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A foodshed is a geographic area from which a population derives its food supply, but a 
method to determine boundaries of foodsheds has not been formalized. Drawing on the 
food–water–energy nexus, we propose a formal network science definition of foodsheds 
by using data from virtual water flows, i.e., water that is virtually embedded in food. In 
particular, we use spectral graph partitioning for directed graphs. If foodsheds turn out 
to be geographically compact, it suggests the food system is local and therefore reduces 
energy and externality costs of food transport. Using our proposed method we compute 
foodshed boundaries at the global-scale, and at the national-scale in the case of two 
of the largest agricultural countries: India and the United States. Based on our deter-
mination of foodshed boundaries, we are able to better understand commodity flows 
and whether foodsheds are contiguous and compact, and other factors that impact 
environmental sustainability. The formal method we propose may be used more broadly 
to study commodity flows and their impact on environmental sustainability.

Keywords: data, food, virtual water, water, spectral graph theory

1. inTrODUcTiOn

Economic and environmental historians have traditionally considered the flow of natural resources 
from hinterland to metropolis (Cronon, 1991), but there is growing specialization, interconnection, 
and flow among all regions within nations and further among nations of the world. A data-driven, 
systems-level understanding of the food–water–energy nexus is fundamentally linked to these 
flows. From a water perspective, food and energy systems can be thought of as users of the resource; 
from a food perspective, water and energy can be thought of as inputs to production; from an 
energy perspective, water is a required resource and food is a kind of output.1

In understanding flows of water, it is useful to define watersheds as partitions of land into distinct 
drainage basins where all incoming water has a common convergence point. These are defined from 
topography and physical geography. In understanding flows of energy, it is common to consider 
regional partition structure, e.g., the regional transmission organization of power grids, which are 
determined largely from political concerns (Hughes, 1985).

What about flows of food? The notion of a foodshed has been put forth as a geographic area 
from which a given population derives its food supply (Hedden, 1929; Peters et  al., 2009; Horst 

1 The above connections are not meant to be exhaustive, but rather illustrate some of the ways in which these resources are 
fundamentally linked.
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and Gaolach, 2015), but no method to formally define partition 
regions of land surface as foodsheds has been made precise. 
We propose a purely data-driven approach to do this based on 
agricultural trade, with the intention of then interpreting the 
results in terms of geographic, political, and economic factors 
that may have influenced the foodshed regions that emerge. We 
hypothesize that unlike watersheds or energy regions, foodsheds 
will be determined by both social and natural forces.

We draw on spectral graph theory for directed networks 
(Chung, 2005) to develop a precise definition. In particular, we 
use spectral graph partitioning for directed networks (Gleich, 
2006; Malliaros and Vazirgiannis, 2013) constructed from 
agricultural trade data as the basis for defining foodsheds. This 
spectral approach to graph partitioning is chosen since it is natu-
ral, in the sense of capturing the costs of physical flows due to 
intimate connections with metric embedding. Other approaches 
to graph partitioning, such as those based on random walks, are 
not natural in this sense.

Since food is multidimensional, unlike water and energy, 
which are essentially scalar commodities, we need a method to 
commensurate flows of food and be able to measure them from 
a unified analysis of a wide variety of disparate data sources. 
Notwithstanding other possibilities, we accomplish this using the 
concept of virtual water flow, which estimates the amount of water 
embedded in the flow of food.2 That is, the water resources used to 
produce food commodities are virtually transferred alongside, in 
a virtual water trade. The virtual water content of a commodity is 
the volume of water used to produce that commodity (Hoekstra 
and Chapagain, 2008). Thus, a ton of pork bellies will be cast as 
more flow than a ton of oranges, since pork production is more 
water-intensive.

Note that data on transfers of commodities are starting to 
be analyzed using network-theoretic techniques, as a way to 
understand our world (Hausmann et  al., 2014). Virtual water 
networks arising from food flow have previously been studied 
using network science analysis (Konar et al., 2011, 2012; Lin et al., 
2014; Dang et al., 2015), but foodsheds have not been defined in 
that mathematical framework. Also note that there is no a priori 
reason to suspect foodsheds will be geographically contiguous.  
A given Persian Gulf metropolis might have food trade restricted 
to kumquats sourced from Greece, buckwheat sourced from New 
York, and honey sourced from Ethiopia, while exporting camel 
milk back to these three places. If foodsheds turn out to indeed 
be geographically contiguous like watersheds, this indicates the 
importance of physical geography in shaping virtual water flows.

Foodshed analysis studies factors influencing movement 
of food from its origin as agricultural commodities on a farm 
to its destination as food wherever it is consumed. It has been 
noted that “tools are needed to determine how the environmental 
impact and vulnerability of the food system are related to where 
food is produced in relation to where it is consumed. To this end, 
analyses of foodsheds…can provide useful and unique insights” 
(Peters et al., 2009).

2 Not only can water be embedded in food but energy can also be embedded in 
water, as the ice trade of yore demonstrates (Cummings, 1949): there really is a 
nexus not just at the level of public policy, but in the commodities themselves.

Using our novel definition of foodsheds and data from 
Kampman (2007), we perform an initial foodshed analysis at the 
subnational level in India. We find foodsheds in India are indeed 
largely geographically compact, informing ongoing debates about 
local food systems and also larger questions on food system 
sustainability. Physical proximity between food producers and 
consumers, as in compact foodsheds, may reduce the energy 
needed to transport foods (Volpe et al., 2013), as well as associ-
ated negative externalities like greenhouse gas emissions (Pretty 
et  al., 2005).3 Indian foodshed structure supports locality. This 
point is further demonstrated by noting the flow network can be 
embedded in the geographic connectivity network without much 
distortion. On the other hand, using 2007 Commodity Flow 
Survey data from the U.S. Census and virtual water commensura-
tion that follows (Mekonnen and Hoekstra, 2011; Mubako, 2011; 
Dang et al., 2015), we find foodsheds that are not geographically 
contiguous. Looking at 2008 world virtual water flow data from 
Konar et al. (2011, 2012), some geographically local foodsheds 
do emerge.

The remainder of the paper is organized as follows. Sec. 2 
discusses the definition and nature of virtual water flow. Sec. 3  
introduces needed notions and definitions from spectral graph 
theory. Sec. 4 demonstrates our basic approach by finding 
virtual water flow-based foodsheds in India, the United States, 
and globally. Sec. 5 discusses our results, placed in the context 
of sustainable development, and also lists several avenues for 
future work.

2. VirTUal WaTer FlOW

Agriculture is by far the largest consumer of the world’s freshwa-
ter resources, accounting for 70% of total freshwater use (Koehler, 
2008). Virtual water is the amount of water used to produce a 
particular product and can be used to quantify the water con-
sumed in producing agricultural commodities (Hoekstra and 
Chapagain, 2008). In this paper, we use virtual water to commen-
surate food flow data and to identify the foodshed boundaries 
within a given geography. Commensurating food flow data into 
virtual water flows requires combining a variety of datasets from 
several different sources, and is an interesting challenge in and 
of itself, as we describe in the next paragraphs. There are other 
ways of commensurating food data, such as energy intensity, 
emissions intensity, commodity value, or commodity weight. We 
have chosen to focus on virtual water herein, as it may provide 
insights on the sustainability of current foodsheds with regards to 
their impact on fresh water resources.

Agricultural consumptive water use is considered to be equal 
to the soil and plant surface evaporation plus plant transpiration, 
collectively known as evapotranspiration. One might think that 
water that evaporates will fall in the same place, but standard 
analyses of the hydrological cycle treat evapotranspiration as 
losses (Dingman, 2002). Although water is also stored in plant 
tissues, the volume of water present in the tissue is negligible 

3 Food transport over land may, however, be more energetically and environmen-
tally costly than over water. Thus, we should take care in interpreting results.
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Table 1 | Indian states and neighbors in our corpus.

state/union territory abbreviation geographic neighbors

Andhra Pradesh AP CG, KT, MH, OR, TN
Assam AS WB
Bihar BH JH, UP, WB
Chhattisgarh CG AP, JH, MH, MP, OR, UP
Delhi DL HR, UP
Gujarat GJ MH, MP, RJ
Haryana HR DL, HP, PJ, RJ, UA, UP
Himachal Pradesh HP HR, JK, PJ, UA, UP
Jammu & Kashmir JK HP, PJ
Jharkhand JH BH, CG, OR, UP, WB
Karnataka KT AP, MH, KL, TN
Kerala KL KT, TN
Madhya Pradesh MP CG, GJ, MH, RJ, UP
Maharashtra MH AP, CG, GJ, MP, KT
Orissa OR AP, CG, JH, WB
Punjab PJ HR, HP, RJ, JK
Rajasthan RJ GJ, HR, PJ, MP, UP
Tamil Nadu TN AP, KT, KL
Uttar Pradesh UP BH, DL, CG, HP, HR, JH, MP, RJ, UA
Uttaranchal UA HR, HP, UP
West Bengal WB BH, JH, OR, AS

FigUre 1 | Spectral layout of Indian states according to total virtual water flow, with directed spectral graph partitioning used to separate states into foodsheds. 
One foodshed is indicated as green, the other as orange, and nodes not part of the large strongly connected component are drawn in black.
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We use here virtual water data developed by Kampman (2007), 
which is based on trade data from 77% of total crop production in 
India. In this case, virtual water is the sum of the total green water, 
blue water, and gray water consumed for crop production. Green 
water refers to a crop’s rainwater consumptive use, and blue water 
refers to a crop’s ground water and surface water consumptive 
use. Further, gray water is the amount of freshwater required to 
dilute polluted water generated from the crop’s growth activities 
to acceptable levels. Interstate crop import and export trade data 
are used to determine the incoming and outgoing virtual water 
flow between states, and this is the basis of the virtual water data 
we use to develop foodshed boundaries within India.

Virtual water data for the United States was derived using a 
simplified version of the methodology developed by Dang et al. 
(2015). Serving as the basis for the virtual water flow estimates 
are data on the movement of food commodities within the United 
States as obtained from the 2007 Commodity Flow Survey (CFS) 
(US Department of Transportation, 2007).4 The CFS is part of the 
Economic Census and is conducted every 5 years, where a sample 
of establishments based on geographic location and industry are 
selected and requested to report on shipments during the survey 

4 The CFS is a collaborative effort between the Department of Transportation 
Statistics and the Census Bureau.

compared to the volume of water evapotranspirated and is typi-
cally ignored when calculating agricultural consumptive water 
use (Jensen, 1968).
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FigUre 2 | Geographic layout of two directed spectral foodsheds among the Indian states according to total virtual water flow. One foodshed is indicated as green, 
the other as orange, and states not part of the large strongly connected component or with missing data are drawn in white.
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year. The CFS gathers information such as commodity code, 
description, value, weight, mode of transportation, and final des-
tination. Based on the survey responses, estimates for the entire 
industry are made. The data are aggregated by state and CFS area; 
we consider the state level data aggregation in our analysis. The 
most recent year for which bilateral movement data are available 
from the CFS is 2007, hence it is the year that is used in our 
analysis. We start with the food flow values in weight for the five 
food commodity groups that are considered as staple food groups 
(Dang et  al., 2015). We remove the fish fraction of the animal 
food commodity groups by determining the non-fish fraction 
of animal production in each state from the US Department of 

Agriculture (2007). We then use virtual water content factors 
developed from Mekonnen and Hoekstra (2011) and Mubako 
(2011), weighted by agricultural production by state as per the 
National Agricultural Statistics Service, to determine the virtual 
water content associated with each food commodity group. As 
a final step, the virtual water content for each food commodity 
group is added and represents the total blue and green virtual 
water flow between states for the year 2007.

The global virtual water flows, comprising total blue and 
green virtual water flows between nations for the year 2008, 
was provided by Konar et al. (2011, 2012); the virtual water flow 
derivation methodology is described therein.

http://www.frontiersin.org/ICT/
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


FigUre 3 | Spectral layout of Indian states according to total virtual water flow, with hierarchical directed spectral graph partitioning used to separate states into 
four regions. Regions are indicated as green, orange, red, and blue; nodes not part of the large strongly connected component are drawn in black.
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3. sPecTral DirecTeD graPh 
ParTiTiOn

Consider treating virtual water flow data as a directed network 
among distinct regions and denote the directed adjacency matrix 
of the virtual water flow network as A. In this section, we describe 
approaches for visualizing the network, and then determining 
foodsheds. We draw on a spectral approach for graph partitioning 
of a directed graph; partitioning of directed graphs is not nearly as 
well studied as of undirected graphs (Malliaros and Vazirgiannis, 
2013), but the directionality of flow is critical here.

3.1. Visualization
To visualize a virtual water flow network, we use spectral graph 
drawing (Koren, 2005), which is designed for undirected net-
works. As such, we first find the symmetrized adjacency matrix 
Au = A + AT. Let dj indicate the degree of vertex j in Au, and let D 
be the degree matrix of the graph Au, which takes value dj along 
the diagonal and value 0 otherwise. The Laplacian matrix of a 
graph, L, satisfies L = D − Au. The eigenvalues of L are denoted 
λ1(L)  ≤  λ2(L)  ≤  …  ≤  λn(L). Since L is symmetric, all of its 
eigenvalues are real, and eigenvectors corresponding to different 
eigenvalues are orthogonal.

Then, we use the degree-normalized Laplacian eigenvectors 
corresponding to the second and third smallest eigenvalues as 
coordinates for plotting the network nodes.

Given our interest in understanding minimal distance for food 
transport, note that placing region nodes according to Laplacian 
eigenvector coordinates corresponding to the small eigenvalues 
minimizes the weighted quadratic cost in transporting goods 
(Hall, 1970; Varshney, 2013). This follows from developing the 
graph conductance (Cheeger constant) of the network and invok-
ing the celebrated Courant–Fischer min–max theorems.

To be more explicit, consider the quadratic cost for a graph 
with adjacency matrix Au, with edge weights aij. Vertices are drawn 
in two-dimensional Euclidean space with horizontal placement x→ 
and vertical placement y→. Then, cost W is

 
W x x a y y a

i

n

j

n

i j ij i j ij= − + − .
= =
∑∑1

2 1 1

2 2( ) ( )
 

(1)

Using the graph Laplacian L, it is W L y L
T T

= +
→x x y→ → →. Then, 

under some non-triviality constraints detailed in Varshney 
(2013), this cost is minimized by a placement such that x→ is the 
eigenvector associated with λ2 and y→ is the eigenvector associated 
with λ3 due to the Courant–Fischer theorems. The incurred cost 
is then λ2 + λ3.
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FigUre 4 | Geographic layout of directed spectral regions among the Indian states according to total virtual water flow. Regions are indicated as green, orange, 
red, and blue; states not part of the large strongly connected component or with missing data are drawn in white.

3.2. Partitioning
To determine best partitions, we work with the directed graph 
itself, rather than symmetrizing into an undirected graph. We 
aim to find partitions that segregate flows within regions such 
that most flows remain within regions and there is little flow 
between regions; we desire cuts that separate regions to be 
at bottlenecks of flow. As shown by Chung (2005), appropri-
ately defined graph Laplacians for directed graphs satisfy the 
Cheeger inequality, and therefore partitioning according to the 
Laplacian eigenvectors leads to the best segregation of flows 
within regions, i.e., this leads to a natural definition of food-
sheds (recall that the Cheeger constant of a network measures 

the level of bottlenecks therein). As such, there is no need to 
consider other possible graph partitioning algorithms that do 
not yield natural groupings of geographical areas based on flow.

Let us restrict A to its largest strongly connected component, 
with adjacency matrix W, and construct a corresponding Markov 
transition matrix P:

 
P

W
Wij
ij

j ij

= .
∑  

It can be shown that there is a unique left eigenvector ϕ with 
ϕi > 0 for all i, which we normalize to have a unit eigenvector 
satisfying 

i i∑ =φ 1, which we call the Perron vector of P. We use 
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the Perron vector to define a Perron matrix Φ, which is diagonal 
with ϕ on the diagonal.

Now we can define the Laplacian matrix of a directed graph as:

 
L I P P
= −

+
,

/ − / − / ∗ /Φ Φ Φ Φ1 2 1 2 1 2 1 2

2  
where ⋅* is the Hermitian transpose and I is the identity matrix 
of appropriate size.

Now we find the eigenvalues and eigenvectors of the Laplacian 
matrix, and since it is strongly connected, the smallest eigenvalue 
is 0. In analogy to spectral graph theory of undirected graphs, let 
us refer to the second smallest eigenvalue as the directed algebraic 
connectivity and the corresponding eigenvector as the directed 
Fiedler vector.

To partition vertices into two groups, we use the sign of entries 
in the directed Fiedler vector: those with positive sign are placed 
in one partition, whereas those with negative sign are placed in 
the other partition.

As is common in spectral partitioning, creating more than 
two groups involves iterative hierarchical bisection (Leicht and 
Newman, 2008). One criterion for stopping the bisection process 
is when the graph modularity no longer increases, i.e., the graph 
is already well partitioned. We generalize the modularity defined 
by Leicht and Newman (2008) to weighted directed graphs as 
follows.

Definition 1. The modularity of a weighted directed graph is:

 
Q

m
A

k k
mij

ij
i j

c ci j
= −













,∑ ,

1 in out

δ
 

where m is the total sum of all edge weights, ki
in is the total weight 

of incoming edges to node i, kj
out is the total weight of outgoing edges 

from node j, and δc ci j,
 indicates whether nodes i and j are in the 

same partition.
Definition 2. We define the natural partition of a geographic 
region into foodsheds as the hierarchical bisection of a food flow 
network according to directed Fiedler vectors until modularity stops 
improving.

Again, to emphasize the point, spectral partitioning approaches 
are natural for flow networks such as virtual water trade, since 
they restrict flow within regions as much as possible (Chung, 
2005).

4. eMPirical FOODsheDs

We apply Def. 2 to the India virtual water flow data of Kampman 
(2007). There is virtual water flow data for 21 Indian states or union 
territories; regions with negligible agricultural trade are omitted. 
See Table 1, which also gives standard abbreviations and a listing of 
neighboring states or union territories. We find that although the 
virtual water flow network is weakly connected, it is not strongly 
connected as Delhi, Jharkhand, and Kerala only import virtual 
water but do not export. We depict all 21 states in our spectral 
visualization, Figure 1, but only define foodsheds comprising the 
18 regions in the large strongly connected component.

Applying a first spectral bisection, we obtain the partition 
into two regions that are depicted in “flow space” in Figure 1 and 

depicted geographically in Figure  2. We find that modularity 
Q improves from 0 for the whole graph to 0.1656 after the first 
bisection. If we hierarchically do further bisection on either of 
the two regions as depicted in Figures 3 and 4, the modularity Q 
decreases to 0.0979 and to 0.0143, respectively. Thus, the natural 
partition of the virtual water flow network into foodsheds is just 
two foodsheds for India.

Although there are formal approaches for defining geographic 
continuity (Wu and Murray, 2008), we clearly observe that the 
two foodsheds of India are largely contiguous. Only Karnataka is 
geographically separated from other states in its foodshed.

Using the dataset and virtual water flow quantitation described 
above, we study virtual water flow among the United States of 
America in 2007. We find that spectral partitioning stops at two 
foodsheds like India, but that these foodsheds are not largely 

FigUre 5 | Geographic layout of directed spectral regions among the United 
States according to total virtual water flow. Regions are indicated as red and 
blue; states not part of the large strongly connected component or with 
missing data are drawn in white.

Table 2 | Foodsheds from 2008 world trade data.

1 Botswana, Malawi, Mozambique, Namibia, Papua New Guinea, Zimbabwe, 
South Africa, Swaziland, Zambia

2 Bhutan, Burundi, Sri Lanka, Egypt, India, Jordan, Kenya, Kuwait, Lebanon, 
Eritrea, Qatar, Rwanda, Saudi Arabia, Somalia, Sudan, Tanzania, Oman, 
United Arab Emirates, Uganda, Ethiopia, Yemen

3 Armenia, Afghanistan, Albania, Algeria, Angola, Argentina, Australia, Austria, 
Bangladesh, Bolivia, Brazil, Belize, Brunei, Bulgaria, Myanmar, Cameroon, 
Canada, Central African Republic, Chile, Colombia, Congo, Costa Rica, 
Cuba, Cyprus, Azerbaijan, Benin, Denmark, Dominican Republic, Belarus, 
Ecuador, El Salvador, Estonia, Finland, France, Georgia, Gabon, Gambia, 
Germany, Bosnia and Herzegovina, Ghana, Greece, Guatemala, Guinea, 
Guyana, Haiti, Honduras, Hungary, Croatia, Indonesia, Iraq, Ireland, Israel, 
Italy, Cote d’Ivoire, Jamaica, Japan, Kyrgyzstan, Cambodia, Republic 
of Korea, Latvia, Laos, Liberia, Lithuania, Madagascar, Malaysia, Mali, 
Mauritania, Mexico, Mongolia, Morocco, Moldova, Nepal, Netherlands, 
Macedonia, New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, 
Panama, Czech Republic, Paraguay, Peru, Philippines, Poland, Portugal, 
Romania, Russia, Senegal, Sierra Leone, Slovenia, Slovakia, Spain, Suriname, 
Tajikistan, Sweden, Switzerland, Syrian Arab Republic, Turkmenistan, 
Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, United Kingdom, 
Ukraine, United States of America, Burkina Faso, Uruguay, Uzbekistan, 
Venezuela, Vietnam, Belgium, Luxembourg, China

http://www.frontiersin.org/ICT/
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geographically contiguous, see Figure  5. Note that we believe 
there are errors in the 2007 Commodity Flow Survey Data for 
Indiana, which is why Indiana is not in the strongly connected 
component.

Using 2008 world data as described above, we repeat the same 
spectral bipartition analysis and end up with three foodsheds: two 
are fairly small and compact, whereas the other contains all other 
countries in the world. Note that many countries of the world 
are not part of the strongly connected component of global com-
merce. The first foodshed is in southern Africa and also includes 
Papua New Guinea. The second is largely around southwestern 
Asia and the Indian Ocean rim. See Table  2. Note that India 
(Goswami and Nishad, 2015) and the United States are major net 
exporters of water-intensive food crops in global trade. Thus, in a 
global characterization of foodsheds, these countries play central 
roles and are in fact in distinct global foodsheds.

5. cOnclUsiOn

In this paper, we have put forth a formal data-driven definition 
of foodsheds from network science and computed foodsheds for 
India, the United States, and the world. We found that the Indian 
foodsheds are largely geographically contiguous, in the sense 
that states within foodsheds all border each other. Note that this 
notion of contiguity implicitly assumes the use of land transport, 
but ship-based transport may be more energy efficient (Van 
Passel, 2013). On the contrary, foodsheds in the United States 
are not nearly as contiguous, but some geographically compact 
foodsheds do emerge in the global flow data. However, in all three 
examples, the foodsheds are relatively large and indicate that both 
intranational and international food flows are highly connected 
between many states and nations.

Here, we defined foodsheds in terms of virtual water flow, but 
several alternative definitions could be considered, whether based 
on the tonnage of food itself, the total price of food, the virtual 
energy flow as embedded in food, or the negative externalities 

embedded in food. We expect that the results are fairly robust to 
the particular commensuration of flow used to define foodsheds. 
One can also further specialize data to consider, say, rice-sheds 
or potato-sheds. One may even be able to extend spectral graph 
techniques for directed networks to the setting of multilayer 
networks, to consider several notions of flow simultaneously.

It is our contention that the formal data-driven methodol-
ogy we proposed for defining foodsheds can be used more 
broadly to study a variety of commodity flows and the impact 
these flows have on sustainability. Such information can be use-
ful in developing environmentally oriented policies. Coming 
full circle, the effect of policy on foodshed boundaries can 
be visualized using the method we propose. That is, spectral 
graph partitioning of directed graphs may be a general analysis 
technique for sustainability science and public policy, cf., 
Hausmann et al. (2014).

Can we quantitatively determine which foodsheds are sustain-
able and which are not? We had noted that foodsheds are governed 
by the combined force of natural and social factors, and as we 
saw, we have contiguous (potentially sustainable) foodsheds if the 
natural geometry of the commodity flow network is essentially 
embeddable in the geographic adjacency network. That is, we 
may have sustainability, at least from the perspective of transport 
energy and externalities, if active human factors do not distort 
the natural way of things, as formalized in the sense of graph 
embedding.
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