
ORIGINAL RESEARCH
published: 29 May 2015

doi: 10.3389/fict.2015.00009

Edited by:
Luca Viganò,

King’s College London, UK

Reviewed by:
Yannick Chevalier,

Université de Toulouse, France
Paolo Mori,

Consiglio Nazionale delle Ricerche,
Italy

*Correspondence:
Nicola Zannone,

Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven,

Netherlands
n.zannone@tue.nl

Specialty section:
This article was submitted to

Computer and Network Security,
a section of the journal Frontiers in ICT

Received: 31 January 2015
Accepted: 30 April 2015
Published: 29 May 2015

Citation:
Kaluvuri SP, Egner AI, den Hartog J
and Zannone N (2015) SAFAX – an
extensible authorization service for

cloud environments.
Front. ICT 2:9.

doi: 10.3389/fict.2015.00009

SAFAX – an extensible authorization
service for cloud environments
Samuel Paul Kaluvuri, Alexandru Ionut Egner, Jerry den Hartog and Nicola Zannone*

Eindhoven University of Technology, Eindhoven, Netherlands

Cloud storage services have become increasingly popular in recent years. Users are
often registered to multiple cloud storage services that suit different needs. However,
the ad hoc manner in which data sharing between users is implemented lead to issues
for these users. For instance, users are required to define different access control policies
for each cloud service that they use and are responsible for synchronizing their policies
across different cloud providers. Users do not have access to a uniform and expressive
method to deal with authorization. Current authorization solutions cannot be applied as-
is, since they cannot cope with challenges specific to cloud environments. In this paper,
we analyze the challenges of data sharing in multi-cloud environments and propose
SAFAX, an XACML-based authorization service designed to address these challenges.
SAFAX’s architecture allows users to deploy their access control policies in a standard
format, in a single location, and augment policy evaluation with information from user
selectable external trust services. We describe the architecture of SAFAX, a prototype
implementation based on this architecture, illustrate the extensibility through external trust
services and discuss the benefits of using SAFAX from both the user’s and cloud provider’s
perspectives.

Keywords: access control, cloud, security-as-a-service, XACML, architectural framework

1. Introduction

Recent years have seen an increased adoption of cloud services, mainly driven by the explosive
growth ofmobile devices that often rely on cloud services (Gartner Inc, 2014). In particular, the need
to have data accessible and synchronized across multiple devices (e.g., smartphones, tablets, PCs)
has led to an increased pace of adoption of cloud storage services. In fact, many popular mobile and
desktop operating systems already have a tight integration with cloud storage services to allow users
to remotely store photos, music, movies, notes, etc. For example, Apple’s iPhone is tightly integrated
with its cloud storage service iCloud, Android phones with Google Drive, andWindows phones with
OneDrive. There are also several other very popular storage services such as Dropbox, SugarSync,
and SpiderOak. Given the number and variety of cloud services, end-users are often subscribed to
multiple cloud storage services according to their needs.

Besides securely storing their data, users want to be able to share their data with others without
compromising on its security. Yet, the use of different cloud providers results in users having several
islands of data, one for each cloud provider. Thus, the user is faced with the challenging task of
managing access rights across several providers.

Current authorization mechanisms implemented by cloud providers are quite primitive, in
that users do not have a means of specifying fine-grained access control policies over their
data. Furthermore, each cloud provider uses a custom, often ad hoc, solution for access control.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 91

http://www.frontiersin.org/ICT
http://www.frontiersin.org/ICT/editorialboard
http://www.frontiersin.org/ICT/editorialboard
http://dx.doi.org/10.3389/fict.2015.00009
https://creativecommons.org/licenses/by/4.0/
mailto:n.zannone@tue.nl
http://dx.doi.org/10.3389/fict.2015.00009
http://www.frontiersin.org/Journal/10.3389/fict.2015.00009/abstract
http://www.frontiersin.org/Journal/10.3389/fict.2015.00009/abstract
http://loop.frontiersin.org/people/227618/overview
http://loop.frontiersin.org/people/227616/overview
http://loop.frontiersin.org/people/184757/overview
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

This requires end-users to redefine their policies for each cloud
storage service, which causes difficulty in synchronizing them
acrossmultiple cloud providers. The situation becomes evenmore
challenging when users share their data with other users who
are not registered to the same cloud service, as cloud providers
do not have any means of verifying authorizations for unknown
users.

The successful application of federated identity services in
cloud environments (Hühnlein et al., 2010), where services allow
their users to log-in based on credentials provided by third-party
identity providers such as Google and Facebook, indicates that
similar approaches in the context of authorization may be able
to resolve the issue of data sharing in a multiple clouds setting.
Existing access control standards such as XACML (OASIS, 2013)
already provide a baseline for the development of authorization
services for cloud environments (Takabi et al., 2010). However,
current authorization solutions, even those based on XACML,
suffer from severe limitations that hamper their adoption in these
cloud environments.

In this paper, we analyze the challenges of sharing data securely
in cloud environments and propose SAFAX, a novel XACML-
based architectural framework tailored to the development of
extensible authorization services for clouds. The key design prin-
ciple underlying SAFAX is that all components are loosely cou-
pled services, thus providing the flexibility, extensibility, and
scalability needed to manage authorizations in cloud environ-
ments. SAFAX offers several advantages to both cloud providers
and users. It relieves users from the complexity of specifying
and maintaining access control policies for each cloud and in
different formats. Moreover, users can constrain access to their
data on the basis of information that can be retrieved from arbi-
trary external sources during policy evaluation; SAFAX invokes
these services at runtime without any additional configuration
by users. From a cloud provider perspective, it helps them to
reduce costs associated with implementing custom solutions
by outsourcing authorization decision making to an external
service.

To demonstrate the feasibility of the proposed framework, we
have implemented an authorization service as a web service based
on the architectural principles underlying the SAFAX framework.
Since the SAFAX authorization service can be used by multiple
users (e.g., students, project partners, guest users), we have used
the SAFAX authorization service itself as the access control mecha-
nism in order to regulate the actions that users can performwithin
the SAFAX authorization service. Moreover, we have developed a
Graphical User Interface to facilitate DOs in the management of
policies and in the configuration of the authorization service. We
have reported our experience in deploying, using, and securing
SAFAX.

The remainder of the paper is structured as follows. The next
section introduces a cloud scenario to illustrate the challenges
of cross-domain data sharing in cloud environments. Section 3
presents the SAFAX architecture along with its main components,
and Section 4 presents a prototype of an authorization service
based on SAFAX. Its use in practice is then discussed in Section
5. Finally, Section 6 reviews related work, and Section 7 concludes
the paper providing directions for future work.

2. Motivation

In this section, we present a simple scenario that illustrates the
challenges of enforcing access control on data stored at different
cloud storage services. The scenario focuses on the mechanisms
currently used to control the access to data in cloud environments.
We first introduce a few terms that are used in the scenario and
throughout the paper.

A Domain specifies a data set managed by a user, e.g., files
stored at a specific cloud storage service.

A Domain Owner (DO) is the user to whom the domain
belongs.

A Domains Controller (DC) is a host of multiple domains,
possibly belonging to different DOs. A cloud storage service
provider is a typical example of DC. The DC is responsible for
guaranteeing the confidentiality, integrity, and availability of the
data stored within the domains it hosts.

AData Consumer is a user requesting access to some data.
Alice uses two cloud storage services offered by two inde-

pendent DCs to store her data: Domains Controller I (DCI) and
Domains Controller II (DCII). She stores personal files, such as
music and photos, in her domainAD1 atDCI and documents con-
taining sensitive information, such as a business plan, finances,
and health records, in her domain AD2 at DCII. This is illustrated
in Figure 1.

Alice wants to share her resources stored at domains AD1 and
AD2 with other users. In particular, she has the following access
requirements:

• AR1: Bob is allowed to view all photos from AD1;
• AR2: Bob is allowed to view the business plan from AD2;
• AR3: Any neurologist from Mayo Clinic is allowed to view

the health records fromAD2 during working hours (09:00 to
18:00);

• AR4: Any other action (besides the ones in AR1, AR2, and
AR3) for any resource in AD1 and AD2 is denied.

At a later point, Alice may need to update these access rights
and allow Bob tomodify the resources as well:

• AR1: Bob is allowed to view andmodify all photos fromAD1;
• AR2: Bob is allowed to view and modify the business plan

from AD2.

Both DCs provide Alice (DOs, in general) a means of defining
access control policies for sharing data with other users. In par-
ticular, DCI enables DOs to share resources with other users in
three ways: sharing with specific users (usually registered users),

FIGURE 1 | Alice shares resources from multiple cloud providers.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 92

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

A B

FIGURE 2 | Representation of Alice’s access requirements at different cloud providers. (A) Policy AP1. (B) Policy AP2.

sharing through a link, or making the resource publicly available.
This practice is adopted, for instance, by cloud storage services
such asMicrosoftOneDrive andGoogleDrive.On the other hand,
DCII allows DOs to define access rights on buckets and objects
using Access Control Lists (ACLs). Through an ACL, DOs can
define the actions (e.g., read, write) other users (or groups of
users) can perform on a certain object. ACLs are currently used
by a number of cloud storage services, like Google Cloud Storage
and Rackspace Cloud Files, to enable DOs to control which data
consumer is allowed to access their resources. Figure 2 shows
the policies AP1 and AP2 that Alice defines to regulate the access
to her data stored in AD1 and AD2, respectively. To make the
discussion more concrete, we represent these policies using the
mechanisms currently offered by existing cloud storage providers.
In particular, AP1 is expressed using the mechanism provided by
Google Drive and AP2 using the mechanism provided by Google
Cloud Storage.

One can observe that both AP1 and AP2 do not completely
reflect Alice’s intentions due to the limitations of the authorization
mechanisms currently adopted by the cloud providers. Now, we
discuss the challenges users have to face when specifying and
maintaining policies in a multi-cloud environment.

C1: Identity-based policies. The access control mechanisms
adopted by most cloud providers requireDOs to specify, for each
object, the actions that each user can perform on the object,
making policy specification costly and error-prone. In addition,
DOs do not always know the identity of the users, as shown
with AR3. It is well established that introducing abstract concepts
like role facilitates the specification and management of policies
(Sandhu et al., 1996). Some cloud providers offer some flexi-
bility in this respect by allowing the specification of policies in
terms of user groups and folders (next to individual users and
objects). However, the properties of users and objects that DOs
can currently use in the specification of their policies are rather
limited. The second rule in Figure 2B highlights this problem.
Alice can define a group consisting of the neurologists at Mayo
Clinic (“neuro_group_mayo_clinic”) and specify a rule allowing
the members of this group to access her health record. However,
to define such a group, Alice needs to know all the neurologists at
Mayo Clinic and assign them to the group.

C2: Limited expressiveness of policies. Cloud storage providers
typically provide DOs with a very constrained language for the
specification of their policies. For instance, cloud providers using
ACLs (such asDCII) only allow the specification of authorizations
in terms of user, action, and object. DOs are not free to use
other context information, such as time and location, to restrict
the access to their data. The second rule in Figure 2B illustrates
that Alice does not have the means to define a specific time
interval in which access to her health records is allowed. As a
consequence,DOs cannot specify fine-grained policies, which are
often required to securely share data in dynamic andopen systems.
Coarse authorization control is recognized by Grobauer et al.
(2011) as a main vulnerability of authorization systems currently
used by clouds.

C3: Heterogeneity of policy specification. Cloud providers often
provide DOs with ad hoc languages for the specification of their
policies. These languagesmay require the specification of different
policy elements to define authorizations. For instance, ACLs are
defined in terms of user, action, and object. Other cloud providers
do not allow DOs to specify the action that users can perform
on an object; rather they only consider a general access right that
allows users to perform any action on objects. This discrepancy
results in DOs having to define a different policy to regulate the
access to their data for each cloud service provider. For instance,
Alice needs to define two different policies, AP1 and AP2 for the
resources in AD1 and AD2, respectively, even if her intention is
to assign Bob the same access rights (as exemplified in AR1 and
AR2). Moreover, the two providers force Alice to define AP1 and
AP2 in different formats. DCI provides Alice a visual interface
for specifying AP1 (see Figure 2A), while DCII constrains the
specification of AP2 to a specific language (see Figure 2B). This
introduces additional burden to DOs who have to adapt to a dif-
ferent language and tool for each cloud provider. Therefore, policy
specification becomes increasingly complex with the growth of
the number of domains, as there is no method for synchronizing
policies between different domains (hosted by the sameDC or by
differentDCs).

C4: No support for cross-domain policy update. The lack of meth-
ods for synchronizing policies at different cloud providers can
lead to additional issues in policy management. If Alice wants to
change the permissions given to Bob (as shown with the updated

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 93

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

rights AR1 and AR2), she has to change her policies at each
cloud service provider to reflect her new access requirements. This
situation could still be acceptable if DOs only have to upload the
new policy to the different cloud providers. However, as discussed
above (challenge C3), policies at different cloud providers may
have different formats and use different information to make
access decisions. This syntactical difference hinders the definition
of policies portable between domains.

C5: Lack of cross-domain semantic interoperability. A DO spec-
ifying a policy to regulate access to its data at different cloud
providers expects that every provider interprets and evaluates the
policy based on the DOs intention. This, however, is difficult to
achieve due to syntax differences between the policy languages
employed by different cloud providers (challenge C3). Standards
are often used to smooth these differences and, thus, to enable
interoperability in distributed systems. The use of standards,
however, does not solve the problem of semantic misalignment
of providers’ vocabularies (Trivellato et al., 2013). For instance,
Google Cloud Storage uses element “role” to indicate the action
that a data consumer is allowed to perform (see Figure 2A). Other
providers may use the element “role” with a different meaning
and/or use an element “action” to indicate the action that a certain
user can perform. We cannot expect that every provider will
employ common data, organizational models, and vocabularies
for the specification of security policies.

C6: No empowerment of domain owners. Cloud providers usu-
ally evaluate DOs’ policies relying on information that is locally
available (e.g., ACLs). However, this, in combination with the
limited expressiveness of the employed policy language (challenge
C2), provides DOs little control over their data. DOs should be
able to influence the decision of granting or denying the access
to their data (this is especially true when dealing with personal
information). In particular, DOs should be able to define from
which source the information used to evaluate their policies is
fetched. In AR3, Alice wants to constrain the access to her health
records to data consumers that are neurologists at Mayo Clinic.
Those users, however, may not even be registered with the cloud
provider, in which case the properties of the data consumer should
be validated by an appropriate trust authority. For instance, in
our scenario, the cloud provider should rely on Mayo Clinic to
determine whether the data consumer is a neurologist and, thus,
authorized to access Alice’s health records.

We highlight two additional challenges derived from challenge
C6, which reflects the perspectives of the data consumer and
domains controller.

C7: Required registration of data consumers. Cloud providers
usually evaluate and enforceDOs’ policies based on the data con-
sumer’s identity (challenge C1). Cloud providers adopt different
approaches for handling data sharing with unregistered users.
Depending on the provider, DOs have the option of sending an
invitation to unregistered users, share their data through a link, or
evenmake the data publicly available. The invitation often implies
the alteration of the intended policy with additional constraints
imposed by the provider. Cloud providers oftenmake the resource
read-only to an unregistered user, even if the user was given the
rights to modify the resource. The data consumer, therefore, has

to register to the provider to benefit from the intended access
rights. Sharing the link has its own drawbacks. Users do not have
control over their data as anyone knowing the link can access
them. These issues are usually addressed by trust management (Li
et al., 2003; Trivellato et al., 2014). However, trust management
solutions are typically not integrated in the authorization mecha-
nisms employed by cloud providers. Therefore, the data consumer
has to be registeredwith each cloud provider in order to be granted
access to the shared data. In the scenario, Bob is given the right
to access specific data from AD1 and AD2 (access rights AR1 and
AR2), but he needs to have an account at each DC in order to
access the data.

C8: Limited support for establishing and maintaining a web of
trust. From the DCs perspective, the problem of unregistered
users could be addressed through a web of trust, where ser-
vice providers establish a Federated Identity Management System
(Buyya et al., 2010; Chadwick et al., 2011). Within a web of trust, a
service provider can trust another provider to issue the credentials
proving that an unregistered user satisfies the properties needed
to access the data (being a neurologist at Mayo Clinic in our
scenario). A risk with this solution, however, is that the web of
trust becomes a closed group consisting of only few providers.
This risk is aggravated by the burden that maintaining the web
of trust with current solutions places on all its members. For
instance, each member needs to monitor the trust relationships
in the web. For a new service provider to enter a web of trust
all existing service providers have to update their components
in order to incorporate the new service provider. Moreover, any
change in the interfaces of one of the service providers within the
web of trust will impact the other service providers.

3. SAFAX – An Authorization Solution for
Cloud Services

In this section, we present SAFAX, an extensible XACML-based
framework suitable for the development of authorization ser-
vices for cloud. First, we provide a brief overview of XACML
and its underlying reference architecture. Then, we present the
SAFAX architecture along its main components. We also dis-
cuss how SAFAX meets the challenges presented in the previous
section.

3.1. XACML Reference Architecture
As a baseline for the development of an authorization framework
that meets the challenges discussed in the previous section, we
rely on Extensible Access Control Markup Language (XACML)
(OASIS, 2013). XACML has become the de facto standard for the
specification and enforcement of access control policies (Liu et al.,
2008); thus, its adoption would facilitate policy interoperability
across domains controllers. XACML defines an attribute-based
access control policy language implemented in XML as well as
a reference architecture for policy evaluation and enforcement.
Here, we present an overview of the XACML reference architec-
ture. The XACML policy language is not the focus of this paper,
we refer to the XACML Core specification (OASIS, 2013) for its
complete description.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 94

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

FIGURE 3 | XACML architecture overview.

The XACML reference architecture is shown in Figure 3. An
access request from an application is sent to the Policy Enforce-
ment Point (PEP). The PEP forwards the request to the Context
Handler (CH). If the request is specified in the application’s native
format, the CH constructs a XACML request and sends it to the
Policy Decision Point (PDP) for evaluation. The PDP retrieves the
policies from the Policy Administration Point (PAP). If additional
attributes are required for the evaluation of the access request, the
PDP queries the CH for such attributes. The CH retrieves these
attributes from the Policy Information Point (PIP) and sends them
to the PDP. The PDP evaluates the request against the policies and
returns a response specifying the access decision (and possibly a
set of obligations to be fulfilled) to the CH. The CH sends the
response to the PEP, which is responsible for the enforcement of
the decision.

XACML provides a number of extensibility points to customize
policy evaluation with respect to the needs of the application
domain. Themost noteworthy extensibility point is the possibility
to augment the PDP with User Defined Functions (UDFs) for
the specification of custom constraints in the policies. In the
next sections, we show how UDFs can be exploited to address
(some of) the challenges to be faced by authorization services for
multi-cloud environments.

3.2. SAFAX – Overview
SAFAX is an XACML-based architectural framework tailored to
the development of authorization services that address the chal-
lenges faced by users (DOs) while regulating access to their data
on cloud storage services. In this section, we present a high level
overview of SAFAX and discuss how it overcomes the challenges
that were highlighted in Section 2, while the next section pro-
vides a detailed view of the main components within the tSAFAX
framework.

An overview of the SAFAX framework is shown in Figure 4A.
The SAFAX framework consists of three main blocks: domain-
specific components (i.e., PEP, CH, and PIP); the SAFAX-CORE,
which represents the baseline of the authorization service; and
trust services, which can be used to evaluate custom constraints in
DOs’ policies. All components forming these blocks are designed
as loosely coupled services. SAFAX does not prescribe who should
provide these services. In Section 5, we discuss a number of
deployment configurations. Here, for description purposes, we
assume a configuration in which domain-specific components are
under the control of DCs, SAFAX-CORE under the control of an
authorization service provider and trust services under the control

of some providers independent from the authorization service
provider. Domain-specific components depend on the application
environment. For instance, they should handle the conversion
between the attribute representation in the application environ-
ment and the attribute representation in the XACML format. The
only requirements for domain-specific components within SAFAX
are that they adhere to the XACML specification and are offered
as services and thus we do not discuss them further.

Two major problems DOs have to face when defining their
policies are the limited expressiveness of the policy languages cur-
rently offered by cloud providers and the heterogeneity of policy
specification. SAFAX adopts XACML for policy specification. This
standard defines a canonical representation for the inputs and out-
puts of the PDP (which is the main component of SAFAX-CORE),
thus addressing challenge C3. In particular, XACML provides an
attribute-based policy language in which subjects, actions, and
resources are characterized through attributes, thus addressing
the inherent limitation of traditional access control models like
ACL (C1). In addition, the XACML specification provides policy
authors a rich set of predefined attributes as well as the possibility
to use customattributes, allowing for the definition of fine-grained
policies (C2).

The use of XACML addresses some of the challenges for cloud
environments and, in particular, the ones concerning policy spec-
ification. However, a key aspect is to determine whether a data
consumer has the required attributes during policy evaluation.
In other words, the relevant attributes of the data consumer
requesting the data should be made available to the PDP during
policy evaluation. SAFAX anticipates this need and allows DOs to
constrain the access to their data on the basis of additional trust
information that is fetched from external trust services during
policy evaluation, for instance, attributes certified by a trusted
authority. Intuitively, DOs can delegate part of the authorization
decision making to trust service providers external to the autho-
rization service provider. The task of connecting external trust
sources with SAFAX is hidden from the DOs, thus empowering
DOs with the capability of defining fine-grained access policies
and at the same time relieving them from the complexity of
maintaining trust sourcesmanually, addressing challengesC1 and
C6. In order to achieve this flexibility, we extend the PDP of
XACML through UDFs. However, in a major departure from
current XACML implementations (Dolski et al., 2007; Liu et al.,
2011), we design UDFs as self-configuring clients that consume
external trust services. These clients are responsible for generating
valid requests for the external trust services and handling the data
parsing between the external services and the XACML PDP.

We stress that the authorization service can be outside the
control of DCs and can be operated instead by an independent
provider trusted byDOs. Intuitively, the SAFAX framework allows
each DO to choose an authorization service and to require the
DCs controlling its domains to consume this service for autho-
rization decision making. This is similar to the authentication
mechanism offered by many websites, which allows users to
authenticate using the credentials provided by an external identity
provider. Thus, SAFAXmitigates the need forDOs to define access
control policies for each cloud service towhich they are subscribed
by providing a single point for deploying and maintaining their
policies (i.e., a single PAP) and thus addressing challenge C4.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 95

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

A B

FIGURE 4 | Overview of SAFAX. (A) SAFAX framework. (B) SAFAX-CORE architecture.

SAFAX-CORE assigns a dedicated PDP to every DO, which is
identified with a unique URL (hereafter, we refer to such a URL
as PDP-URL).When aDC receives an access request for a piece of
data, it forwards the request to the authorization service alongwith
theDOs PDP-URL. The authorization service uses the PDP-URL
to identify the pertinent PDP for evaluation. This implies that the
DCs should provide a way for theDO to specify this PDP-URL as
part of their domain configuration settings.

Trust services can be used for a range of purposes such as
retrieving trust information from external sources, relocating
the computation of complex functions relieving the burden on
the PDP and providing additional functionalities. An important
example of functionality is enabling policy interoperability in
distributed systems. Every DC and trust service provider may use
a different vocabulary for attribute representation.While XACML
unifies policy specification syntactically, it does not solve differ-
ences in semantic such as different naming or interpretation of
attributes between the entities involved in policy evaluation (C5).
While existing PDP implementations have no features built in to
resolve this issue the extensibility of the SAFAX framework using
UDFs allows resolving such issues. By connecting to external ser-
vices that provides semantic alignment for the relevant attributes
without the need of any human intervention (at evaluation time)
SAFAX can address challenge C5.

The DCs, who provide the cloud storage services, can greatly
benefit from using SAFAX as a trusted third-party authorization
service. In fact, SAFAX reduces DCs efforts of creating, maintain-
ing, and monitoring their custom authorization solutions and,
thus, they can focus on their core business. DCs simply need to
consume the SAFAX service. In order to share data with consumers
who are not registered with their service, the DCs do not have
to establish a web of trust with other service providers. Using
SAFAX, theDCs are completely relieved from this burden and can
share data with any data consumer, as long as the properties of
the data consumers are captured by the services used for policy
evaluation, thus addressing the challengeC7. The data consumers
also benefit from this approach as they do not have to register
to multiple cloud storage providers in order to be able to access
data (C8).

3.3. SAFAX Architecture
In this section, we focus on the SAFAX-CORE component.
SAFAX-CORE exposes several interfaces that can be invoked by
different entities interacting with the policy engine. The main
interfaces provided by SAFAX-CORE are

• Policy Deployment: allows DOs to deploy their access
control policies.

• Configure PDP: allowsDOs to configure their PDPs.
• Register Service: allows the authorization service provider,

DCs and external trust service providers to register their
services with SAFAX.

• XACMLRequest: handles valid XACML requests fromDCs.
• Context Attributes: allows DCs to augment access requests

with additional application-specific attributes.

The components of SAFAX-CORE, as shown in Figure 4B, are
designed as loosely coupled services thus breaking away from
the monolithic component structure often adopted by existing
XACML implementations (Dolski et al., 2007; Liu et al., 2011).We
provide a brief explanation of the different services that are part of
SAFAX-CORE.

Router: This service is responsible for forwarding access requests
fromDCs to the proper PDP based on theDOs unique PDP-URL.

Service Repository: This service allows any service registered
within SAFAX to discover, bind, and consume other services in a
dynamic manner. In addition, this service allows external service
providers to register their serviceswithSAFAX. Service registration
requires the following details: (a) Service Identifier; (b) Service
Provider’s Identity; (c) Service Description; (d) Service endpoint
(URI); (e)HTTPMethod to invoke the service; (f) Request param-
eters data type; (g) Response parameters data type; (h) Request
and Response Messaging format; and (i) Service Type, which
indicates whether the service being offered is a PDP service, PAP
service, an External Trust Service registered as a UDF, and so on.
These details are necessary for services to discover other registered
services, configure clients to generate valid requests and parse the
responses.

Policy Administration Point (PAP): This service facilitates DOs
to store and manage their access control policies regardless of the
location in which the data to be protected are stored. This service
also enables the PDP service to fetch the policies of a specificDO.
In addition, whenever a policy associated to a DO is updated or
a new policy is added, the PAP service forces the PDP service to
reinitialize theDOs PDP in order to reflect the updated policies.

PDP Configuration (PDPC): SAFAX-CORE can support several
PDP services; intuitively, every XACML implementation can be
seen as a different PDP service in SAFAX. The PDPC service allows
DOs to select the PDP service to be used for policy evaluation.
Moreover, the PDPC allows DOs to configure the selected PDP

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 96

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

A B

FIGURE 5 | SAFAX PDP and its extensibility with external trust services. (A) SAFAX PDP architecture. (B) SAFAX plugins.

service by setting a number of parameters including the root com-
bining algorithms1. These configuration settings can be changed
at any time andpushed to the PDP service, which in turn initializes
(or reinitializes) theDOs PDP to reflect the changes.

Policy Decision Point (PDP): SAFAX assigns a dedicated PDP
to each DO. Every PDP is identified by a unique URL (PDP-
URL). The PDP assigned to a DO handles all the access requests
for its data regardless of the DC which sends them. The PDP
fetches the policies associated to the DO from the PAP service.
In addition, this service allows the PDPC service to push the PDP
configuration settings specified by theDO. In SAFAX, we decouple
UDFs from the XACML PDP component to allow the frame-
work to be extensible without disrupting existing components.
As shown in Figure 5A, the PDP consists of a XACML PDP and
the External Service Extensions component that handles the invo-
cations to external trust service. The External Service Extensions
component contains, for each UDF, a self-configuring client that
consumes the external trust service corresponding to the UDF.
These clients are generic and self-configure them selves based on
the information related to a given UDF that has been registered by
a trust service provider with the SAFAX-CORE service. They read
the external trust service description from the Service Repository
and, accordingly, build a valid request and communicate with
the service using the specified protocol. Moreover, they parse
the response from external trust services to retrieve the trust
information requested for policy evaluation.

External Trust Services: We decouple UDFs from the PDP and
implement them as external, but pluggable services, as shown
in Figure 5B. This pluggable architecture allows SAFAX to be
extensible in order to serve access requests that require complex
processing in a scalablemanner as well as consuming information
from external sources. This way, the processing of trust informa-
tion can be outsourced to external services while SAFAX acts as
an orchestrator for these service calls based on the DOs policies.
External service providers that want to plug-in their services with
SAFAX need to comply with twomain constraints: (i) register their
service through the Service Repository of SAFAX along with a
UDF Identifier which will be used by the DOs in their access
control policies; and (ii) external service APIs must conform to
implementation dependent specifications of SAFAX. As shown in
Figure 5B, each provider that registers their service as an external
trust service in the SAFAX frameworkmust specify: (a) theMethod
call through which the service can be invoked; (b) the parameters

1A root combining algorithm is needed to resolve policy conflicts that can arise
when more than one policy is deployed in the PDP (OASIS, 2013).

that must be supplied to the service; and (c) the message format
that indicates how the parameters will be packaged.

3.4. Message Flow within SAFAX
The services presented in the previous section give an indica-
tion of the functionality and capabilities of each component. In
this section, we present the overall integrated view of the SAFAX
architecture and its usage.

DOs specify access control policies for their data, which
can be stored across multiple cloud providers (DCs). For
instance, in the scenario given in Section 2, Alice wants to
restrict the access to her health records to neurologists at Mayo
Clinic. This access requirement can be represented using the
XACML rule in Figure 6. Lines 35–42 show an example of UDF:
functionurn:nl:tue:sec:pdp:1.0:udf:credential:user:
has:credential. This UDF takes as input a user name, a
credential, and an issuer, and returns a Boolean value indicating
whether the user has the specified credential from the specified
issuer. It is evaluated using an external credential-based trust
service (see Section 4) during policy evaluation.

DOs use the PAP to deploy the specified policies and the PDPC
to configure their PDP by selecting a default root combining
algorithm, the PDP service to be used for policy evaluation, etc.
SAFAX provides theDO a unique PDP-URL to invoke the assigned
PDP. All access requests for data belonging to the DO are for-
warded to the assigned PDP through the unique PDP-URL. As
a consequence, DOs should be able to configure the PDP-URL at
every DC they are subscribed to.

Moreover, each DC should implement the domain-specific
components (i.e., PEP, CH, and PIP) and register the Context
Handler service with the SAFAX framework. This is necessary
since during policy evaluation the PDP might need additional
attributes from the CH of the DC such as the IP addresses of
the data consumer, system time, and other attributes that can be
required for policy evaluation. In particular, the CH interface to
fetch the attributes should be registered with the service registry
of the SAFAX framework.

Figure 7 shows the interaction of services within SAFAX. We
describe the message flow by following a concrete scenario that
takes place in the context presented in Section 2: Charlie (a neurol-
ogist fromMayoClinic) wants to view the health records that Alice
stored on a specific domain (AD2) of the domains controllerDCII.

Whenever a data consumer (Charlie) sends a request to access
data belonging to a DO (Alice) to a DC (in our scenario to
DCII), the access request is intercepted by the PEP of the DC.
The PEP forwards the request to the CH service, which first
fetches additional information from its PIP, enriching the original

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 97

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

1 <Rule Effect="Permit" RuleId="urn:nl:tue:sec:example:sample:alice">
2 <Target>
3 <Resources>
4 <Resource>
5 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
6 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
7 healthRecord
8 </AttributeValue>
9 <ResourceAttributeDesignator

10 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
11 DataType="http://www.w3.org/2001/XMLSchema#string"/>
12 </ResourceMatch>
13 </Resource>
14 </Resources>
15 <Actions>
16 <Action>
17 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
18 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
19 read
20 </AttributeValue>
21 <ActionAttributeDesignator
22 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
23 DataType="http://www.w3.org/2001/XMLSchema#string"/>
24 </ActionMatch>
25 </Action>
26 </Actions>
27 </Target>
28 <Condition>
29 <Apply FunctionId="urn:nl:tue:sec:pdp:1.0:udf:credential:user:has:credential">
30 <SubjectAttributeDesignator
31 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
32 DataType="http://www.w3.org/2001/XMLSchema#string"/>
33 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
34 neurologist
35 </AttributeValue>
36 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
37 MayoClinic
38 </AttributeValue>
39 </Apply>
40 </Condition>
41 </Rule>

FIGURE 6 | XACML rule encoding Alice’s authorization requirement AR3.

request, and then constructs a valid XACML request. The CH
service forwards the XACML request to the PDP assigned to the
DO by invoking the SAFAX service. The Router intercepts the
access request coming from the CH and forwards it to the proper
PDP based on the PDP-URL. During policy evaluation, if the
PDP needs additional attributes (e.g., timestamp), it contacts the
DC’s Context Handler service. When the DO specifies policies
that require additional (external) trust information to make a
decision, the PDP service contacts the external trust services. In
our scenario, the PDP contacts Mayo Clinic, which can been seen
as the trust service provider for the trust information specified by
Alice in her policy (i.e., the issuer of the credential), to determine
whether Charlie is a neurologist at the Clinic. After receiving the
required information, the PDP computes the decision and informs
the DCs Context Handler. The CH parses the XACML response
and sends the decision to the PEP. The PEP enforces the decision
by allowing or denying access to the DOs data to the consumer
based on the given decision.

4. Implementation

We have realized the SAFAX architecture by implementing an
authorization service as a web service following the architec-
tural principles and guidelines given in Section 32. The SAFAX

2The authorization service is available at http://security1.win.tue.nl/safax/

authorization service is implemented in Java running on an
Apache Tomcat server and using Jersey as the service framework.
MySQL is used as a back-end persistent data storage.

The authorization service exposes interfaces that can be
invoked by the PEP implemented by DCs. Moreover, for the
sake of completeness and alignment with the XACML reference
architecture, we have implemented examples of PEP, PIP, and CH
services.

In order to ease the management of policies and configuration
of PDPs by DOs, we have developed a User Interface (referred as
SAFAXGUI) that communicates with the SAFAX services. SAFAX
GUI is developed usingHTML,CSS, andAJAX to consumeSAFAX
services. The SAFAX GUI enables aDO to create a project, which
can containmultiple demos. Intuitively, a demo corresponds to the
management point for regulating access to the data in a Domain.
Each demo is associated to a single PDP, and DOs can upload
their access control policies to the PAP service and configure the
PDP through Demo Management interface as shown in Figure 8.
Figure 8A shows the part of the SAFAX GUI that allows DOs to
deploy their access control policies. For demonstration purposes,
we facilitate DOs to upload sample access requests to test their
policies. Figure 8B shows how xtbfDOs can configure their PDPs
as well as providing them the URL through which their PDP
can be invoked. Figure 8C shows how the sample PIP can be
configured by uploading attributes that can be retrieved during
policy evaluation.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 98

http://security1.win.tue.nl/safax/
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

FIGURE 7 | Message flow for policy evaluation using SAFAX.

We have also built a service that simulates multiple DCs
by allowing the DCs to evaluate their policies against different
request. This service is accessible through the SAFAX GUI, which
makes it possible to test the SAFAX authorization service in various
scenarios. A screenshot of the GUI for policy evaluation is shown
in Figure 9A. In addition to that, we provide an additional feature
through which DOs can analyze the log generated during the
evaluation of access requests to their PDP (Figure 9B). This is
useful for DOs to gain feedback regarding their policies and
correct them if necessary.

We have chosen to implement SAFAX services as RESTful
services that strictly conform to the following constraints:

• Services are purely stateless and all information related to
the state is contained either with the request or stored in a
persistent database.

• Services communicate with each other either in JSON or
XML.

The Service Repository component uses a MySQL back-end
database to store the information regarding a service. Every PDP
that is assigned to a DO is treated as an independent service and
is registered with the service repository.

The Router parses the PDP-URL, which is used by the DCs
to invoke the PDP assigned to a DO, extracts the code used
to identify the PDP object within the SAFAX framework, and
forwards the access request to that particular PDP object. For
each access request, the Router generates a unique Transaction
ID, internal to the SAFAX framework and forwards it to the PDP
along with the access request. This is used for correlating the
request-responses with the PDPs, and identifying the logmessages

generated by the PDP during the evaluation of a particular access
request (Figure 9B).

Our implementation of the PAP uses a MySQL database to
store the uploaded policies and make them available to the PDP.
In addition to XACML policies, for demonstration purposes, we
allow DOs to upload policies for external services that will be
deployed on the respective external trust services. DOs can use
the SAFAX GUI to upload their policies and deploy them on their
assigned PDPs and trust services.

In our prototype, we used HERAS-AF (Dolski et al., 2007)
as the default XACML PDP implementation. HERAS-AF was
chosen since it is an open-source project, actively developed and
well supported. HERAS-AF PDP component is provided as a
JAR file, which we wrap as a service by exposing the interfaces
for policy deployment and access requests as web interfaces.
HERAS-AF supports UDFs, but they have to be bound to the
PDP implementation. To circumvent this limitation, we have
extended the core HERAS-AF with several classes that: (a) read
the DOs configurations from the PDPC and initialize the PDP
accordingly; (b) communicatewith the Service Repository to fetch
the configurations of external trust services based on the policies
deployed by the DO; and (c) invoke external trust services and
parse the response (represented in JSON) to retrieve the values
from those services.

Although HERAS-AF has been used in the current imple-
mentation of SAFAX, this is not a constraint for the SAFAX
architecture. In fact, the extensions to HERAS-AF are made in
a manner that replacing HERAS-AF with any other XACML
implementation would require changing a few lines of code in our
implementation.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 99

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

FIGURE 8 | SAFAX GUI: management. (A) Policy administration. (B) PDP configuration. (C) Policy information point.

Our prototype implementation of SAFAX currently supports
four external trust services: a credential-based trust management
service, two reputation services and a policy alignment service.
The credential-based trust management service is based on GEM
(Trivellato et al., 2014), a distributed goal evaluation algorithm
for trust management systems. One reputation service uses a
flow-based reputation metric (Simone et al., 2012), which extends
EigenTrust (Kamvar et al., 2003) by providing absolute reputations
values. The other reputation service uses a subjective logic system
centered on evidence (Skoric et al., 2014), thus providing reputa-
tion values along with uncertainty. Finally, the policy alignment
service is an ontology-based service that uses semantic alignment
techniques to map concepts from different ontologies (Trivellato
et al., 2009), allowing domain owners to use different vocabularies

and models for the specification of their policies. These services
communicate with the SAFAX PDP using the RESTful protocol.
This variety of trust services allows DOs to use different types of
trust information within the evaluation of their policies, illustrat-
ing the flexibility of SAFAX. Note that the aforementioned trust
services are simply provided as an example of how SAFAX can
be extended to outsource the processing of trust information to
external services. A full description of these services is out of the
scope of this paper.

5. Discussion

In this section, we present various trust models that are typi-
cally employed in cloud environments and discuss their impact

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 910

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

FIGURE 9 | SAFAX GUI: evaluation. (A) Policy evaluation. (B) Evaluation log.

on deployment configurations of SAFAX. We also discuss our
experience of deploying, using, and securing SAFAX.

5.1. Trust Models in Cloud Environments
Trust models in cloud environments have a direct impact on the
deployment configurations of authorization solutions based on
the trust relationships and the control that entities have on the
various services. We can broadly classify the trust models into
three categories: (a) Centralized Trust; (b) Distributed Trust; and
(c) Distributed and Delegated Trust. A representation of these
trust models is provided in Figure 10.

5.1.1. Centralized Trust Model
TheDC has control over all the services forming the authorization
service including the trust services (Figure 10A). In particular,
the DC deploys the domain-specific components (PEP, CH, and
PIP) as well as the SAFAX-CORE components and trust services
within its organizational perimeter. However, trust services can
only consume information that is internal to theDC or can be used
to extend the functionality of the XACML PDP. The DO trusts
the DC for the secure storage of their access control policies, for
the correct evaluation of access requests from data consumers and
ultimately for the enforcement of their policies. This trustmodel is
suitable for very sensitive domains such as military clouds where
the storage and evaluation of access control policies cannot be
outsourced to an external entity. From the DOs perspective, this
model has, however, most of the limitations discussed in Section 2
as theDO does not have the capability to freely specify its policies
nor to decide which trust services should be used for policy
evaluation. These aspects remain under the control of theDC.

5.1.2. Distributed Trust Model
In this model, the DC is not responsible for the evaluation of
DOs’ policies (Figure 10B). This task is outsourced to a dedi-
cated authorization service, possibly selected by DOs. In partic-
ular, the authorization service provider deploys the SAFAX-CORE
components within its organizational perimeter. Trust services
that complement the authorization service are also provided by
the same authorization provider and thus they are in the same
domain. In this trust model, trust services are mainly used to
extend the functionality of the PDP; for example, a trust service
can process an IP address to determine the country to which
the IP address belongs or provide support for spatial data types
and spatial authorization decision functions (Matheus, 2012). In
essence, trust services cannot be used as external sources of infor-
mation. TheDC only deploys the domain-specific components of
SAFAX (PEP, CH, and PIP) for the management and enforcement
of authorization decisions within its organizational perimeter and
consumes the authorization service through the CH component.
As shown in Figure 10B, the DO trusts the authorization service
for the secure storage and evaluation of its access policies and
trusts theDC to consume the authorization service for the evalu-
ation of access requests and to enforce the authorization decision.
This trust model is suited when the DO is subscribed to multiple
cloud services and needs a unified means to specify and maintain
its access control policies. This model is ideal for DCs that want
to externalize the policy evaluation.

5.1.3. Distributed and Delegated Trust Model
As in the distributed trustmodel, theDC consumes the authoriza-
tion service while implementing the domain-specific components

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 911

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

A B C

FIGURE 10 | Trust models and their impact on SAFAX deployment. (A) Centralized trust model. (B) Distributed trust model. (C) Distributed and delegated trust
model.

that enforce the authorization decision (Figure 10C). However,
in the distributed and delegated trust model, trust services are
not only external to the authorization service but they can also
be outside the control of the authorization service provider. As
shown in Figure 10C, the DO trusts the authorization service
to securely store its access control policies, configuration settings
regarding the PDP and for proper evaluation of its access control
policies. TheDO trusts theDC to enforce the authorization deci-
sion determined by the authorization service. Moreover, the DO
trusts the external trust services to provide accurate and complete
information to the authorization service during policy evaluation.
It is worth noting that the authorization service delegates part
of policy evaluation to the external services even when there
is no explicit trust relation existing between the authorization
service and the external services. Indeed, this trust model empow-
ers DOs with full control over policy evaluation in the sense
that a DO can select the services that are used to evaluate its
policies.

SAFAX supports all these three trust models, since at an archi-
tectural level we do not prescribe or constrain the deployment
of the various SAFAX services. SAFAX facilitates such a variety
of deployment configurations given that the individual services
within the SAFAX framework are designed as loosely coupled ser-
vices. The deployment of our prototype is based on theDistributed
and Delegated Trust Model since it is the most open and extensible
among the trust models. It allows our prototype to consume
information from external trust sources as well as extend the
functionality of the PDP. However, given that the various compo-
nents are SAFAX are essentially web services, we can easily support
the other two trust models by deploying the various services in
different organizational perimeters. The deployment of a service
does not have any impact on the SAFAX framework, because all
the services are registered to the Service Repository service, which
in turn provides different services the information needed to
consume other services. In this manner, SAFAX framework can
serve different organizations with specific trust models without
any changes to the framework.

5.2. Lessons Learned from Deploying, Using, and
Securing SAFAX
Since SAFAX can be used by multiple DOs and DCs, a basic
authentication mechanism is provided by our prototype imple-
mentation in order to identity various entities. SAFAX processes
and stores data from various entities:DOs,DCs, External Service
Providers, and SAFAX Administrators. This information ranges
from access control policies of DOs, configuration settings of a
DOs PDP, access request logs from DCs, to global settings of the
SAFAX framework. In addition, our implementation supports a
Guest mode, through which unregistered users can configure a
Test PDP, deploy access control policies and test access requests
against their policies. Finally, SAFAX supports multiple users to
act as aDO and configure access control policies in a collaborative
manner and deploy them on a PDP that is shared between those
users.

In order to regulate the actions that users can perform within
SAFAX, we use SAFAX as the access control mechanism. In other
words, SAFAX inherently plays the role of DC to control data
stored within its Domain. We have developed the PEP, CH,
and PIP specific for SAFAX (referred as SFX-*). Every action
that a user wants to perform within SAFAX triggers an access
request that is intercepted by the SFX-PEP. The request is enriched
with attributes retrieved from SFX-PIP and then sent to the
SAFAX-CORE service for evaluation.We specified a set of XACML
policies that define the actions (e.g., create, view, edit, delete) users
can perform on various SAFAX resources, essentially also playing
the role of a DO. For instance, these policies are used to restrict
the number of projects and demos users can create based on the
groups they belong to and to limit the actions that guest users can
perform.

Through this experience of securing SAFAX using SAFAX, we
have gained an understanding of using SAFAX from the perspec-
tives of both DCs and DOs. We have observed that the SFX-PIP
plays a key role in the correct evaluation of policies since the native
requests coming to the SFX-PEP from the various components of
SAFAX do not contain all the information necessary to evaluate

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 912

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

the policies. The PIP needs to be aware of the various resources in
its domain, the contextual information regarding those resources
such as resource owners, resource types, project membership
among others. In our prototype implementation, we support the
two approaches described in Section 4 for attribute retrieval. In
particular, attributes that are often used in policies, like resource
owner and resource type, are fetched from the SFX-PIP when
the XACML request is constructed. On the other hand, attributes
that are checked in few specific conditions in the defined policies
(e.g., number of projects and demos already created by a user) are
fetched during policy evaluation.

We have observed that theDOs must be aware of the attributes
that are supported by the DCs, in order to refer to them in their
access control policies. Since in our case, the DO and the DC are
a single entity, it is straightforward to align the various attributes.
However, when a DO is subscribed to multiple DCs, it cannot
be expected that they are aware of the syntax and semantics of
various attributes in different DCs. For example, a DOmay want
to specify that a policy based on the resource’s attribute such as File
Extension for resources stored in two different clouds; however,
the two cloud providers may use different attribute identifiers
for the same attribute, which makes it infeasible for the PDP to
match these different attributes (with different identifiers) to the
attribute specified by the DO. This dependency can be avoided if
the various cloud providers use a common syntax for the specifi-
cation of various attributes. Another approach, which is currently
used in SAFAX to remove this dependency between DOs and
DCs, is by using a policy alignment service that is provided as
part of the SAFAX framework. This service enables a semantic
alignment between the concepts that can be used by different
DCs based on the concept of similarity. More details regarding
the policy alignment service can be found in Trivellato et al.
(2009).

Overall, we have seen the advantages that SAFAX offers to both
DOs andDCs in terms of ease of specification, maintenance, and
evaluation of policies. Finally, the extensibility of SAFAX opens up
the scope of access control to incorporate external trust sources in
policy specification and evaluation.

6. Related Work

Two main streams of research can be identified in the literature,
which aim to enable secure data sharing in cloud environments.
The first stream stems from the fact that outsourcing data outside
the trust domain reduces the control users have on their data.
Solutions in this stream often rely on cryptographic schemes,
which allow users to encrypt sensitive data and distribute keys to
authorized users (Blundo et al., 2010; Wang et al., 2010; Yu et al.,
2010; Ruj et al., 2011). A scheme often used by these solutions
is hierarchical identity-based encryption (Boneh et al., 2005),
which is a generalization of the identity-based encryption scheme
(Shamir, 1985) that reflects the organizational hierarchy. How-
ever, these solutions have the intrinsic problems of identity-based
policies and, thus, they are not able to address the challenges for
cloud.Attribute-based encryption (ABE) (Sahai andWaters, 2005)
has been proposed to enable encryption of sensitive information
according to an attribute-based policy in such away that only users

with certain attributes (e.g., roles) can access the information.
A number of variants of the ABE scheme have been proposed
since its introduction. They range from extending its functionality
(Wang et al., 2010; Li et al., 2011; Asim et al., 2012) to proposing
schemes with stronger security proofs (Ibraimi et al., 2010).When
applied to multi-cloud environments, the main limitation of most
ABE-based schemes is that they require binding the attributes to a
specific domain controller or a domain owner at encryption time.
Therefore, data need to be re-encrypted every time a new domain
owner joins the cloud. Moreover, ABE-based schemes implicitly
assume the existence of amechanism for determining the attribute
keys that their users are entitled to receive. However, the attributes
of a usermay depend on other attributes or conditions determined
by third parties. As a result, these schemes do not address the
dynamics characterizing clouds and thus fail tomeet challengeC8.
Asim et al. (2012) present a dynamic ABE scheme that does not
require the encryptor to bind the attributes to a specific domain
controller or a domain owner at encryption time, enabling new
users to decrypt the data without the need of re-encrypting it. Yet,
cryptographic schemes require a key management mechanism
that determines which user is entitled to receive the key to decrypt
the data. As shown in Asim et al. (2012), authorization mecha-
nisms (i.e., solutions in the second stream) are a viable solution
for key management.

The second stream of solutions to regulate the sharing of sen-
sitive information in cloud encompasses the use of authorization
mechanisms. Several proposals (Hu et al., 2009; Alcaraz Calero
et al., 2010; Almutairi et al., 2012; Wu et al., 2013) adopt Role
Based Access Control (RBAC) to meet the dynamic, extensible,
and highly configurable security requirements of clouds. Younis
et al. (2014) propose AC3, an access control model for cloud
environments that combines Task-Role Based Access Control
(Oh and Park, 2003) with multilevel security. One major draw-
back of these approaches is the limited expressiveness of the
policies that can be specified (challenge C2). In this work, we
used XACML (OASIS, 2013) as policy language. This choice
is twofold. First, XACML has become the de facto standard
for access control (Liu et al., 2008), encouraging its adoption
by a larger number of cloud providers. Moreover, it has been
shown that attribute-based access control and, in particular,
XACML (OASIS, 2013) provide a baseline for the development
of authorization services for cloud environments (Takabi et al.,
2010). The XACML reference architecture provides a blueprint,
which needs to be followed by any implementation to be com-
pliant with the standard. Several open-source XACML imple-
mentations including SUN-XACML3, HERAS-AF (Dolski et al.,
2007), XEngine (Liu et al., 2011), enterprise-java-xacml4, and
WSO2 Balana5 are currently available. These implementations
support different versions (and in some cases, multiple versions)
of XACML. Some of these implementations, such as HERAS-
AF and WSO2 Balana, are actively developed compared to other
implementations. In addition, some implementations have been
used as a backbone for XACML-based frameworks. For instance,

3http://sunxacml.sourceforge.net
4http://code.google.com/p/enterprise-java-xacml
5http://xacmlinfo.org/category/balana

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 913

http://sunxacml.sourceforge.net
http://code.google.com/p/enterprise-java-xacml
http://xacmlinfo.org/category/balana
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

Lazouski et al. (2014) extend WOS2 Balana for the enforce-
ment of usage control policies in distributed systems, while TAS3
Trust PDP (Böhm et al., 2010) extends SUN-XACML for the
evaluation of trust policies. The XACML reference architecture,
however, is underspecified, and existing XACML implementa-
tions of XACML may have slight variations based on implemen-
tation choices. Nonetheless, a common characteristic of exist-
ing XACML implementations is that they are implemented as a
monolithic component. Although the choice of implementing the
XACML reference architecture as a monolithic component may
be suitable for enterprise environment, it cannot fully address the
key challenges for cloud environments. This problem is acknowl-
edged and partially addressed by Laborde et al. (2009), who extend
a core XACML PDP with loosely coupled domain-dependent
modules that provide non-standard security information (such
as new data types). However, the approach does not discuss the
decoupling of the other components of the XACML reference
architecture, and does not address the fact that UDFs are typically
implemented within the PDP, thus limiting the extensibility of
existing implementations. By contrast, SAFAX decouples the defi-
nition and implementation of UDFs from the PDP, thus allowing
domain owners to determine from which source the information
used for policy evaluation is fetched. Another approach for pro-
viding authorization as a service using XACML is proposed by
Lorch et al. (2003). This solution addresses challenges C2 and C3
by providing a single point for deploying and updating policies,
but does not address the other challenges to be faced in cloud,
especially the ones related to policy evaluation.

7. Conclusion

In this paper, we have investigated the challenges of secure
data sharing in multi-cloud environments. The XACML refer-
ence architecture provides the principles to address the iden-
tified challenges. However, existing XACML implementations

are monolithic, thus resulting unsuitable for handling authoriza-
tions in multi-cloud environments. To address this limitation we
have proposed SAFAX, an extensible XACML-based authorization
framework tailored to the development of authorization services
that are suitable for (multi) cloud environments. Themain charac-
teristic of SAFAX is that all its components are designed as loosely
coupled services. This design choice makes SAFAX a viable solu-
tion as it provides the necessary flexibility, extensibility and scal-
ability to meet the dynamic, extensible, and highly configurable
security requirements of clouds. To demonstrate SAFAX, we have
realized a prototype by implementing the SAFAX architecture as
a web service. The trust model underlying an application domain
has a significant impact on the deployment of an authorization
service. We have reviewed a number of trust models typically
being used in cloud environments and we showed that SAFAX can
support them. Moreover, we discussed the lessons learned from
deploying, using, and securing SAFAX.

Our current implementation of SAFAX uses the XACML PDP
provided by HERAS-AF. This PDP supports the evaluation of
policies specified in XACML v2.0. We plan to extend the eval-
uation capabilities with an additional PDP service to support
XACML v3.0. Our implementation allows users to verify certain
types of trust information in their policies, but other types of
trust (e.g., KPI, risk) and context (e.g., location) information
may be needed for making access decisions. In this direction,
our implementation can be easily extended with additional trust
services.

Acknowledgments

This work has been partially funded by the EDA project
IN4STARS2.0, the ITEA2 projects FedSS (No. 11009) and
M2MGrid (No. 13011), the EUFP7projectAU2EU, and theDutch
national program COMMIT under the THeCS project.

References
Alcaraz Calero, J., Edwards, N., Kirschnick, J., Wilcock, L., and Wray, M. (2010).

Toward a multi-tenancy authorization system for cloud services. IEEE Secur.
Priv. 8, 48–55. doi:10.1109/MSP.2010.194

Almutairi, A., Sarfraz, M., Basalamah, S., Aref, W., and Ghafoor, A. (2012). A
distributed access control architecture for cloud computing. IEEE Software 29,
36–44. doi:10.3389/fpsyg.2013.00200

Asim, M., Ignatenko, T., Petkovic, M., Trivellato, D., and Zannone, N. (2012).
“Enforcing access control in virtual organizations using hierarchical attribute-
based encryption,” in Proceedings of International Conference on Availability,
Reliability and Security (Prague: IEEE), 212–217.

Blundo, C., Cimato, S., De Capitani Di Vimercati, S., De Santis, A., Foresti, S.,
Paraboschi, S., et al. (2010).Managing key hierarchies for access control enforce-
ment: heuristic approaches. J. Comput. Secur. 29, 533–547. doi:10.1016/j.cose.
2009.12.006

Böhm, K., Etalle, S., den Hartog, J., Hütter, C., Trabelsi, S., Trivellato, D., et al.
(2010). A flexible architecture for privacy-aware trust management. J. Theor.
Appl. Electron. Commer. Res. 5, 77–96. doi:10.4067/S0718-18762010000200006

Boneh, D., Boyen, X., andGoh, E.-J. (2005). “Hierarchical identity based encryption
with constant size ciphertext,” in Proceedings of Annual International Conference
on the Theory andApplications of Cryptographic Techniques, LNCS 3494 (Aarhus:
Springer), 440–456.

Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). “Intercloud: utility-oriented
federation of cloud computing environments for scaling of application services,”
in Algorithms and Architectures for Parallel Processing (Busan: Springer), 13–31.

Chadwick, D., Lievens, S., denHartog, J., Pashalidis, A., and Alhadeff, J. (2011). “My
private cloud overview: a trust, privacy and security infrastructure for the cloud,”
in Proceedings of International Conference on Cloud Computing (Washington,
DC: IEEE), 752–753.

Dolski, S., Huonder, F., and Oberholzer, S. (2007). HERAS-AF: XACML 2.0 Imple-
mentation. Technical Report, University of Applied Sciences Rapperswil.

Gartner Inc. (2014). Gartner Says Worldwide Traditional PC, Tablet, Ultramobile
and Mobile Phone Shipments to Grow 4.2 Percent in 2014. Available at: http:
//www.gartner.com/newsroom/id/2791017

Grobauer, B., Walloschek, T., and Stocker, E. (2011). Understanding cloud comput-
ing vulnerabilities. IEEE Secur. Priv. 9, 50–57. doi:10.1109/MSP.2010.115

Hu, L., Ying, S., Jia, X., and Zhao, K. (2009). “Towards an approach of semantic
access control for cloud computing,” in Cloud Computing, LNCS 5931 (Beijing:
Springer), 145–156.

Hühnlein, D., Roßnagel, H., and Zibuschka, J. (2010). “Diffusion of federated
identity management,” in Sicherheit, P-170, 25–36.

Ibraimi, L., Asim, M., and Petkovic, M. (2010). “An encryption scheme for a secure
policy updating,” in Proceedings of International Conference on Security and
Cryptography (Athens: SciTePress), 399–408.

Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. (2003). “The eigentrust
algorithm for reputation management in P2P networks,” in Proceedings of the
12th International Conference on World Wide Web (Budapest: ACM), 640–651.

Laborde, R., Cheaito, M., Barrere, F., and Benzekri, A. (2009). “An extensible
XACML authorization web service: application to dynamic web sites access
control,” in Proceedings of International Conference on Signal-Image Technology
and Internet-Based Systems (Marrakesh: IEEE), 499–505.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 914

http://dx.doi.org/10.1109/MSP.2010.194
http://dx.doi.org/10.3389/fpsyg.2013.00200
http://dx.doi.org/10.1016/j.cose.2009.12.006
http://dx.doi.org/10.1016/j.cose.2009.12.006
http://dx.doi.org/10.4067/S0718-18762010000200006
http://www.gartner.com/newsroom/id/2791017
http://www.gartner.com/newsroom/id/2791017
http://dx.doi.org/10.1109/MSP.2010.115
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

Kaluvuri et al. SAFAX

Lazouski, A., Mancini, G., Martinelli, F., and Mori, P. (2014). “Architecture, work-
flows, and prototype for stateful data usage control in cloud,” in Proceedings of
InternationalWorkshop onDataUsageManagement (San Jose, CA: IEEE), 23–30.

Li, J.,Wang,Q.,Wang, C., andRen, K. (2011). Enhancing attribute-based encryption
with attribute hierarchy. Mobile Net. Appl. Arch. 16, 553–561. doi:10.1007/
s11036-010-0233-y

Li, N., Winsborough, W. H., and Mitchell, J. C. (2003). Distributed credential chain
discovery in trust management. J. Comput. Secur. 11, 35–86.

Liu, A. X., Chen, F., Hwang, J., and Xie, T. (2008). “XEngine: a fast and scalable
XACML policy evaluation engine,” in Proceedings of International Conference
on Measurement and Modeling of Computer Systems (Annapolis, MD: ACM),
265–276.

Liu, A. X., Chen, F., Hwang, J., and Xie, T. (2011). Designing fast and scalable
XACML policy evaluation engines. IEEE Trans. Comput. 60, 1802–1817. doi:10.
1109/TC.2010.274

Lorch, M., Kafura, D., and Shah, S. (2003). “An XACML-based policy management
and authorization service for globus resources,” in Proceedings of International
Workshop on Grid Computing (Phoenix: IEEE), 208.

Matheus, A., and Herrmann, J. (2012). Geospatial eXtensible Access Control
Markup Language (GeoXACML) Version 1 Corrigendum. OGC Implementa-
tion Standard OGC 11-017, Open Geospatial Consortium.

OASIS. (2013). eXtensible Access ControlMarkup Language (XACML)Version 3.0.
OASIS Standard.

Oh, S., and Park, S. (2003). Task-role-based access control model. Inf. Syst. 28,
533–562. doi:10.1016/S0306-4379(02)00029-7

Ruj, S., Nayak, A., and Stojmenovic, I. (2011). “Dacc: distributed access control in
clouds,” in Proceedings of International Conference on Trust, Security and Privacy
in Computing and Communications (Changsha: IEEE), 91–98.

Sahai, A., andWaters, B. (2005). “Fuzzy identity-based encryption,” in Proceedings of
Annual International Conference on the Theory andApplications of Cryptographic
Techniques, LNCS 3494 (Aarhus: Springer), 457–473.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-based
access control models. Computer 29, 38–47. doi:10.1109/2.485845

Shamir, A. (1985). “Identity-based cryptosystems and signature schemes,” in Pro-
ceedings of International Cryptology Conference (Santa Barbara, CA: Springer),
47–53.

Simone, A., Skoric, B., and Zannone, N. (2012). Flow-based reputation: more
than just ranking. Int. J. Inf. Technol. Decis. Mak. 11, 551–578. doi:10.1142/
S0219622012500113

Skoric, B., de Hoogh, S., and Zannone, N. (2014). Flow-based reputation with
uncertainty: evidence-based subjective logic. CoRRabs/1402.3319.

Takabi, H., Joshi, J., and Ahn, G.-J. (2010). Security and privacy challenges in
cloud computing environments. IEEE Secur. Priv. 8, 24–31. doi:10.1109/MSP.
2010.186

Trivellato, D., Spiessens, F., Zannone, N., and Etalle, S. (2009). “Reputation-based
ontology alignment for autonomy and interoperability in distributed access
control,” in Proceedings of International Conference on Computational Science
and Engineering (Vancouver, BC: IEEE), 252–258.

Trivellato, D., Zannone, N., and Etalle, S. (2014). GEM: a distributed goal evaluation
algorithm for trust management. Theory Pract. Logic Program. 14, 293–337.
doi:10.1017/S1471068412000397

Trivellato, D., Zannone, N., Glaundrup, M., Skowronek, J., and Etalle, S. (2013). A
semantic security framework for systems of systems. Int. J. Coop. Inf. Syst. 22,
doi:10.1142/S0218843013500044

Wang, G., Liu, Q., and Wu, J. (2010). “Hierarchical attribute-based encryp-
tion for fine-grained access control in cloud storage services,” in Proceedings
of Conference on Computer and Communications Security (Chicago: ACM),
735–737.

Wu, R., Zhang, X., Ahn, G.-J., Sharifi, H., and Xie, H. (2013). “ACaaS: access control
as a service for IaaS cloud,” in Proceedings of International Conference on Social
Computing (Alexandria, VA: IEEE), 423–428.

Younis, Y. A., Kifayat, K., andMerabti, M. (2014). An access control model for cloud
computing. J. Inf. Secur. Appl. 19, 45–60. doi:10.1016/j.jisa.2014.04.003

Yu, S., Wang, C., Ren, K., and Lou, W. (2010). “Achieving secure, scalable, and fine-
grained data access control in cloud computing,” in Proceedings of Conference on
Computer Communications (San Diego, CA: IEEE), 1–9.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Kaluvuri, Egner, den Hartog and Zannone. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in ICT | www.frontiersin.org May 2015 | Volume 2 | Article 915

http://dx.doi.org/10.1007/s11036-010-0233-y
http://dx.doi.org/10.1007/s11036-010-0233-y
http://dx.doi.org/10.1109/TC.2010.274
http://dx.doi.org/10.1109/TC.2010.274
http://dx.doi.org/10.1016/S0306-4379(02)00029-7
http://dx.doi.org/10.1109/2.485845
http://dx.doi.org/10.1142/S0219622012500113
http://dx.doi.org/10.1142/S0219622012500113
http://dx.doi.org/10.1109/MSP.2010.186
http://dx.doi.org/10.1109/MSP.2010.186
http://dx.doi.org/10.1017/S1471068412000397
http://dx.doi.org/10.1142/S0218843013500044
http://dx.doi.org/10.1016/j.jisa.2014.04.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive

	SAFAX – an extensible authorization service for cloud environments
	1. Introduction
	2. Motivation
	3. SAFAX – An Authorization Solution for Cloud Services
	3.1. XACML Reference Architecture
	3.2. SAFAX – Overview
	3.3. SAFAX Architecture
	3.4. Message Flow within SAFAX

	4. Implementation
	5. Discussion
	5.1. Trust Models in Cloud Environments
	5.1.1. Centralized Trust Model
	5.1.2. Distributed Trust Model
	5.1.3. Distributed and Delegated Trust Model

	5.2. Lessons Learned from Deploying, Using, and Securing SAFAX

	6. Related Work
	7. Conclusion
	Acknowledgments
	References

