA-seq, these challenges are magnified by low coverage. Some
scRNA-seq library prep protocols also impart additional coverage
bias toward the 3′ end of the gene (Chapman et al., 2015),
contributing to the dropout rate in SNV quantification in SNVs
near the 5′ end. The most robust approaches to quantifying SNVs
in single cells have integrated orthogonal data, to classify cells
based on expressed mutations that were called first from DNA
sequencing. For example, two recent studies combine scRNA-seq
with exome-seq to map transcriptional signatures to inferred
clones.

Kim et al. (2015) studied the effect of intra-tumor
heterogeneity on anti-cancer drug-response using scRNA-seq
and bulk exome-seq of patient-derived xenograft (PDX)
tumor cells from a lung-adenocarcinoma patient. In a novel
demonstration of the possibilities of single-cell data-integration,
they correlated the presence of a KRAS mutation in individual
cells to an expression signature characteristic of RAS/MAPK
pathway activation. The study also revealed the technical
limitations of quantifying SNVs in scRNA-seq. From more
than 1,000 somatic SNVs identified via exome-seq, only 50 were
expressed in more than three cells. Nonetheless, they did quantify
a set of highly prevalent mutations affecting known oncogenes.

In another study, here of oligodendroglioma (Tirosh et al.,
2016b), Tirosh and colleagues identified stem-like cells as
the main source of tumor proliferation and the apex of
a developmental hierarchy. To distinguish malignant from
non-malignant cells, they developed a strategy to quantify
the sensitivity of scRNA-seq in detecting somatic SNVs. The
authors compare the variant-allele frequencies (VAFs) observed
in exome-seq to the cellular frequencies of expressed mutations
found in scRNA-seq. On average, somatic SNVs called from
exome-seq could be validated in only 1.3% of the expected
fraction of cells. Not surprisingly, the sensitivity of detection
in scRNA-seq was positively correlated with gene expression
levels. Ultimately, the authors found that they had much greater
sensitivity in quantifying large-scale copy-number variants
(CNVs), than they had with SNVs.

Large-scale CNVs are proving to be a genomic alteration that
can be robustly quantified both in exome-seq (Alerting et al.,
2012; Zack et al., 2013; Wang et al., 2015; Witkiewicz et al., 2015)
and scRNA-seq (Patel et al., 2014; Müller et al., 2016; Tirosh
et al., 2016a,b). While the expression level of an individual gene
may be stochastically up- or down-regulated independent from
its DNA copy-number, tumor/normal exome-seq read-count
fold-changes correlate with single-cell expression-trendlines over
megabase-scale regions (Peña-Llopis and Brugarolas, 2013; Hou
et al., 2016; Müller et al., 2016). Moreover, by using a scRNA-seq
data set from a relevant non-malignant tissue as a normal control,
the error rate in quantifying the presence/absence of large-scale
CNVs (called from exome-seq) in individual cells (assessed by
scRNA-seq) can be rigorously controlled (Müller et al., 2016). It’s
worth noting that large-scale CNVs are in principle detectible
based on estimates of gene abundance alone, sequencing the
entirety of each mRNA transcript is therefore not required.
When large numbers of cells are sequenced simultaneously,
cost-reduction strategies such as sequencing only the 3′ end of
each mRNA are often employed. While most expressed SNVs and
INDELs would be lost with 3′ sequencing, it is entirely compatible
with large-scale CNV detection. All in all, for researchers who
want to use scRNA-seq with heterogenous tumor samples, where
neoplastic cells must be reliably separated from stromal and
immune cells, augmenting scRNA-seq with exome-seq is a
cost-effective strategy for achieving specificity while producing
versatile data.

FILTERING AND CLASSIFYING
STROMAL AND IMMUNE CELLS FROM
WHOLE-TUMOR scRNA-seq

While bulk RNA-seq experiments can only estimate the fraction
of stromal and immune cells (Yoshihara et al., 2013; Becht et al.,
2016), scRNA-seq gives information about the identity of every
cell sequenced (Wagner et al., 2016). Neoplastic cells can often
be distinguished from stromal/immune cells via a clustering of
gene expression profiles (Satija et al., 2015). However, some
degree of stochastic mixing inevitably occurs when clustering
cells by gene expression. Neoplastic cells can also express genes
typically associated with immune cells, further adding to the
ambiguity of classification via clustering alone (Patel et al.,
2014).

The inference of large-scale CNVs from scRNA-seq data
has become one of the most reliable techniques to distinguish
neoplastic from stromal/immune cells (Tirosh et al., 2016a).
For example, Tirosh et al. (2016b) used the presence of the
1p/19q co-deletion in oligodendrogliomas [a hallmark of that
disease (Yip et al., 2012)] to identify neoplastic cells. Of the
approximately 7% of cells that lacked detectable CNVs, all
expressed markers of microglia or oligodendrocytes, confirming
their approach. A related computational technique that can be
used to add support to inferred, large-scale CNVs uses the VAFs
of heterozygous germline mutations. Changes in copy number
will skew the observed VAFs of heterozygous germline SNVs.
Analysis of germline SNV VAFs is integrated into state-of-the-art

Frontiers in Genetics | www.frontiersin.org 3 May 2017 | Volume 8 | Article 73

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-08-00073 May 31, 2017 Time: 14:9 # 4

Müller and Diaz Single-Cell Transcriptomics Meets Cancer Genomics

FIGURE 1 | Continued
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FIGURE 1 | Classification of genomic mutations in single cells distinguishes neoplastic cells from immune infiltrate. (A) Left: The depth ratio of exome-seq reads from
bulk tumor and blood control (x-axis) along autosomes (y-axis) identifies large-scale CNVs in a primary GBM. Middle: The detected genomic CNVs are reflected in
single cells (columns) from the same case after normalizing the mean expression, within windows of 100 adjacent genes, by the mean expression in a normal brain
control (red: fold-change > 1, blue: fold-change < 1). Hierarchical clustering (complete linkage, Euclidean distance) reveals three cells lacking large-scale CNVs.
Right: A comparison of total sequencing depth on chromosome 7, measured by the sum-total counts per million (CPM), in individual cells between the tumor biopsy
and a normal brain control. The 5% significance level of the control distribution is indicated by dotted lines. (B) Left: The VAF of heterozygous germline mutations
(x-axis) deviates from 0.5 in regions of copy number alterations, here chromosome 10 is given as an example. Middle: Three heterozygous germline SNVs change in
VAF (0.5 in blood sample) between blood (B) and tumor (T) exome-seq. In RNA-seq of individual cells, only the reference (blue) or the variant allele (red) are observed.
Three cells are outliers, expressing both alleles. Right: The presence of both alleles in these three cells verifies their previous classification as non-neoplastic based on
CNVs. (C) Left: Circos-plot of somatic SNVs detected by Mutect from exome-seq, for all autosomes. Middle: Histogram of somatic SNVs (y-axis) detected in single
cells (x-axis). Right: 67% of cells can be classified as tumor cells due to the presence of at least one somatic SNV that has been validated in exome-seq.

algorithms to detect large-scale CNVs from exome-seq data
(Favero et al., 2015), but its utility has not yet been explored in
scRNA-seq data. As opposed to somatic SNVs, germline SNVs
have been shown to have less allelic bias (Li et al., 2015). This
suggests that germline-SNV VAF analysis can provide additional
evidence to confirm large-scale CNVs.

Integrating an auxiliary exome-seq experiment provides a
cost-effective way to rigorously separate neoplastic from stromal
and immune cells, in scRNA-seq data. In this context, we
propose separating cells based on four sources of evidence:
(1) large-scale CNVs that are observed in both platforms; (2)
the VAFs of germline SNVs, compared between platforms; (3)
somatic SNVs found in both platforms; and (4) a clustering
of scRNA-seq transcriptional profiles. As an example, we
apply the above criterion to previously published scRNA-seq
and matched exome-seq from a primary human glioblastoma
(GBM) biopsy, SF10360 (Müller et al., 2016). Exome-seq
revealed large-scale CNVs common in GBM, including a
gain of chromosome 7 and a loss of chromosome 10 (Li
et al., 2012). Both occurred with high VAF. Plotting gene
expression, in sliding windows of 100 adjacent genes and
normalized by a non-malignant brain control (Darmanis
et al., 2015), indicates the presence of these two mutations
in all but three cells (Figure 1A, middle). We previously
described an approach to rigorously classify the presence of
large-scale somatic CNVs in single cells, by comparison to
a set of non-malignant control cells (Müller et al., 2016).
These three cells show no evidence of CNVs, based on
that method (Figure 1A, right). Next, consider heterozygous
germline SNVs with differences in VAF between blood and
tumor exome-seq. Cells harboring heterozygous germline SNVs
in regions of copy-number loss should only express either
the reference or the variant allele, thus providing further
support for single-cell CNV calls. Three germline SNVs, two
on chromosome 10 and one on chromosome 17 fulfill these
criteria (Figure 1B, left). While there is only one allele found
in putative neoplastic cells, the three cells which lack clonal,
large-scale CNVs express both the reference and germline
variants (Figure 1B, middle). Furthermore, of the somatic
SNVs identified in exome-seq (Figure 1C, left), 67% of cells
express at least one (Figure 1C, middle). Cells not classified
as neoplastic (based on large-scale CNV and germline-SNV
analysis) are devoid of somatic SNVs (Figure 1C, right),
further confirming their status as non-neoplastic cells. Finally,
hierarchical clustering in the space of GBM marker-genes as well

as tumor-associated-macrophage markers reveals two clusters
of cells (Supplementary Figure S1). The 3 putative non-
malignant cells clustered separately and express high levels of
macrophage/microglia markers. Taken together, we can classify
these three cells as non-neoplastic, infiltrating immune cells
based on our four criteria.

ACCESSING INTRA-TUMOR
HETEROGENEITY

Large-scale molecular profiling has identified prognostic cancer-
subtypes based on transcriptional signatures (Brennan et al.,
2013; Cancer Genome Atlas Research Network, 2013, 2014a,b;
Bass et al., 2014; Cancer Genome Atlas Research Network, et al.,
2016; Wang Q. et al., 2016). However, recent scRNA-seq studies
have revealed that most tumors are a heterogeneous composition
of cells conforming to multiple subtypes (Figure 2A) (Patel et al.,
2014; Müller et al., 2016). Since a variety of genomic alterations
are detectible in scRNA-seq data, scRNA-seq can be used to
analyze intra-tumor heterogeneity at both the transcriptional and
mutational levels simultaneously. This is useful for studying how
intra-tumor heterogeneity arises in the first place. Several groups
have begun to use scRNA-seq data to address the fundamental
question of how tumors propagate through cellular hierarchies
(Müller et al., 2016; Tirosh et al., 2016b; Woodworth et al.,
2017).

In the cancer stem-cell model, a small population of stem-like
cells gives rise to differentiated, phenotypically diverse progeny
with limited proliferative potential (Ghaffari, 2011). Assuming
that the majority of these cancer stem-cells persist in a
slow-cycling or quiescent state, as observed in some cancers
(Dembinski and Krauss, 2010; Chen et al., 2012), the genetic
diversity of the tumor is largely explained by the genetic
diversity within the stem-cell population. In the model of
clonal evolution, those acquired mutations which provide a
selective advantage will expand (Greaves and Maley, 2012).
These two models are not strictly contradictory. The progeny of
cancer stem-cells may retain proliferative potential and thereby
contribute additional mutations. If cancers follow the stem-cell
model, clonal evolution, or a mixture of both, or if this even
depends on the cancer type currently remains an open question
(Shackleton et al., 2009). ScRNA-seq is uniquely suited to address
this challenge. Two recent studies have performed this type of
integrated analysis, both in glioma.
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FIGURE 2 | Continued

FIGURE 2 | Assessments of intra-tumor heterogeneity made possible by
scRNA-seq. (A) Percentage of single cells associated to a given GBM
subtype. Adapted from Müller et al. (2016). (B) Estimation of cycling cells. An
average of G1/S and G2/M scores > 1.2 classifies cells as cycling (labeled in
red, green, or blue) or non-cycling (labeled in black). (C) Comparison of
stem-like expression signatures for individual cells, based on marker genes
canonical to GBM stem-cells: CD44, CD133 (PROM1), NES, KLF4, MYC,
NANOG, STAT3, SOX2, MET (x-axis) and marker genes published by Patel
et al. (2014) (y-axis).

Working with high-grade glioblastomas, Müller et al. (2016)
first identified large-scale CNVs from exome-seq data and then
classified individual cells according to the presence or absence
of these alterations via scRNA-seq. Using standard phylogenetic
approaches, they then organized cells into mutational hierarchies.
They found that these hierarchies correlated with transcriptional
hierarchies of cell-types found in the developing brain. Tirosh
et al. (2016b) took a complementary perspective and first
organized their low-grade glioma scRNA-seq data based on
hierarchies of transcriptional phenotypes, corresponding to stem
cells and their differentiated progeny. They then cross-referenced
validated, expressed mutations. In contrast to Müller et al.
(2016) they found that their transcriptional and mutational
hierarchies were largely uncorrelated. While in Müller et al.
(2016) found that differentiated cell types more frequently
harbored sub-clonal mutations then stem-like cells, Tirosh et al.
(2016b) found that sub-clonal mutations occurred with equal
frequency in both stem-like and differentiated populations. The
interpretation of Tirosh et al. (2016b) was that in their low-grade
gliomas proliferation was restricted to stem-like cells. By contrast,
the data of Müller et al. (2016) support an expansion in
high-grade glioblastoma of proliferative cell-types that do not
have a stem-like transcriptional signature, but rather the mRNA
profile of an oligodendrocyte progenitor or migrating neuroblast.
An expansion of transit-amplifying, proliferative cell-types in
high-grade glioblastoma, relative to low-grade glioma, is also
supported by a cell-cycle analysis of the scRNA-seq expression
signatures. For example, in the glioblastoma case SF10360
described in Müller et al. (2016) cycling cells can be immediately
identified and classified by cell-cycle stage (Figure 2B). Cycling
glioblastoma cells are frequently depleted of both the glioma-
stemness genes identified by Patel et al. (2014), as well as
classical glioma stem cell markers (Figure 2C) (Bradshaw et al.,
2016). This type of analysis, where cells are separated based on
genomic alterations, transcriptional phenotypes (e.g., stem-like
expression pattern), or cell state (e.g., cycling cells), demonstrates
the versatility of scRNA-seq data.

PREDICTING OF INTERACTIONS
BETWEEN THE TUMOR AND THE
MICROENVIRONMENT

Tumor-infiltrating stromal and immune cells contribute
significantly to tumor heterogeneity (Augsten, 2014). While
computational models for predicting tumor-stroma crosstalk
from bulk-extraction sequencing experiments are under
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FIGURE 3 | Inference of TAM-tumor crosstalk from scRNA-seq. Genes encoding ligands robustly expressed by at least 20% of TAMs with an average expression
>2 CPM are paired with genes encoding their cognate receptors that are expressed in tumor cells. Each row represents a potential tumor-TAM interaction, bars
represent the percentage of cells expressing each mRNA, colors indicate mean expression across cells.
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development (Hackl et al., 2016), scRNA-seq also provides a
powerful tool to infer paracrine-signaling networks. For example,
in glioma, tumor associated macrophages/microglia (TAMs) are
the most abundant immune infiltrate and can reach up to
30% of the total tumor mass (Cretu et al., 2005). By simply
cross-referencing gene expression levels in single TAMs and
neoplastic cells sequenced from SF10360 (Müller et al., 2016),
with the receptor-ligand pairs from CCCExplorer (Choi et al.,
2015), one can infer a myriad of potential crosstalk (Figure 3).
Here we see that TAMs express a variety of growth factors
and growth-promoting cytokines, while neoplastic cells from
the same sample express their cognate receptors. ScRNA-seq
thus provides a powerful hypothesis-generating mechanism for
paracrine-signaling studies.

CONCLUSION

Recent advances in scRNA-seq have led to novel insights
in cancer development, progression, metastasis, and
drug-resistance, that were previously “veiled” by the mixing of
cells intrinsic to standard bulk-sequencing experiments. Still, a
variety of challenges go hand in hand with this rapid progress.
For example, reliably distinguishing between neoplastic and
infiltrating stromal/immune cells requires more than an analysis
of transcriptional profiles alone. Analysis of expressed SNVs,
CNVs, and other mutations from scRNA-seq can be used to
filter stromal from neoplastic cells, and to map gene-expression
signatures to putative tumor sub-clones. While most cancer
scRNA-seq studies to date have focused on tumor cells,
applications of scRNA-seq to paracrine-signaling studies of the
tumor microenvironment are an exciting frontier. Therefore,
scRNA-seq is a powerful tool for understanding the molecular

processes that govern one of the most difficult diseases of our
time: Cancer.
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