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Visuo-auditory sensory substitution systems are augmented reality devices that translate
a video stream into an audio stream in order to help the blind in daily tasks requiring visuo-
spatial information. In this work, we present both a new mobile device and a transcoding
method specifically designed to sonify moving objects. Frame differencing is used to
extract spatial features from the video stream and two-dimensional spatial information
is converted into audio cues using pitch, interaural time difference, and interaural level
difference. Using numerical methods, we attempt to reconstruct visuo-spatial information
based on audio signals generated from various video stimuli. We show that despite
a contrasted visual background and a highly lossy encoding method, the information
in the audio signal is sufficient to allow object localization, object trajectory evaluation,
object approach detection, and spatial separation of multiple objects. We also show that
this type of audio signal can be interpreted by human users by asking 10 subjects to
discriminate trajectories based on generated audio signals.

Keywords: sensory substitution, blind, mobile device, video processing, audio synthesis, motion detection,
sonification

1. Introduction

Sensory substitution devices translate the information that would normally be received by a specific
sensory modality into a distinct physical signal that can stimulate another sensory modality. Vision
to Audition (or visuo-auditory) Sensory SubstitutionDevices (VASSDs) translate visual information
(electromagnetic fluctuations) into audio signals (air compression fluctuations) stimulating the
eardrums. VASSDs mainly aim to help visually impaired people in daily tasks requiring spatial
localization capabilities, such as moving within an unknown environment.

VASSDs form a specific branch of navigation systems for the blind that directly transduce basic
visual features into audio cues, letting the brain associate meanings to the transduced signal. By
transmitting information concerning the direct visual surroundings, this method is designed for
micro-navigation (i.e., near-field navigation). These specifications are in contrast to other navigation
systems (for an inventory see Roentgen et al., 2008) that interpret the input signal or use Global
Positioning System data before generating semantic audio signals, such as spatialized synthesized
speech (Loomis et al., 1998, 2005; Katz et al., 2012).

The modus operandi for VASSDs is generally the following: 1 – acquisition of the visual informa-
tion using a camera; 2 – extraction of visual features of interest; 3 – sonification of extracted visual
features; 4 – stereophonic transmission of the generated audio signal.

Thus, the bi-dimensional position of visual features in the camera’s field of view (FOV) has to
be transmitted via audio output. Horizontal position is generally encoded using stereo panning,
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for example, by associating a right side position in the FOV to a
stereophonic sound with larger amplitude on the right channel.
Vertical position is generally transmitted using pitch variation
associating a more elevated position to a higher tone. This general
configuration allows a wide range of choices both for the extracted
visual features and for the audio cues used to render spatial
information.

The system the vOICe has evolved since the nineties in line with
computer hardware and software and is still one of the current
major projects in VASSD development (Meijer, 1992; Ward and
Meijer, 2010). Nowadays, this system proposes a large choice of
configurations. The standard sonification procedure uses gray
level images where pixel luminosity is encoded by sound ampli-
tudes. Pitch encoding is used for elevation and stereo panning
is used for azimuth. Pictures are acquired at a fixed rate and
each of them is progressively sonified from left-to-right during
a horizontal scan. Thus, time is used in association with stereo
panning to encode horizontal information.

Another system that started slightly later is called Prosthesis
Substituting Vision with Audition (PSVA) (Capelle et al., 1998;
Arno et al., 1999, 2001). The main differences with this project
compared to the previous one are an on-line sonification without
left-to-right scans, and frequency encoding depending on both
horizontal and vertical positions of the pixels. Edges are detected
from images in gray scale and the amplitude of each sound is
modulated by the gray level of the corresponding pixel in the
image. A better resolution is given to the center of images during
the conversion.

More recently, a third project called TheVibe has been devel-
oped (Auvray et al., 2005; Durette et al., 2008; Hanneton et al.,
2010). With its default configuration, this system associates a
specific tone to each region of the acquired image. However, the
conceptual sonification scheme, based on the coupling of sensors
and receptors, allows for a much more complex sonification. As
in PSVA, sounds are generated on-line from whole gray-scale
images, without horizontal scans.

Cognitive Aid System for BLInd People (CASBLIP) is a project
that was funded by the European commission from 2006 to 2009
(Fajarnes et al., 2010). The system uses stereo-vision to allow
real time video processing algorithms to determine the location
and velocity of moving objects in the scene, in tandem with
depth maps.

The following three other systems attempt to provide a “color-
ful” experience for the blind by converting pixel colors into sound
textures.

EyeMusic (Levy-Tzedek et al., 2012, 2014; Abboud et al., 2014;
Maidenbaum et al., 2014a) is based on periodic left-to-right hori-
zontal scans of images in which the sounds ofmusical instruments
are produced depending on the colors of the pixels. The vertical
dimension is mapped into a musical pentatonic pitch scale. The
system has been slightly modified in a recent version (Maiden-
baum et al., 2014b) and it now uses an increased image resolution
of 50× 30 and a hexatonic scale.

SeeColOr (Bologna et al., 2009a,b, 2010; Deville et al., 2009)
applies image filters to a stereoscopic colored video acquisition
with aHue-Saturation-Luminance (HSL) color format. Amethod,
based on the combination of several conspicuity maps coming
from the extraction of different features, generates a simplified

video stream that is afterwards sonified. Pre-defined hue ranges
are used to associate musical instruments depending on the color
of the pixels. The pitch encodes the saturation and a second
musical sound is added depending on the luminance. Spatial
information in the FOV is rendered using Head-Related Transfer
Function (HRTF).

As presented in Capalbo and Glenney (2010), The Kromo-
Phone proposes three modes of color sonification (RGB, HSL,
andRGBYW) associating the amplitude of pre-selected pure tones
to the level of each color channel. The KromoPhone partially
sonifies an image by extracting the color of a region that sur-
rounds the position of a cursor controlled by the user. The spatial
information is not encoded by sounds since the user controls the
scan by moving the cursor position and is thus already aware
of the spatial localization that is sonified. In other words, the
passive left-to-right horizontal scans used in the project thevOICe
and EyeMusic is transformed in an active scan controlled by the
user. Thus, spatial information concerning the part of the image
that is currently sonified is implicitly transmitted by dynamical
proprioceptive information.

All these transcoding methods have proven useful for specific
tasks. The ability to localize static objects has already been
demonstrated (Proulx et al., 2008). Other works have shown that
participants are capable of grabbing a distant object (Levy-Tzedek
et al., 2012). Visual shapes can be differentiated (Proulx et al.,
2008; Brown et al., 2014) and reconstructed (Capelle et al., 1998;
Arno et al., 2001), and orientation of letters can be recognized,
allowing VASSDs users to exceed the threshold for the World
Health Organization definition of blindness on an adapted
Snellen’s acuity test (Striem-Amit et al., 2012). Moreover, it
has been shown that these systems can be used for walking
(Durette et al., 2008; Bologna et al., 2009a), that they allow for
the development of distal attribution (Auvray et al., 2005), and
that visual phenomenology can be developed within months of
immersive use (Ward and Meijer, 2010).

However, the use of such systems by the blind in daily life is still
missing both an ergonomic device and transcoding algorithms
specially designed for urban locomotion. VASSDs could be
especially useful in situations where users voluntarily switch
on the system to temporarily check if a silent object is coming
from a particular location and to gather information concerning
its trajectory. In this paper, we introduce a new project called
“LibreAudioView,” which is a powerful, low cost, and portable
video-to-audio transducer that can be used to sonify moving
objects in complex visual scenes, such as city streets. For this
purpose:

• We present new hardware that can be used as an experimental
platform for the scientific community, as well as a cheap and
miniature assistive device for the blind in daily life.

• We propose to use motion detection in the signal transduction
of VASSDs.

• Based on numerical analysis of the transmitted audio signal, we
show that spatial information can theoretically be extracted to
partly reconstruct objects motions.

• We show that such an audio signal can also be interpreted
by human users to retrieve the motion information of visual
objects.
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The device is an assembly of a miniature camera module inte-
grated into a 3D-printed plastic glasses frame. The camera is
connected to a battery-powered mini-computer that performs the
video to auditory transcoding using classic pitch encoding and
stereo panning encoding for, respectively, vertical and horizontal
coordinates. The audio signal is then transmitted to the user using
running headphones.

The specificity of this method comes from the video processing
that performs frame differencing to extract spatial features. This
method has two operating modes. With the first mode, when the
camera is static, only the edges of moving objects are detected in
the scene. In the second mode, when the camera is moving, edges
of both static and moving objects are extracted. Thus, the video
stream is simplified by extracting only the edges of objects that
can become dangerous obstacles: moving objects when the user is
static, and bothmoving and static objects when the user ismoving.

In thiswork,we exclusively focused on the first operatingmode.
We recorded and analyzed the output signal generated by the
sensory substitution device with a static camera when confronted
with various visual stimuli. The encoding scheme used is a high
lossy compression method, resulting in numerous interferences
and mixing multiple short sounds that partly overlap. Spatial
information could be degraded in such a proportion that motion
information would not be recoverable. In particular, we explored
whether the transcoded auditory signal:

• transmits enough information to precisely localize an object?
• allows for the evaluation of the trajectory of a moving object?
• makes it possible to detect an object approaching the user?
• allows a spatial separation between multiple moving objects?

Section 2 details the technical aspects of both the transcoding
device and the experimental setups used. Section 3 shows results
obtained by numerical methods and human users concerning the
four above mentioned questions. Section 4 discusses advantages
and limitations of the system as well as improvements that remain
to be implemented.

2. Materials and Methods

In this section, we describe two systems. The first one is the sen-
sory substitution device itself, converting the video stream into an
audio signal. The second one is the experimental setup composed
of several modules used to display visual stimuli, analyze the
generated audio signal, and reconstruct the spatial information.

2.1. Sensory Substitution Device
2.1.1. Hardware Description
The video acquisition is performed by a USB video device class
(UVC) camera module featuring a 24-bit color depth and a video
resolution of 640× 480 pixels at 30 frames per second (fps) with a
diagonal FOV of 67° (53.6° horizontal, 40.2° vertical). This minia-
ture printed circuit board is integrated into a 3D-printed polylactic
acid (PLA) eyeglass frame. The cable runs inside the frame and is
connected to the mini-PC by a type-A USB connector.

The components of the mini-computer are placed inside a 3D-
printed PLA rectangular box of size 90mm× 80mm× 21mm
with several ports: a USB-A port to plug the camera (a USB hub

can also be used in order to multiply the connected USB devices
such as keyboard and mouse), a micro-USB to directly power the
mini-PC and to upload binaries during development process, a
HDMI port to connect a screen; a 3.5mm mini-jack to connect
earphones, a mini-SD slot to increase the ROM memory, and a
mini-USB port to charge the battery. A strap can be used to wear
the box containing the PC around the neck, preventing the camera
and earphone cable from hindering the movements of the user.

The computer chip is based on a RocKship3188 featuring
a quad-core 1.6GHz CPU, 2Go DDR3 RAM, Mali-400 MP4
GPU, Wi-Fi 802.11b/g/n and Bluetooth. The battery is a Li-ion
rechargeable 1S2P with 4500mAh capacity providing an auton-
omy of more than 3 h. A charger–booster module regulates the
system power. These specifications make the system well adapted
to applications requiring multimedia manipulation in desktop,
robotic, and embedded environments. The Android 4.2 Jelly Bean
operating system allows downloads of many applications espe-
cially designed for the blind. The three main parts of the system
(eyeglass, mini battery-powered computer, and earphones) are
shown in Figure 1.

The audio output is sent using headphones specially designed
for urban jogging (such as Sennheiser MX680) with integrated

FIGURE 1 | Picture showing main parts of the sensory substitution
device. An electronic eyeglass is connected to a battery-powered
mini-computer that can be carried around the neck. This computer performs
the signal transduction and generates sounds that are transmitted through
running earphones.
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volume control, and earbuds that do not completely block the
auditory canal, allowing surrounding sounds to be heard.

2.1.2. Software Description and Transcoding
Algorithm Implementation
Although we think that the following transcoding algorithm is
suitable for motion detection sonification, the method itself and
its associated parameters can be easily changed in the software.
The LibreAudioView software is open-source and we encourage
other people interested in this field to explore their ownmethod by
modifying the software. The LibreAudioView software and sam-
ples of sonified video can be dowloaded from our project page1.

The software is developed based on the Java android frame-
work. Video acquisition and video processing is done using
“OpenCV for android.” Video acquisition is performed at 30 fps.
Images are acquired with a resolution of 640× 480, converted in
gray scale and slightly blurred with a Gaussian filter using a 3× 3
window with σx = σy = 0.6 to decrease camera noise. For each
image, frame differencing processing is performed by computing
a pixel by pixel absolute difference of gray levels between the
current frame and the previous one. We decided to work with
gray-scaled images since using RGB images would only slightly
improve motion detection results (Benezeth et al., 2010) while
increasing computational load and battery consumption. The

1http://leadserv.u-bourgogne.fr/en/members/maxime-ambard/pages/
libreaudioview

result is then thresholded, setting to 255 all pixels with a difference
level above a threshold, and setting all other pixels to 0. Resultant
images are then rescaled to a resolution of W×H= 160× 120
(width× height) and transmitted to the sonification algorithm.
Figure 2B shows the output of the video processing for two con-
secutive frames during a target displacement shown in Figure 2A.

The sonification algorithm associates a pre-computed stereo-
phonic pure tone to each white pixel (denoted in the rest of the
document as “active pixels”) within the processed frame. The
audio signal is played using the standard android AudioTrack API
and sampled at 8 kHz to limit the computational load. Each active
pixel is characterized by its position [x,y] in pixel coordinates
([0,0] being the bottom left of the frame and [W–1, H–1] the top
right, W and H denoting, respectively, the width and the height
of the visual scene), and is encoded by a sound characterized by a
triplet descriptor [ILD(x), ITD(x), f (x,y)] defined as follows:

ILD(x) = 20 log10
Ar(x)
Al(x)

= 24
( x
W − 0.5

)
(1)

Ar(x) =
A

1 + exp
(
−k

( x
W − 0.5

))
Al(x) = 1 − Ar(x)

where ILD(x) is the interaural level difference in dB, Ar (respec-
tively, Al) is the amplitude of the sound on the right (respectively,
left) channel, A is the general sound amplitude, x is the horizontal
coordinate, k is a constant equal to 2.6 chosen to produce an

FIGURE 2 | Illustrations of the four main steps of the signal transduction. (A) Superposition of two consecutive frames of the stimulation video where the
target is moving from one position to an adjacent one, more on the right. (B) Output of the video processing based on frame differencing applied on the two
consecutive frames shown in (A). (C) Stereo power spectrum generated by the sonification method applied on the output of the video processing presented in (B).
(D) Spatial information extracted from the stereo power spectrum presented in (C).
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ILD linearly related to x, going from −12 to 12 dB as reported by
Blauert (1997).

ITD(x) = r
S (sinα(x) + α(x)) (2)

α(x) =
( x
W − 0.5

)
π

where equation (2) is the classical Woodworth’s interaural time
difference formula (Woodworth, 1938). We used r= 8.75 cm as
the radius of the typical human head (Algazi et al., 2001) and
S= 343m s−1 is the speed of sound in the atmosphere. The
frequency of a sinusoid signal f (x,y) is associated to each pixel
position. We used the bark scale in equation (3) in order to follow
the tonotopic sensory scale (Traunmuller, 1990):

f(x, y) = 1960 0.53 + z(x, y)
26.28 − z(x, y) (3)

z(x, y) = zmin + l(x, y)(zmax − zmin) (4)

l(x, y) = 2yW+ x
2WH (5)

The bark scale is used in linear relation with the variable l(x,y)
[equation (4)]. For pleasantness considerations (Abboud et al.,
2014), we chose zmax ≈ 14.5 to get a maximal frequency equal to
2500Hz and zmin ≈ 2.5 to get aminimal frequency equal to 250Hz.
Equation (5) designs the variable l(x,y) in such a manner that a
larger gap of frequencies occurs for each horizontal line increment
(f (W, y)< f (0, y+ 1)). This method prevents an extreme right
pixel frombeing associated to a frequency that would be very close
to the frequency associated to the pixel at the extreme left of the
upper horizontal line.

Taken together, these formulas synthesize a stereo audio signal
for each active pixel as follows:

sr(x, y, t) = Ar(x)sin(2πf(x, y)(t+ ITD(x)/2) + φ(y)) (6)
sl(x, y, t) = Al(x)sin(2πf(x, y)(t− ITD(x)/2) + φ(y)) (7)

where sr (respectively, sl) stands for the signal on the right (respec-
tively, left) channel, and φ(y) is a randomly chosen phase of
generated sinusoids added to limit sinusoids interferences. The
output signal is the sum of all sounds corresponding to all active
pixels:

Sr(t) =
∑
i
sr(xi, yi, t) (8)

Sl(t) =
∑
i
sl(xi, yi, t) (9)

where [xi, yi] is the position of ith active pixel in the image.
Sounds are synthesized for periods of 34ms (corresponding to

30 frames per second and approximately 272 samples per channel
at 8 kHz sampling rate) extended by a period of 50 samples. This
extension is used to linearly merge two consecutive generated
sounds using a fade out of the previous sound with a fade in of the
first 50 samples of the next sound. The generated signal is then
transmitted via the audio output of the device.

The measured latency between a visual event (a switch off of
a light) and its corresponding generated audio event is approx-
imately 0.23± 0.014 s. This latency is not only due to a delay
introduced by the irreducibleminimum size of the audio buffer on
Android (≈140ms) but also to delays generated by video acquisi-
tion (≈30ms), video processing (≈5ms), sonification (≈20ms),
and threads synchronization.

2.2. Experimental Setup
The experimental setup was composed of a collection of data
processing modules used to display stimuli, record the audio
signal, analyze it, and extract spatial information. These modules
were running on a laptop with Ubuntu 14.04.

2.2.1. Stimuli Presentation and Audio Recording
Stimuli were generated by displaying video on a 61 cm screen
placed ≈55 cm in front of the transducer camera. Stimuli videos
were displayed on a region of the screen tightly correspond-
ing to the camera’s FOV. Each video was a sequence of a uni-
form gray image lasting for 1 s (gray level= 100/255) followed
for 1 s by a static image showing a city street superimposed by
one cartoon head placed at its starting position. This cartoon
head will be denoted by “target” in the rest of the document.
Afterwards, the target was animated for 4 s. Then, the target
remained static in its last position for another 1 s and, again, a
uniformgray screenwas displayed for 1 s before the video stopped.
Videos were made using OpenCV in python and encoded on
a DIVX format with a 960× 600 resolution. A custom movie
player was programed using OpenCV to control the display of
the video. A script was used to simultaneously start the video
display and the audio recording for each experimental condition.
Figure 2A shows an example of the superposition of two consec-
utive frames during the target displacement of a video stimulus.
Output of the stereo signal generated by the transcoding device
was directly plugged into the microphone input of the laptop
and automatically recorded at 44.1 kHz using the application
arecord.

2.2.2. Numerical Signal Processing and
Spatial Features Extraction
We used a Discrete Fourier Transform to compute on 25ms
time bins the power spectrum for each of the 160× 120 fre-
quencies associated to pixel positions. Figure 2C shows an exam-
ple of the stereo power spectrum corresponding to a mov-
ing target. Amplitudes on both channels for each selected fre-
quency were computed from the signal power using the following
equations:

Ãr(f) =
√

2Pr(f) (10)

Ãl(f) =
√

2Pl(f) (11)

whereÃr(f ) (respectively,Ãl(f )) is the signal amplitude of the right
(respectively, left) channel for frequency f and Pr(f ) (respectively,
Pl(f )) is the value of the power spectrum of the right (respectively,
left) channel for the frequency f.

To prevent noise detection, frequency bands were selected for
further analysis solely if signal powers Pr or Pl, were above a given
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threshold. In this case, each selected frequency f was associated
with one triplet descriptor [Ã(f ), x̃(f), ỹ(f)] denoted in the rest
of the document as a “retrieved pixel” and computed using the
following formulas:

Ã(f) = Ãr(f) + Ãl(f) (12)

x̃(f) =
(

20
24 log

Ãr(f)
Ãl(f)

+ 0.5
)
W (13)

ỹ(f) = 2H̃l(f)− x (14)

l̃(f) = z̃(f)− zmin
zmax − zmin

z̃(f) = 26.81
1 + 1960

f
− 0.53

where Ã(f) is the signal amplitude, x̃(f) is the corresponding
horizontal position, and ỹ(f) the vertical position. Equations (13)
and (14) are designed to compute the inverse transformations of
equations (1) and (3).

White circles in Figure 2D are markers for retrieved pixels
extracted from the audio signal analysis shown in Figure 2C.

Each visual object displacement generates an audio signature
that can be represented as a changing group of retrieved pixels
denoted in the rest of the document by “pixel cloud.” We com-
puted for each image the weighted centroid of the pixel cloud,
based on the pixels positions and amplitudes using the following
formulas:

Xc =

∑
i x̃iÃi∑
i Ãi

(15)

Yc =

∑
i ỹiÃi∑
i Ãi

(16)

where [Xc, Yc] is the position of the centroid of the pixel cloud, [x̃i,
ỹi] is the position of a retrieved pixel, and Ãi its amplitude.

The spatial dispersion of the pixel cloudwas computed based on
the square roots of the two eigenvalues of the weighted covariance
matrix. These two values were considered as the two radiuses of
an ellipse whose surface was used to quantify the spatial disper-
sion of the pixel cloud. Example of centroid position and spatial
dispersion of a pixel cloud is shown in Figure 2D.

2.3. Experimental Setup for the
Psychoacoustic Experiment
Except for very brief vocal introductions, the whole experiment
with its associated instructions was automatically conducted by a
home-developed application in C++ using Qt and OpenCV. This
experiment consisted of four exercises similar to the four tests per-
formed by numerical methods (see section 3.1). For each exercise,
participants were sitting in front of a computer screen with head-
phones. In a first learning period, videos were presented simul-
taneously with their associated sonification (see section 2.1.2). In
a second period, participants were asked to discriminate between
stimuli that were presented (in a pre-defined randomly permuted
sequence, identical for all the participants). For this, several visual
markers were presented on the screen and the task consisted of

choosing the most appropriate one (i.e., the one that best matches
the audio stimulus heard) by selecting it with the mouse cursor.
No indication was given to notify whether the reply was correct or
not and no instructionwas givenwhether the same stimulus could
be proposed, zero, once, or multiple times. The whole experiment
lasted approximately 30min.

For their replies, participants may have used two different
strategies:

• Independent replies: with this strategy, each choice of amarker is
done among the complete set of possibilities. A participant can
thus reply several times on the samemarker during the exercise.
The replies are thus independent.With this scenario, the p-value
(i.e., the probability of having k correct replies with pure ran-
dom responses) can be computed using binomial cumulative
distribution functions with parameter N being the number of
attempts and k the probability of choosing the correct answer
at each attempt. p-value is thus the probability of having k
or more correct replies from an independent random reply
sequence, where k is the average number of the obtained correct
replies.

• Dependent replies: with this second strategy, the participant
avoids multiple responses on the same response marker. The
participant replies only once to eachmarker during the exercise.
The replies become thus dependent. To compute the p-value
with this scenario, we used the counting of partial derange-
ments with k fixed points on a sequence ofN different elements.
In this case, k is the number of correct replies and N is the
number of stimuli. For illustration, imagine that nine stimuli
are presented in the following random order [4, 5, 3, 2, 1, 8,
7, 9, 6] and that the participant randomly choose a marker for
each displayed stimulus, with the constraint of never choosing
twice the same marker in the whole exercise. The participant
may end upwith the following response sequence [2, 1, 3, 4, 5, 7,
9, 8, 6]. This would then produce by chance two correct replies
(two fixed points in the permutation), the 3 and the 6. p-value
is thus the probability of having k or more correct replies from
such dependent reply sequence, where k is the average number
of the obtained correct replies.

3. Results

3.1. Numerical Signal Processing
3.1.1. Object Localization Evaluation
In this experiment, we explored the possibility of localizing a
deforming object in a static but highly contrasted visual back-
ground. Objects that are changing their visual aspects without
changing their position, such as somebody gesturing away, a TV
screen, a flashing light or objects that deform, are quite common in
daily life.Moreover, associating a position to an object is a capabil-
ity required for more sophisticated analysis, such as displacement
evaluations.

The visual target was a cartoon face with a surface correspond-
ing to approximately 2% of the whole FOV. Several trials were
done with a target successively placed over a grid of 3× 3 posi-
tions starting at the position [0.1W, 0.1H] and ending at [0.9W,
0.9H] with x and y position spacing of 0.4. The target appear-
ance was changed by completely rotating it once each second.
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FIGURE 3 | Retrieved positions for various target positions in the
screen. Squares are markers for true target positions. Small circles indicate
retrieved centroid positions of pixel clouds detected on successive frames.
Ovals represent the spatial dispersion of centroid positions. Targets positions
are color coded to ease the reading of the figure.

The background of Figure 3 is the first image of such a stimulus
with a target position at coordinate [0.1W, 0.9H].

The acquired video stream was translated by the substitution
system into an audio signal (see section 2.1.2 for details). This
signal was recorded and analyzed in order to extract spatial infor-
mation and the target position was estimated for each frame as the
centroid of the retrieved pixel cloud (see section 2.2.2 for more
details).

Figure 3 shows both retrieved and true target positions. The
retrieved positions are closely situated in the proximity of their
corresponding true target position. Figures 4A,B show in detail
the horizontal and vertical distance (mean± SD) between true
target coordinates and retrieved centroid coordinates of the pixel
cloud in each reconstructed frame. For convenience, a second
y-scale on the right side of the figures expresses the results as
an error on azimuth and elevation in the FOV. These errors are
computed based on horizontal (53.6°) and vertical (40.2°) FOV.
For example, an horizontal resolution of 160 pixels for an angle
of 53.6° approximately results in an angle resolution of 0.33° per
pixel. Mean values for horizontal and vertical errors are mainly
caused by a non-perfect matching between the camera’s FOV and
the video display surface. The SD of both dimensions is close to
2 pixels, which represents <2% of the visual scene for both the
horizontal and vertical axes.

Thus, the device generates an auditory signal that transmits
enough information to precisely localize an object within the 2-
dimensional FOV. This allows for more complex analysis, such as
trajectory estimation as shown in the next experiment.

3.1.2. Object Trajectory Evaluation
Silent moving objects, such as bicycles or walkers, are potential
dangers for the blind. Evaluating velocities and trajectories of
surroundingmoving objects is thus one of themajor requirements
that must be fulfilled by a device that aims to assist the blind
walking in the street.

In this experiment, we tested whether trajectories of moving
objects can be retrieved from the audio signal. We used targets

moving along trajectories defined by the radiuses of a circle cen-
tered with the FOV. The length of the radius was set to D= 0.4H,
H being the height of the FOV. The distance of the target from its
starting point is defined by the formula:

d(t) = D
√
t/T (17)

where d is the distance, t is time, and T= 4 s is the duration of
the displacement. We tested for 12 angles equally spaced over the
whole [0:2π] circle. The retrieved target position was computed as
the centroid of the retrieved pixels for each frame [c.f. equations
(15) and (16)].

Figure 5 shows retrieved trajectories for different displacement
orientations. Despite a noisy detection, the global orientation
of the target displacement is easily distinguishable. Although
their velocity profiles decrease along their trajectories, targets
are still detected in the vicinity of their final positions. This is
more precisely shown in Figure 6A where differences of tra-
jectory orientation between true targets and retrieved ones are
presented.

After 0.5 s (20 frames) the mean error is ±15°, decreasing to
±10° one second and a half after the beginning of the displace-
ment. At the end, the precision is around ±5°. It shows that at the
end of the trajectory, enough information has been transmitted to
theoretically allow a precise orientation estimation.

As presented in Figure 6B, the distance covered by the tar-
get from its starting point can also be estimated based on the
audio signal. Since motion detection is less efficient for slow
displacements, errors in distance estimations increase as the veloc-
ity of the target decreases. From a precision of ±5 pixels after
1 s of displacement, the precision decreases below ±10 pixels
after 3 s.

Taken together, these results show that the information trans-
mitted by the system can precisely encode both the orientation
and the distance of a moving object. When an object moves, its
audio signature moves both within the frequency spectrum and
the stereo panning, allowing for a 2-dimensional evaluation of its
trajectory.

3.1.3. Approaching Object Detection
Detecting an approaching object is another key to prevent poten-
tial collision. Such an object approaching the user can be visually
detected within a 2-dimensional FOV by perceiving its visual
growth. In this experiment, we explored whether a visual growth
or a visual reduction of an object is precisely reflected in its
transduced audio signature. For this purpose, a visual target was
placed on nine positions in the FOV and its surface was changed
for 4 s as defined by the following equations:

for target growth : l(t) = Lmax

√
t

Tmax
(18)

for target reduction : l(t) = Lmax

√
Tmax − t
Tmax

(19)

with Tmax = 4 s the total duration of the target animation and
Lmax = 0.3H the maximal length of one side of the target, H being
the height of the FOV. Note that the two equations above lead
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FIGURE 4 | Mean and SD of the distance between the true target position and corresponding retrieved pixel cloud centroids. Deviations are expressed
in pixels (respectively, angle) on the left (respectively, right) y-scale. (A) Mean and SD of the distance on the horizontal axis. (B) Mean and SD of the distance on the
vertical axis.

FIGURE 5 | Target trajectories retrieved from reconstructed frames.
True ending positions are indicated by circles.

to a linear change of the surface of the target. Thus, the motion
detection detects the same amount of active pixels during a given
time lapse. Audio signatures of growing objects are then only
represented by their spread in the auditory space cues but not by
the change of their audio volumes.

We quantified the dispersion of the pixel cloud by the surface
of the corresponding dispersion ellipse (see section 2.2.2 for more
details) and we measured it as a function of time. We compared it
with the true surface of the target.

Figure 7A (respectively, Figure 7B) shows the spatial disper-
sion of pixel clouds for growing (respectively, reducing) targets
as a function of time. The true target surface divided by 3 has
been superimposed to stay in the same value range. Results are less
accurate when the target is large. In this state, the lengths of target
borders change very slowly and motion detection does not work
well due to the low resolution of the video.We used a Pearson’s test
to measure the correlation between true target sizes and means
of the pixel clouds dispersion. Pearson’s test gives a significant
(p< 0.0001) correlation coefficient with an approximate value of
0.8 showing that the retrieved pixel dispersion is a good indicator
of the target size.

As an object is approaching, its associated audio signature gets
broader both in the frequency spectrum and in the stereo panning
allowing an estimation of its size variation.

3.1.4. Moving Objects Separation
In this experiment, we explored the capability for separating two
visual objects simultaneously present in the visual scene. We
reused the experimental paradigm of the first experiment (cf.
section 3.1.1), but we added a second rotating target as a distractor.
These targets were placed at each different pairwise combination
of non-identical positions over a 3× 3 grid, generating a set of 36
stimuli (9× 8/2). In this set, several stimuli are of special interest
since the target and the distractor are both situated on the same
vertical level in the FOV (for example, [xt, yt]= [0.1, 0.1] and [xd,
yd]= [0.5, 0.1]). These particular cases are indicated by stars in
Figure 8 and by blue stars in Figures 9A,B.

Retrieved pixels in each frame were first clustered in 2 groups
using a k-means algorithm. The two identified pixel clouds were
then analyzed by the same techniques as before in order to
compute pixel cloud centroids (cf. section 2.2.2).

Figure 8 shows the differences between the true target positions
(squares) and the retrieved ones (stars and circles). The same
behavior as in Figure 3 can be observed when the target and the
distractor are not on the same vertical level (circle): there is a
small x-axis and y-axis error that can be due to a shift during the
adjustment between the region of the stimuli display on the screen
and the region cover by the camera’s FOV. Retrieved positions
when the twomoving objects are on the same vertical level present
another profile. X-axis error is more important whereas y-axis
error remains at the same level.

For each stimulus and for all frames, we measured the mean
distance between the true target position and the most proximate
retrieved target. Figure 9A shows the measured errors on the
horizontal axis for each of the 36 stimuli. For the large majority
of stimuli, x-error was less than 10 pixels. Stimuli for which x-
error was above this range corresponded to cases where the target
and the distractor had different x-coordinates but the same y-
coordinates (blue stars). On the contrary as shown in Figure 9B,
errors on the y-axis remains below 10 pixels for all stimuli. In the
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FIGURE 6 | Angle precision and distance of the target displacement within the field of view. (A) Mean and SD of the angle between real target trajectories
and retrieved trajectories as a function of the number of frames since the first detected displacement. (B) In blue, distribution (mean±SD) of the measured length
between the first detected pixel centroid and following ones as a function of the number of frames since the first detected displacement. In green, the true length of
the target displacement.

FIGURE 7 | Estimation of the surface of the retrieved pixel cloud (in blue) as a function of the number of frames since the detection of the target
displacement. Solid line (in green) represents the true surface of the target divided by a factor of 3. (A) in case of target growing. (B) in case of target reduction.

same way as for Figure 4, a second y-scale on the right side of the
figures expresses the results as an error on azimuth and elevation
in the FOV.

Thus, special cases occurred when the target and the distractor
have various x-coordinates but the same y-coordinate (i.e., xt
̸= xd and yt = yd). Active pixels on the same horizontal lines
have very close associated frequencies (c.f. section 2.1.2). Thus,
sounds generated by two targets situated on the same horizontal
level interfere with one another. In this situation, retrieved pixels
generated by multiple objects tend to be mixed together and the
output becomes a unique pixel cloud with a broader horizontal
dispersion. Apart from these cases, the results are precise enough
to retrieve and separate the target localization from the distractor.

3.2. User Performances
Weasked 10 participants to perform tasks similar to those resolved
by the numerical methods in section 3.1. Obtained performances
are summarized in Table 1.

The first exercise corresponds to the analysis presented in
section 3.1.1. During the training period, the nine video stimuli
were presented once to the user simultaneously with their sonified
transduction. In a second period, audio stimuli were randomly

FIGURE 8 | Presentation of the true target positions together with the
means of the retrieved target positions depending on the used
distractor. Each one of the nine true target positions is identified by the color
of its corresponding square. Lines originating from each square indicate the
difference between the true target position (the center of the square) and the
retrieved target positions (the end of the line). The color of the line is the same
as the color of the true target position that was used as a distractor. An
additional marker is added at the end of each line to indicate whether the
position of the used distractor was on the same vertical level (stars) as the
true target position or not (circles).

Frontiers in ICT | www.frontiersin.org October 2015 | Volume 2 | Article 209

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Ambard et al. Motion detection for visuo-auditory sensory substitution

FIGURE 9 | Localization error of the target on the x-axis [subfigure (A)] and y-axis [subfigure (B)] for each stimulus. Errors are expressed in pixels
(respectively, angle) on the left (respectively, right) y-scale. xl and yt are the coordinates of the target and xd and yd are the coordinates of the distractor. Blue stars
indicate results for stimuli in which the target and the distractor are situated on the same vertical level in the FOV.

TABLE 1 | Table summarizing results obtained by participants.

Task nb
trials

nb possibilities
per trial

Mean±±±SD of
correct responses

p-value (independent; dependent) Number of
participants

Target localization 9 9 7.6±1.2 ≈2×10−7; ≈2×10−5 10
Trajectory estimation 12 12 7.1±2.46 ≈9×10−7; ≈8×10−5 10
Growing object detection 18 18 10.6±3.44 ≈4×10−10; ≈1×10−7 10
Two targets localization 36 36 18.7±7.34 ≈2×10−16; ≈6×10−17 10

nb trials refers to the number of occurrences a participant had to choose a marker. nb possibilities refers to the number of possible markers for each choice, and mean±SD is the
average number of successes of a participant for the task. For example, the first line should be interpreted as follows: for the target localization task, among the 9 trials (nb trials),
10 participants (N) successfully localized on average 7.6 times (mean) the correct marker out of the 9 proposed (nb possibilities) and this result would be obtained by chance with a
probability of 2× 10−7 (p-value, independent).

played and participants had to choose one target position among
the nine proposed. We measured an average number of 7.6± 1.2
successes for the nine trials. This result would be obtained by
chance with a probability of 2× 10−7 (p-value, independent).
It clearly shows that despite very brief training, the nine audio
stimuli were different enough to be easily discriminated.

In order to explore whether localization capabilities pre-
sented in the previous paragraph allow a discrimination between
orientations of target displacements, we tested with sonifications
corresponding to the trajectories used in experiment 3.1.2. We
measured an average number of 7.1 successes of selecting the
correct trajectory among the twelve proposed. This result would
be obtained by chance with a probability of 9× 10−7 (p-value,
independent).

We conducted the same tests for growing or reducing target
estimations (section 3.1.3). 18 stimuli were randomly proposed,
possibly corresponding to nine different positions. Nine stimuli
corresponded to target growth, and nine to target reduction. This
task was an 18 alternative forced choice: on each of the nine pos-
sible positions of the target, two easily distinguishable signs were
presented: one corresponding to the growth of the target, the other
one corresponding to its reduction. A success corresponded to the
identification of the correct position among the nine proposed
ones as well as the correct growth-versus-reduction classification.
On average, for the 18 trials, wemeasured a number of 10.6± 3.44
successes. We measured an average of 14.8 successes when only
taking into account good classifications between target growth
versus target reduction.

Finally, we explored whether users can interpret the audio sig-
nal coming from the sonification of two simultaneously animated
targets. We reused the stimuli of the experiment 3.1.4 and the task
was to select the two markers that best matched the heard audio
stimulus. In this task, a success is recorded when both markers
have been correctly selected. Out of the 36 trials, we measured
a success of approximately 18.7± 8, corresponding to a p-value
around 2× 10−16.

These results clearly show that, despite very brief training,
spatial information present in the generated audio signal can at
least be partially extracted by a human user.

Figure 10 shows the mean errors obtained by the participants
in the four tasks on both horizontal and vertical axes. Absolute
values have to be interpreted cautiously since user replies were
chosen among limited sets of markers displayed on the screen
and not within the whole screen area. In other words, errors are
based on missed discreet locations. For the first three tasks (target
localization, trajectory estimation, and growing object detection),
the horizontal error is lower than the vertical error. It is probably
due to an azimuth (horizontal) encoding based on natural sound
modulations using ITD and ILD. On the contrary, elevation (ver-
tical) encoding is rendered using an artificial pitch scale. Thus,
users have first to learn to discriminate between pitches during
the training session in order to determine the correct vertical
position.

Results obtained in the fourth task were separated depending
on the relative vertical positions of the two moving objects. In the
Figure 10, 2 targ. dif. stands for 2 targets on different vertical levels
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FIGURE 10 | Mean errors and SD obtained by the 10 participants in the
four tasks on both horizontal and vertical axes. Errors are based on
distances between markers corresponding to the true locations of the target
and markers pointed by the user. Thus, these errors are based on missed
discreet locations. Errors are expressed in pixels (respectively, angle) on the
left (respectively, right) y-scale. Loc. stands for Target localization, Traj. for
trajectory estimation, Grow. for Growing object detection, 2 targ. dif. for 2
targets separation with different vertical levels, and 2 targ. same for 2 targets
separation with the same vertical level.

and 2 targ. same for 2 targets on the same vertical level. Thus, 2
targ. dif. data are results for two audio signatures with different
pitches and 2 targ. same data are results for two audio signatures
with similar pitches. Compared to the other tasks, the horizontal
error is larger and become similar to the vertical error in the 2
targ. dif. condition. Thus, it appears that despite different pitches
in their audio signatures, azimuths corresponding to two objects
that are simultaneously sonified by the system aremore difficult to
discriminate. The horizontal error increases further and become
larger than the vertical error in the 2 targ. same condition. As
presented in section 3.1.4, this is probably due to audio signatures
of moving objects that interfere with each other when objects are
placed on the same vertical level.

4. Discussion

In this work, we presented a new augmented reality system
transforming video information into audio signals. We applied a
transcoding method that is specifically designed for the percep-
tion of moving objects. By extracting spatial information from
the audio signal using numerical methods, we have shown that
the combination of this hardware and our method theoretically
permits: object localization, orientation and length estimation of
trajectories, object growth quantification, and, in some circum-
stances, moving object separation.

As presented in section 3.2, within a simplified and controlled
environment, our system allows human users to estimate object
trajectories with a very short training period. The interpretation of
more complex stimuli, such as those encountered in an ecological
environment, would certainly require a longer learning period and
more efficient trainingmethods. Thus, limits to performance with
this system in more complex ecological environments remain to
be further explored.

Compared to other sonification methods, which use left-to-
right scans (thevOICe, EyeMusic), our method offers a constantly
updated information stream allowing the user to track the trajec-
tory of moving objects. By extracting moving objects from a static
visual background, the audio signal is easier to interpret compared
to other systems that would simultaneously transmit the informa-
tion concerning the moving object and the background (PSVA,
TheVibe). As far as we know, this system is the first miniature
device easily available, allowing the tracking of a moving object
in a complex visual background.

4.1. Software
The selection of visual features extracted by video processing
is very important since human visual and auditory perception
do not have the same bandwidth [respectively, ≈106 (Jacobson,
1951) and ≈104 bits per second (Jacobson, 1950)]. This auditory
bandwidth theoretically corresponds to the transmission of ≈20
pixels per frame, with 30 black and white frames per second and
a spatial resolution of 128× 128 (14 bits of spatial resolution).
The transmission of this information through the audio channel
would at least require the use of the whole audible frequency range
(20–20 kHz) with a 44.1-kHz sampling rate, and masking effects
attenuated by sound frequencies that would be spread all over the
critical bands (Zwicker, 1961).

Although natural sounds are usually localized using HRTF in
addition to ITL and ILD, this cue can not be used with pure tones.
By interpolating results reported by Mills (1972), the minimum
audible azimuthal angle for a 500Hz tone allows an azimuthal
resolution of ≈80 positions around the semi-circular azimuthal
plane. Asmentioned byKollmeier et al. (2008), the frequency just-
noticeable difference is about 3Hz for frequencies below 500Hz
and about 0.6% for frequencies above. This leads to a theoretical
pitch resolution of about 350 scales in the frequency range used
by the system (250–2500Hz). These considerations suggest that
the horizontal resolution of the system (160 pixels) probably
up-samples the human capabilities of azimuthal discrimination,
whereas the vertical resolution (120 pixels) down-samples the
capabilities of frequency discrimination.

Background noise is probably one of the most challenging
problems. Natural extrinsic background noise, such as the noise
of cars, has to be differentiated from intrinsic background noise
due to irrelevant pixels sonified by the system. The first type of
background sounds should be conserved as much as possible,
whereas the second type should be avoided. This second type of
sounds could arise, for example, when the ground is not visually
homogeneous, such as an asphalt sidewalk with inlaid small white
pebbles that could be detected and sonified. Removing these pixels
is one of the main goals of the slight blur performed at the first
steps of the video processing (c.f. section 2.1.2).

Results presented in this work were obtained with a static
camera condition, allowing the motion detection method to dras-
tically simplify the video stream. This mimics situations in which
the VASSDs user stops, paying attention to potentially colliding
moving objects coming from a specific position. On the contrary,
the frame differencing method also extracts contrasts of static
objectswhen the camera ismoving. In this condition, static objects
become sonified and the video scene that is rendered ismuchmore
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complex. Many visual features on the same vertical level in the
FOV might be extracted and sonified. Since they are situated on
the same vertical level, their associated frequencies are close and
their audio signatures might interfere each other. X-axis informa-
tion might then be more difficult to analyze as in the problematic
scenarios indicated by blue stars on Figure 9A.

Sonifying simultaneously all the pixels coming from the pro-
cessed video stream increases the difficulty for shape recognition
due to both energetic and informational masking effects (Durlach
et al., 2003). The first type of masking is related to interferences
that occur in the received signal, whereas the second one is more
related to the cognitive limits to interpret the signal. To circumvent
this limitation, an option is to use periodic left-to-right scan
sonification, as in thevOICe and EyeMusic projects, but this is
problematic for fast movement sonification.

This points out to the fact that a unique method of information
transduction fromvisual to auditory signalsmight only be optimal
in a particular context. Optimizing a system for one particular task
could be at the cost of performance deterioration in other tasks. In
this view, an optimal transduction would be either offering a good
compromise for most daily life situations or offering a variety of
methods that could bemanually or automatically selected depend-
ing on the context. Building hybrid systemsmixing sensory substi-
tution and object recognition could be especially interesting since
eachmethodmay partially compensate the limitation of the other:
a lack of genericity in object recognition and a lack of clarity in
sensory substitution.

4.2. Hardware
The hardware presented in this work is generic and powerful
enough to be used as a device for implementing various signal
transcoding methods, such as those used in ThevOICe, TheVibe,
EyeMusic, PSVA, and many others. Moreover, since it is based on
standard components, it is both powerful and cheap (the complete
system can be built for a few hundred dollars).

Themain issue with this type of system is that constant auditive
stimulation can mask natural sounds, whereas these constitute
one of themajor sources of information used by the blind. For this
reason, it is important that the user be able to adjust the volume
or even completely switch off the system when the user prefers
to receive natural auditory information without any interference.
Despite their design to limit the distortion of surrounding sounds,

running earphones still partly block the auditory canal. Using
bonephones instead of these earphones could resolve this issue
since it has been demonstrated that such devices can be used to
transmit spatial information through stereophonic sounds, even
with spatialization routines that were not optimized for them
(Walker and Lindsay, 2005). This suggests that, with our system,
the replacement of running earphones by bonephones could be
straightforward.

A large FOV might seem preferable to the limited FOV of the
miniature camera used (67°). But it has to be considered that the
bandwidth of the transmitted spatial information only depends
on the used auditory cue ranges. Thus, extending the FOV while
using the same sonification method theoretically results in a
decrease in the precision of the absolute spatial information.

Miniaturization is an important aspect of such devices. A video-
to-audio mobile transducer requires high computational power,
large battery capacities, but no embedded screen. With current
technologies, it is possible to decrease the size of the hardware but
this would be at the cost of the battery capacity.

Despite their demonstrated capabilities, VASSDs are still not
used in daily life by the blind. By presenting this transcoding
method and this new open-source and versatile device, we hope
to contribute to the spread of this cheap and non-invasive visual
rehabilitation solution. Our system also aims to facilitate the
research in visuo-auditory sensory substitution by providing a
standard and convenient experimental device.
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