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Information systems, i.e., the set of hardware and software tools that organizations use to col-
lect and process data, are critical elements in any developed economy. Due to the intrinsic
value of the information stored, government agencies and corporations alike are constantly on
alert to heighten their infrastructure and data security due to threats from hackers and cyber-
terrorists. Information security (InfoSec) then aims at keeping information confidential, avail-
able, and at assuring its integrity, usually by detecting and preventing intrusions by external
entities.

However, protecting large-scale information systems is an increasingly difficult challenge; not
only do attackers tend to be technically more sophisticated but they also show a higher degree of
collaboration amongst themselves. Both factors concur in producing attacks, which are often of
a previously unknown nature. Ensuring resilience against unpredictable, potentially high impact
events forces organizations into allocating huge amounts of resources.

Here, we propose that, in analogy with studies of functionally non-local complex systems,
representing information systems as functional networksmay help detecting and classifying patterns
associated with different families of attacks, and constructing proactive defense systems capable of
detecting intrusion of previously unknown characteristics. As a prototypical example, we compare
InfoSec with the study of functional brain networks, a field that has received increasing attention
in the last decade, and that presents similar challenges (i.e., the identification of “normal” and
“pathological” conditions).

Information Systems: The Brain Analogy

Of all functionally non-local complex systems, the brain is probably the most studied. The human
brain comprises an estimated 1011 neurons, each with an average of 104 connections with other
neurons, performs on the order of 1015 synaptic operations/second, and has an estimated storage
capacity of 1012 bytes (Sarpeshkar, 1998; Hofman, 2012). Each neuron can be thought of as a
dynamical unit, and the transient coupling between these units is instrumental in many aspects of
its function (Fries, 2005).

An information system consisting of large ensembles of computing units is in many ways
comparable to a human brain. Structurally, like the human brain, information systems may consist
of a great number of functional units (e.g., computers, routers, and firewalls), connected by cables.
Information systems and the brain are also functionally comparable as both transfer, process, and
store information. In both cases, these functions are associated both with activity within each
functional unit and with coordinated activity between these units. Both systems can be understood
as dynamical systems at various observation levels, from single unit to whole system level, whose
events are represented by the information packets they generate and transfer at a given observation
level.
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Representing with Complex Networks

Over the last 10 years, scientists from very different fields have
started resorting to complex network theory, a statistical physics
understanding of graph theory (a much older branch of pure
mathematics), to describe systems ranging from power grids to
social interactions and the brain (Albert and Barabási, 2002;
Boccaletti et al., 2006).

Representing a given system as a network involves associating
nodes with the elements constituting the system, and pairwise
connecting them when some explicit relation can be established
(Costa et al., 2011). For instance, in transportation networks,
airports can be represented by nodes, connected when a direct
flight operates between them (Zanin and Lillo, 2013); likewise,
connections in a social network may represent some relationship
(e.g., friendship, co-working, etc.) between individuals (Vega-
Redondo, 2007).

While it is straightforward to represent brain anatomy at micro
as well as macro scales as a set of nodes connected through phys-
ical links, brain dynamics can also be endowed with a network-
like structure, by identifying links connecting nodes with some
relationship between their respective dynamics (Bullmore and
Sporns, 2009). The resulting network is often termed functional
network.

The structural, dynamical, and functional analogy with brain
activity allows representing information systems as networks of
interacting dynamical units, carrying out some function.

Representing Information Systems as
Functional Networks

To represent InfoSec systems as functional networks, the dynami-
cal variables that can be monitored and used to create functional
links between nodes depend on the level at which one wishes to
describe the system. From high to low levels of semantic, they
may include firewall warnings, IntrusionDetection Systems alerts,
software log files, down to Internet and Ethernet communications,
or CPU and memory loads.

To connect pairs of nodes, two qualitatively different met-
rics can be used: correlation and causality. With the former, a
link is established when both elements exhibit similar dynamics
within the same time-window. For instance, two firewalls can
be “functionally linked” when they simultaneously raise an alert;
two computers, when the time series representing their CPU
loads have a similar behavior at similar moments of the day.
On the other hand, correlation does not imply causality; one
may thus try to map causality relations between the elements.
Thus, a computer may exhibit some specific behavior as a con-
sequence of the activity of another unit – if the latter displayed
a different activity, the former would then be driven to another
dynamics.

From a practical view-point, a plethora of techniques are avail-
able for assessing correlations between time series: from the
classical Pearson’s linear correlation, to non-linear solutions as
the Mutual Information. Furthermore, by expanding the con-
cept of correlation to synchronization, problem-specific metrics

have been developed, e.g., Synchronization Likelihood (Stam
and Van Dijk, 2002) or Phase Locking Index (Pikovsky et al.,
2003). Detecting causality between time series is a more com-
plicated problem; nevertheless, metrics, like Granger Causal-
ity (Granger, 1988) or Transfer Entropy (Schreiber, 2000), are
available.

Representing Attacks

The brain carries out complex tasks, such as perceptual binding
or reasoning, by both processing information in largely segregated
modules and integratingmultiple information sources in a unified
code or temporal sequence (Tononi et al., 1998). Correspondingly,
the statistical mechanics approach underlying complex network
theory allows conceiving of macroscopic brain function as emerg-
ing from the interactions of a vast number of microscopic neural
units, and characterizing it in terms of topological properties
that are essentially statistical in nature and do not directly derive
from particular nodes or links. In turn, brain damage of vari-
ous kinds can be represented in terms of deviations from these
properties.

Functional non-locality implies that studying a single brain
region may not be sufficient to detect clinically relevant devi-
ations from normal behavior. For instance, monitoring activity
at a single brain region may not contain enough information to
understand epileptogenic dynamics. An alert system based on
such information would typically generate an undue amount of
false alarms.

Likewise, in large-scale information systems, on the one hand,
activity is characterized by a high degree of spatial and temporal
complexity and, on the other hand, an abnormal condition, e.g.,
an intrusion, may be associated with changes in global dynamics
without necessarily affecting the microscopic level of its single
constituent elements.

Attacks to information systems often involve simultaneous sub-
attacks on different parts of the system, and may include hierar-
chical attack sequences, e.g., if the first sub-attack does not work,
the intruder would try a second one, and so forth.

While false alarms typically occur when trying to fend off
attacks based on local alarms, such as those generated by a single
firewall, representing an information system as a dynamical net-
worked system allows reconstructing the “topological structure”
of a specific attack – i.e., the structure created by the interactions
between the elements of the system (Boccaletti et al., 2006; Costa
et al., 2007). Normal/typical activity may then be characterized
by coordinated patterns of activity, captured by connectivity and
the topological properties of the corresponding network. These
patterns may turn out to be significantly altered during an attack,
and the deviations can be used to reliably detect the presence of
an attack. Nodes of the functional network would then represent
alarms, pairwise connected when they co-occur in a real attack.
The application of network theory to such structures can then
yield valuable information about the attack. For instance, nodes
centrality would quantify the importance of a specific element
in the detection of the attack; communities (or modules) of
highly interconnected elements would indicate the presence of
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coordinated (but independent) sub-attacks; and the temporal
evolution of the network may yield information about how the
attacker adapts to evolving security measures (Jeong et al., 2001).

Considering causal functional networks can yield even higher-
level information about the attack. Specifically, cascade effects can
be detected: the abnormal behavior of one elementmay force other
elements to undesired dynamics. In these situations, a simple
correlation may create a distorted representation of the system;
events do not co-occur, but they are instead generated by a single,
root node.

In summary, the post hoc analysis of attacks by means of
complex networks can yield several benefits for the analyst; it
facilitates the identification of spurious alarms, reduces the num-
ber of alarms to be monitored by detecting redundancies cre-
ated by causality relations, and improves the meaningfulness of
alarms by clarifying how they interact with each other, ultimately,
strengthening the diagnosis.

Constructing Proactive Systems
In the previous section, we discussed the advantages of using
functional networks in a reactive environment; past attacks can
be studied and features of the corresponding models can then
be used to recognize future attacks. However, this approach has
an intrinsic limitation: pattern matching cannot be performed
under unknown conditions, that is, new attacks cannot be rec-
ognized if they significantly deviate from past instances. The
ultimate goal would then be to construct a proactive system, i.e.,
a system able to identify an attack, even for the first time it is
encountered.

Functional networks can once again save the day. Consider
again the example of the brain, and its activity associated with
the execution of a given task. To understand such activity, it
will be useful to reconstruct not only the network associated
with this condition but also a convenient baseline. The network
associated with brain activity under resting conditions, i.e., in
the absence of external stimuli, is often used as a baseline to
gage the properties of the network associated with task-induced
activity. Provided it is sufficiently sampled, one can also use rest-
ing activity to understand the properties of specific perturbations
(Papo, 2013). This is a consequence of the fluctuation-dissipation

theorem (Kubo, 1966), which establishes a substantial equivalence
between stimulus-evoked and spontaneous fluctuation correla-
tions, provided the system is not driven too far from equilibrium.

Similarly, the functional network associated with the informa-
tion system baseline activity may be reconstructed by identifying
time-varying patterns of correlated activity found under normal
conditions. New networks can then be created in real time, and
compared with the resting one. Mismatches between these two
networks would be recognized as abnormal connectivity patterns
and could then be used to trigger an alarm. For instance, the
appearance of a set of firewalls with synchronized activity may
correspond to a distributed attack; likewise, the synchronized
activity of a large set of computers may indicate the presence of
a virus acting on them.

Problems to Overcome

The ideas sketched in the previous sections constitute a theoretical
exercise discussing the possibility of a network-based approach to
InfoSec, by analogy to what is now becoming standard practice in
system-level neuroscience. Applying these conjectures to concrete
InfoSec issues will require overcoming several barriers, two of
which are discussed in what follows.

On the theoretical level, it is necessary to define problem-
specific coupling measures between elementary system units.
Existing metrics are either domain-general, or were designed to
account for characteristics specific of brain dynamics. It is thus
necessary to conceive of metrics incorporating the specific taxon-
omy of the information system components – e.g., detecting when
two firewalls are yielding alerts due to similar causes, identifying
the best time resolution in CPU load data, etc.

On the practical level, many available data sets for security
systems benchmarking (Thomas et al., 2008; Nehinbe, 2011) are
not suited to support the proposed developments. Data sets,
such as DARPA or DEFCON, lack logs of the system activity
under normal conditions, making it impossible to characterize
its “resting” dynamics. The sampling rate must be fast enough to
ensure that phenomena unfolding at all frequencies, as well as the
relationships between these phenomena, can at least in principle
be detected.
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