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Mast cells (MCs) are currently recognized as effector cells in many settings of the immune
response, including host defense, immune regulation, allergy, chronic inflammation, and
autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spec-
trum of preformed or newly synthesized biologically active products with pro-inflammatory,
anti-inflammatory and/or immunosuppressive properties, in response to multiple signals.
Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide vari-
ety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction.The
delivery of co-stimulatory signals allows MC to specifically communicate with immune cells
belonging to both innate and acquired immunity, as well as with non-immune tissue-specific
cell types. This article reviews and discusses the evidence that MC membrane-expressed
molecules play a central role in regulating MC priming and activation and in the modulation
of innate and adaptive immune response not only against host injury, but also in periph-
eral tolerance and tumor-surveillance or -escape. The complex expression of MC surface
molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell
interaction representing functionally distinct MC states. We will focalize our attention on
roles and functions of recently discovered molecules involved in the cross-talk of MCs with
other immune partners.
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INTRODUCTION: ORIGIN, DISTRIBUTION AND FUNCTIONAL
HETEROGENEITY
To develop an effective immune response, the cells of the immune
system are required to communicate between each other through
secretion of soluble mediators and direct cell–cell interaction.
Among the cells of the immune system, mast cell (MC) appears to
be one of the most powerful in terms of ability to respond to mul-
tiple stimuli and to selectively release different types and amounts
of mediators (reviewed in Galli et al., 2005b).

Research on MC physiopathology has changed our perception
of the role that MCs play within the immune system. Indeed, their
functions extend through all the stages of the immune response,
ranging from shaping the response against pathogens, regulating
both innate and acquired immune cell functions, to supporting
regulatory cells in the maintenance of tissue-tolerance.

MCs originate from a multipotent hematopoietic progenitors
in bone marrow, and then migrate through blood to tissues where
they mature (Hallgren and Gurish, 2011). In mice, an hematopoi-
etic stem cell progresses to a multipotent progenitor, a common
myeloid, and a granulocyte/monocyte progenitor (Chen et al.,
2005). A monopotent MC progenitor is found in bone marrow and
intestine, and a common basophil/MC progenitor is also found in
mouse spleen (Chen et al., 2005). After their homing in the tissues,
maturation of the MC precursors is dependent on stem cell factor
(SCF) expressed on the surface of fibroblasts, stromal cells, and
endothelial cells (Arinobu et al., 2005).

MCs are positioned throughout the vascularized tissues and
serosal cavities where they constitute one of the first cell types of
the immune system able to interact with allergens and antigens

(Galli et al., 2008a). Within body tissues, micro-environmental
stimuli control MC phenotypic profile leading to subtype differ-
ences from a common progenitor (Moon et al., 2010). Historically,
the classification of rodent MC subtypes has been based on pheno-
typic differences between connective tissue MCs (CTMCs), found
in the skin and peritoneal cavity, and mucosal MCs (MMCs),
which are mainly present in the intestinal lamina propria. There
are, however, different phenotypic characteristics between these
two populations and also differences in functions, histochemical
staining, content of proteases, and reactivity to selected secre-
tagogues and anti-allergic drugs. MMCs express MC protease
(MMCP)-1 and -2, while CTMCs are positive for MMCP-4, -5,
-6, and carboxypeptidase A. MMCs expand remarkably during
T cell-dependent immune responses to certain parasites while
CTMCs exhibit little or no T cell dependence (Moon et al., 2010).
Human MCs also exhibit heterogeneity and are thus classified by
their content of serine proteases as tryptase-only MCs (MCT),
which predominate in the alveolar septa and in the small intestinal
mucosa, chymase-only MCs (MCC), present in synovial tissue, or
both tryptase- and chymase-positive MCs (MCTC) which localize
in skin, tonsils and small intestinal submucosa (Irani et al., 1986;
Irani and Schwartz, 1994).

MAST CELL COMMUNICATION WITHIN IMMUNE SYSTEM
VIA SOLUBLE MEDIATORS
MC heterogeneity depending on the tissue distribution, is reflected
by their ability to react to multiple stimuli (Frossi et al., 2004)
and by the numerous immunoglobulin E (IgE)-dependent and
-independent activation pathways. A plethora of membrane
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receptors can regulate MC activation: FcεRI and Fcγ receptors,
Toll like receptors (TLRs), complement receptors, cytokine and
chemokine receptors, and hormone receptors (Zhao et al., 2001;
Theoharides et al., 2004; Galli et al., 2005b) as summarized in
Table 1. Depending on the type, property, strength, and combi-
nation of the stimuli they receive, MCs secrete a diverse and wide
range of biologically active products that can trigger, direct, or
suppress the immune response (Frossi et al., 2004). MC soluble
products, listed in Table 2, can be divided into two categories:
(a) preformed mediators, such as histamine, proteoglycans, and
neutral proteases and certain cytokines, in particular tumor necro-
sis factor-alpha (TNF-α), that are rapidly and instantaneously
released upon MC activation; (b) newly synthesized mediators,
such as cytokines, chemokines, lipid mediators, growth and angio-
genic factors that start to be synthesized after MC activation (Galli
et al., 2005a; Metz and Maurer, 2007). Although these prod-
ucts are all important in both innate and acquired immunity,
the rapid release of MC mediators is crucial for the initiation
of the immune response at the site of infection since they are
able to modulate the immune-cell trafficking and to provide
co-stimulatory signals for cell activation. In particular, focusing
on rapidly released mediators, histamine is the most abundant
vaso-active amine that is stored in MC granules, and it targets
specific receptors on several cell types. It binds to histamine
receptors on airway smooth muscle cells and on gastrointesti-
nal cells and induces contraction and vasospasm. In addition,
it has been reported that histamine is able to drive dendritic

cell (DC) migration and activation (Caron et al., 2001). Among
early released MC products, TNF-α is a granule-stored preformed
cytokine that plays a crucial role during innate immunity as, by
inducing the early influx of neutrophils, it promotes the clear-
ance of pathogens and improves survival and morbidity (Henz
et al., 2001). Serine proteases, chymase and tryptase, and the met-
alloprotease carboxypeptidase A are the major pre-synthesized
granule components. They directly protect against parasites and
venoms (carboxypeptidase A; Metz and Maurer, 2007), but also
favor the expulsion of nematodes by increasing intestinal perme-
ability (mouse MC protease-1, mMCP-1; McDermott et al., 2003),
by allowing tissue remodeling, fibronectin turn-over (mMCP-4;
Tchougounova et al., 2003), and induction of persistent influx
of neutrophils with long lasting inflammation (mMCP-6; Huang
et al., 1998).

Arachidonic acid-derived prostaglandins and leukotrienes are
de novo synthesized metabolites of cyclooxygenase and lipooxy-
genase enzymes. They improve the innate response by increasing
MC numbers at inflammation sites, through the recruitment of
immature MCs and/or progenitors (Weller et al., 2005). MC-
secreted cathelicidins reduce bacterial numbers, thus directly dri-
ving bacterial clearance (Di Nardo et al., 2003). MC-secreted
compounds also contribute to the acquired immune response,
serving as mediators for B and T cell recruitment and activation.
MC-derived leukotriene B4 induces chemotaxis of effector CD8+
T cells in the course of allergic inflammation (Ott et al., 2003),
while MC-derived TNF-α is crucial in the recruitment of CD4+

Table 1 | MC membrane-bound receptors.

Receptor family Members Reference

FcR

FcεR FcεRI Kinet (1999)

FcγR FcγRIa, FcγRII, FcγRIIIb Malbec and Daëron (2007)

TLR TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10a Marshal et al. (2009)

MHC MHC class I, MHC class II Svensson et al. (1997)

Complement receptor CR1, CR2, CR3, CR4, CR5, C3aR, C5aR Füreder et al. (1995)

Cytokine receptor CD117, IL-1R, IL-3R, IL-10R, IL-12R, INFγR, TGFβR Edling and Hallberg (2007), Moritz et al.

(1998), Frossi et al. (2004)

Chemokine receptor CCR1, CCR3, CCR4, CCR5,CCR7, CXCR1, CXCR2, CXCR3, CXCR4, CXCR6,

CX3CR1

Juremalm and Nilsson, (2005)

RECEPTOR FOR ENDOGENOUS MOLECULES

Histamine receptor H1/H2/H3/H4 receptor Sander et al. (2006)

Others Endothelin-1, neurotensin, substance P, PGE2, adenosine Galli et al. (2005b)

Adhesion molecules ICAM-1, VCAM, VLA4, CD226 (DNAM-1), Siglec8, CD47, CD300a, CD72 Hudson et al. (2011), Collington et al. (2011),

Sick et al. (2009), Bachelet et al. (2006)

CO-STIMULATORY MOLECULES

TNF/TNFR family members CD40L, OX40L, 4-1BB, GITR, CD153, Fas, TRAIL-R Juremalm and Nilsson (2005), Nakae et al.

(2006), Nakano et al. (2009)

B7 family member CD28, ICOSL, PD-L1, PD-L2

TIM family members TIM1, TIM3

Notch family members Notch1, Notch2

Some molecules have been detected only in studies on humana or murineb MCs where not indicated, molecules are expressed in both species.
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Table 2 | Major MC-derived mediators.

Class Mediators Physiological effects

PREFORMED

Biogenic amines Histamine Vasodilatation

5-hydroxytryptamine Leukocyte regulation, pain, vasoconstriction

Proteoglycans Heparin, heparin sulfate Angiogenesis, coagulation

Chondroitin sulfate Tissue remodeling

Proteases Tryptase Inflammation, pain, tissue damage, PAR activation

Chymase Inflammation, pain, tissue damage

MC-CPA/Carboxypeptidase A Enzyme degradation

CathepsinB, C, D, E, G, L, Sb Pathogen killing, tissue remodeling

MCP5/6 Pathogenesis of asthma and other allergic disorders

Lysosomial enzymes β-hexosaminidase, β-glucuronidase, β-galactosidase,

arylsulfataseA

ECM remodeling

Others Nitric oxide synthase NO production

Endothelin Sepsis

Kinins Inflammation, pain, vasodilatation

Anti-inflammatory effects

NEWLY SYNTHESIZED

Lipid-derived LTB4, LTC4, PGD2, PAF Inflammation, leukocyte recruitment, endothelial adhesion,

smooth muscle cells contraction, vascular permeability

Cytokines IL-1αa, IL-1βa, IL-2b, IL-3, IL-4, IL-5, IL-6, IL8a, IL-9, IL-10, IL-11a,

IL-12, IL-13, IL-14a, IL-15a, IL-16, IL-17, IL-18a, IL-22b, IL-25b,

IL-33b, MIF, TNFα, IFNα, IFNβb, IFNγb

Inflammation, leukocyte proliferation and activation

immunoregulation

Chemokines CCL1, CCL2, CCL3a,b, CCL4a CCL5a, CCL7a,b, CCL8a,

CCL11a, CCL13a, CCL16a, CCL17, CCL19a, CCL20a,

CCL22a,b, CCL25b CXCL1a, CXCL2, CXCL3a, CXCL4,

CXCL5, CXCL8a, CXCL10a, CX3CL

Leukocyte chemotaxis

Growth factors TGFβ, SCFa, G-CSF, M-CSF, GM-CSF, VEGF, NGFβ, LIFa, bFGF Growth of various cell types

Antimicrobic species Antimicrobial peptides, NO, superoxide, ROS Pathogen killing

Some mediators have been detected only in studies on human aor murine bMCs or not investigatedni where not indicated molecules are expressed in both species.

General references: Galli et al. (2005a), Metz and Maurer (2007).

T cells to draining lymph nodes, during Escherichia coli infection
(McLachlan et al., 2003). In addition, a TNF-α-dependent effect on
Langerhans cells that migrate from skin to draining lymph nodes
following response to bacterial peptidoglycan has been reported
(Jawdat et al., 2004).

The anti-inflammatory properties of MCs were explored
in vivo, providing evidence about MC ability to suppress the
development and magnitude of the adaptive immune response
(reviewed in Galli et al., 2008a). Indeed, MC-derived histamine
seems to be responsible of the systemic immunosuppression of
contact hypersensitivity (CHS) responses achieved by the ultra-
violet B (UVB) irradiation of the skin (Hart et al., 1998), while
MC-derived IL-10 limits the response to allergic contact dermatitis
(Grimbaldeston et al., 2007). MC-derived IL-10 has been impli-
cated as a mechanism of negative immune-modulatory effects
following Anopheles mosquito bites or in peripheral tolerance to
skin allograft (Depinay et al., 2006; Lu et al., 2006), but other
soluble or surface molecules might be responsible for MC nega-
tive immunomodulatory functions. The mechanisms controlling
the immunosuppressive function of MCs are under investigation

and might be considered for pharmacological intervention to
modulate the immune system in inflammatory diseases.

PATTERN OF MC MEMBRANE-BOUND MOLECULES
REGULATING IMMUNOLOGICAL EFFECTOR FUNCTIONS
Mast cells express a broad array of cell surface receptors and
ligands involved in cell–cell and cell-extracellular-matrix adhe-
sion, which mediate the delivery of co-stimulatory signals that
empower these cells to interact with different immune- and non-
immune cells. These interactions are often bi-directional, ful-
filling mutually regulatory, and/or modulatory roles, including
influences on several cellular processes, such as proliferation and
gene transcription. Accordingly, MC effector function plasticity
might depend not only on the activatory/inhibitory signals and
on the specific released mediators, but also on the secondary, co-
stimulatory signals that they receive from their cellular partners
in the microenvironment. Thus, MCs specialize in establishing
reliable, wideband communication with other cells, orchestrat-
ing the overall immune response (Bachelet and Levi-Schaffer,
2007).
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Here, we aim to describe the recent advances in contact-
mediated co-stimulatory pathways connecting MC with innate
and acquired immune cells. The molecules that mediate the cross-
talk between MCs and their cell partners are all listed in Table 3.

MC AND INNATE IMMUNE CELLS
MCs and dendritic cells
The close apposition of MCs and DCs in sub-epithelial areas as
sentinel of invading antigen, has led investigators to propose their
potential functional partnership in modulation of the immune
responses to environmental changes (Mazzoni et al., 2006; Otsuka
et al., 2011). DCs do not only represent a single uniform popula-
tion but display a considerable degree of heterogeneity which com-
plicates the network of interactions with MCs subtypes (Shortman
and Liu, 2002). MCs express several molecules (TNF-α, histamine,
PGD2, chemokines) that might affect DC function in peripheral
inflamed tissues. Both human and mouse IgE-activated MCs have
been widely implicated in the process of DC mobilization from tis-
sue to secondary lymphoid organs (Jawdat et al., 2004; Suto et al.,

2006; Dawicki et al., 2010), DC maturation (Skokos et al., 2003;
Kitawaki et al., 2006), and DC capacity to promote T cell responses
(Kitawaki et al., 2006; Leonard et al., 2006; Mazzoni et al., 2006;
Dudeck et al., 2011).

To date, while exchange of soluble mediators between MCs
and DCs has been well characterized, data regarding MCs-DCs
direct cross-talk are very scarce. Nonetheless, some clues are been
unveiled.

In an in vitro cultured human system, a combinatorial effect
of various factors which are able to activate human cord blood-
derived MCs, including those acting in a cell contact-dependent
fashion, are required for the optimal induction of Th2-promoting
human monocyte-derived DCs (Kitawaki et al., 2006). Moreover,
it has been shown that murine peritoneal MCs (PCMCs) can
undergo a dynamic interaction with immature DCs, inducing DC
maturation and the release of the T cell modulating cytokines IFN-
γ, IL-2, IL-6, and TGF-β. Such PCMCs-primed DCs subsequently
induced T cell proliferation and Th1 and Th17 responses (Dudeck
et al., 2011). Studies in mice report that bone marrow-derived MCs

Table 3 | MC physical interactions with other immune cells.

Cell types MC molecule Partner

molecule

Effect on MC Effect on partner cell Reference

MC-DC ICAM-1 LFA-1 ↑ Ca++ influx ↑ Maturation and chemotaxis Otsuka et al. (2011)

MC-MDSC n.i. n.i. ↑ Recruitment and survival ↑ Migration and suppression

activity

Yang et al. (2010)

MC-NK CXCL8 CXCR1 n.i. ↑ Recruitment Burke et al. (2008)

OX40L OX40 n.i. IFNγ production Vosskuhl et al. (2010)

MC-Eos CD226 CD112 ↑ Degranulation n.i. Bachelet et al. (2006)

CD48 2B.4 n.i. ↑Survival Elishmereni et al. (2010)

n.i. n.i. Transfer of tryptase ↑EPO and cytokine release,

transfer of EPO

Minai-Fleminger et al. (2010)

MC-CD4+T ICAM-1 LAF-1 ↑ Degranulation and cytokine

release

↑ Activation and proliferation Inamura et al. (1998), Mekori

and Metcalfe (1999)

ICAM-1 LFA-1 Adhesion to endothelial cell n.i. Brill et al. (2004)

LTβR LTβR ligand ↑ Cytokine release n.i. Stopfer et al. (2004)

OX40L OX40 n.i. ↑ Activation and proliferation Frandji et al. (1993), Fox et al.

(1994)

MHC-II TCR n.i. Cell activation Kashiwakura et al. (2004)

ICOSL ICOS n.i. Switch to IL-10 regulatory T Gaudenzio et al. (2009),

Kambayashi et al. (2009),

Valitutti and Espinosa (2010),

Nie et al. (2011)

MC-CD+8 MHC-I TCR n.i. Cell activation Malaviya et al. (1996)

MHC-I TCR ↑ Expression of

co-stimulatory molecules and

degranulation

Cell activation Stelekati et al. (2009)

MC + Treg OX40L OX40 ↓ Degranulation ↓ Suppressive activity,

conversion to Th17

Gri et al. (2008), Piconese

et al. (2009)

TGFβR TGFβ membrane-

bound

↓ Degranulation, ↑ IL-6

production

↓ Suppressive activity Ganeshan and Bryce (2012)

MC + B CD40L CD40 n.i. ↑ Proliferation and Ig switch Gauchat et al. (1993), Merluzzi

et al. (2010)

n.i., not investigated.
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(BMMCs) promote the maturation and chemotactic activity of
bone marrow DCs through direct cell–cell interaction during the
sensitization phase of CHS response. BMMCs and bone marrow
derived immature DCs interact throughout intracellular adhesion
molecule (ICAM)-1 and lymphocyte function-associated antigen
(LFA-1) enhancing DC expression of the CD40, CD80, CD86, and
CCR7 co-stimulatory molecules, thus promoting maturation and
chemotaxis of DCs (Otsuka et al., 2011). It is possible to argue that
DCs make use of MC-induced active LFA-1 to control the contact
duration with naive T cells and to promote T cell priming (Balkow
et al., 2010). On the other hand, co-cultures of stimulated bone
marrow derived DCs with BMMCs increases calcium influx and
up-regulate membrane-bound TNF-α (Otsuka et al., 2011).

MCs and natural killer cells
Concerning the cellular interactions that play a role in innate
immune defense, emerging evidences show MC-dependent nat-
ural killer (NK) cell recruitment and activation. NK cells are
granular cytotoxic and circulating lymphocytes involved in the
clearance of transformed and pathogen-infected cells. As a part of
the innate immune system, their recruitment to the site of infec-
tion is mediated by a large spectrum of chemokines which bind
to the chemokine receptors, CCR2, CCR5 and CXCR3 on NK
cells. Activated MCs can induce NK cell accumulation in differ-
ent disease models. For instance, immune surveillance by MCs
is important for NK cell recruitment and viral clearance during
Dengue infection (St John et al., 2011). Human cord blood-derived
MCs stimulated with virus-associated TLR3 agonist can recruit
human NK via the CXCL8 and CXCR1 axis, underlining MC
role as sentinel cell during early viral infections (Burke et al.,
2008). Lipopolysaccharide (LPS)-activated BMMCs induce cell
contact-dependent IFN-γ secretion by NK cells, without affecting
cell-mediated cytotoxicity. Cellular interaction is partly mediated
by OX40L expression on MCs (Vosskuhl et al., 2010). In the cited
work, authors underline that different MC signals of activation
confer different results in terms of NK activation. In fact, in addi-
tion to LPS, stimulation of MCs via TLR3 and TLR9, but not
with IgE/antigen, amplifies IFN-γ secretion by NK cells (Vosskuhl
et al., 2010). Similarly, in a model of hepatocarcinoma, MC pro-
tumoral role is associated with reduction of NK cell number and
activation. This effect was due to the fact that, in the tumor micro
environment, SCF-activated MCs release adenosine that inhibit
production of IFN-γ by NK cells (Huang et al., 2008). Enhanced
CCL3-mediated recruitment of NK cells is instead observed in a
orthotopic melanoma model in which TLR2-activated MCs exert
anticancer properties by secreting large amounts of this chemokine
(Oldford et al., 2010).

MCs and eosinophils
Mast cells and eosinophils (Eos) co-exist in tissues during the
late and chronic phases of allergic reaction where the intracel-
lular events following IgE/Ag-induced MC activation lead to the
release of pro-inflammatory mediators, which cause the immedi-
ate, early-phase of the allergic process within minutes of allergen
exposure (Williams and Galli, 2000), and induce the recruitment
of inflammatory cells, i.e., macrophages, T cells, Eos, basophils,
and perhaps invariant NK T cells (Galli et al., 2008b). These cells,

and mainly the Eos, cause the onset of the late phase of allergic
response that usually occurs a few hours later (Metz et al., 2007).
Nevertheless, a clear cut interplay between MCs and Eos has been
proven not only in allergic inflammatory tissues (Minai-Fleminger
and Levi-Schaffer,2009;Wong et al., 2009),but also in gastric carci-
noma (Caruso et al., 2007), chronic gastritis (Piazuelo et al., 2008),
Crohn’s disease, and Ascaris infection (Beil et al., 2002), leading to
new perspectives of the current research in this area.

Eos and MCs may mutually influence each other functions
by a variety of paracrine and receptor/ligand-dependent signals.
In this context, some surface molecules are potential candidates
to mediate MC-Eos physical contact. A considerable advance in
understanding MC-Eos interaction in a human system was made
by Levi-Schaffer and coworkers. CD48 and 2B4 expressed by
human cord blood-derived MCs and peripheral Eos, respectively
mediate the MC-Eos physical interface as a co-stimulatory signal-
ing switch, inducing effect on Eos viability and activating Eos to
release eosinophil peroxidase, IFN-γ and IL-4 (Elishmereni et al.,
2010). Similarly, evidence for a role of CD226/CD112 interaction
in Eos-dependent enhancement of IgE-induced MCs activation
has been described (Bachelet et al., 2006). Other ligand-receptor
interactions between MCs and Eos seem to be mediated through
LFA-1 and ICAM-1. This pathway can be activated upon MC
degranulation and results in the recruitment of eosinophils at
the site of inflammation (Elishmereni et al., 2010). Moreover, by
transmission electron microscopy it has been possible to demon-
strate that human peripheral blood Eos and cord-blood-derived
MC functionally adhere to each other as Eos peroxidase (EPO) is
transferred from Eos to MCs and tryptase from MCs to Eos, thus
indicating that MCs and Eos show signs of reciprocal activation
(Minai-Fleminger et al., 2010).

MCs and neutrophils
Polymorphonuclear neutrophils (PMNs) constitute the most
abundant leukocyte population in the peripheral blood of humans,
make a highly significant contribution to the host defense, and are
particularly well studied in the context of bacterial infection. How-
ever, PMN are more versatile as there is increasing evidence for
their participation in acute and chronic inflammatory processes,
in the regulation of the immune response, in angiogenesis, and in
the interaction with tumors (Fridlender et al., 2009; Mantovani
et al., 2011). PMNs have emerged as an important component
of effector and regulatory circuits in the innate and adaptive
immune systems. In contrast to the traditional view of these cells as
short-lived effectors, evidence now indicates that they have diverse
functions. By responding to tissue- and immune cell-derived sig-
nals and by undergoing polarization, PMNs are reminiscent of
macrophages (Fridlender et al., 2009; Biswas and Mantovani,
2010). PMNs engage in bi-directional interactions with diverse
components of both the innate and adaptive immune systems and
can differentially influence the response depending on the patho-
logical context. With the advent of MC-deficient mice and the
ability to selectively reconstitute their deficiency it has been pos-
sible to show that MCs are critical for the PMN activation. Thus,
in a model of immune complex-mediated peritonitis, the rapid
recruitment of PMNs turns out to be initiated by LT produced
by MCs, which are strategically located at the host-environment
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interface (Ramos et al., 1990,1991). In addition, in the same model,
the recruitment of PMN at late phase was dependent also on MCs,
and on MCs-released TNF-α (Zhang et al., 1992). The unique abil-
ity of MCs to store and immediately release TNF-α on demand,
and subsequently as newly synthesized inflammatory molecule, is
essential for the rapid onset and for the sustaining of inflamma-
tory reactions (Wershil et al., 1991). A cornerstone in this context
was the observation that MCs and MC-derived TNF-α initiate
the life-saving inflammatory response rapidly upon encounter-
ing microbes and microbial constituents through the influx of
neutrophils in mouse models for acute bacterial infections (Echt-
enacher et al., 1996). In murine infectious peritonitis it has been
published that, besides TNF-α, several other MC-derived mole-
cules have a role in the recruitment of PMNs. In fact, MC-derived
LT (Ramos et al., 1991), mouse MC protease 6 (mMCP-6; Caughey,
2007), and the chemokine MIP-2 (CXCL2; Wang and Thorlacius,
2005) are critical for a rapid and protective influx of PMNs. The
available data suggest that mMCP-6 triggers the release of MIP-
2 from endothelial cells (“activation” of endothelial cells), which
in turn enhances the release of MC-derived TNF-α, followed by
sustained secretion of LT.

However, in this contest in which a clear functional interaction
between MC and PMNs has been established, receptors-ligand pair
that might physically mediate the cross-talk between these two cell
populations have not yet been described.

MCs and myeloid derived suppressor cells
A complex network of cellular interactions characterizes tumor
microenvironment with the presence of immune-suppressive and
pro-inflammatory cells. MCs are known actors in cancer setting
thanks to their ability to directly influence tumor growth, angio-
genesis, and tissue remodeling and to exert an indirect function
by immune-modulating cancer microenvironment. A closed loop
amongst MCs and myeloid derived suppressor cells (MDSCs), also
involving regulatory T (Treg) cells, has been recently described
in murine hepatocarcinoma tumor microenvironment. MCs pro-
mote the migration and suppressor function of tumor MDSCs
by CCL-2 and 5-lipoxygenase release, further exacerbating tumor
inflammatory microenvironment. Indeed, MCs stimulate MDSCs
to secrete the pro-inflammatory cytokine IL-17 which stimulate
Treg cells to release IL-9 which in turn, strengthen the survival and
protumoral effect of MCs (Yang et al., 2010; Cheon et al., 2011).

These are preliminary studies that disclose a novel relation-
ship between MDSCs, MCs, and Treg cells. Further analysis
will determine whether these cells physically interact through
co-stimulatory molecules.

MC AND ADAPTIVE IMMUNE CELL
MCs and effector T cells
The close physical apposition between MC and T cell has been
observed during T cell-mediated inflammatory processes (Mekori
and Metcalfe,1999), such as cutaneous delayed-type hypersensitiv-
ity (Dvorak et al., 1976; Waldorf et al., 1991), sarcoidosis (Bjermer
et al., 1987), and in chronic inflammatory processes associated
with the pathology of inflammatory bowel disease and rheumatoid
arthritis (Marsh and Hinde, 1985; Malone et al., 1986). More-
over, morphological studies have revealed that MCs reside in close

physical proximity to T cells in inflamed allergic tissues and at
sites of parasitic infections (Friedman and Kaliner, 1985; Smith
and Weis, 1996).

Some of such influences have been attributed to the biological
effects of a wide range of soluble mediators; however increas-
ing amounts of literature documents recognize the importance of
intercellular communication involving the binding of cell surface
molecules.

Early studies demonstrated that intercellular contacts between
MC and T cell lines are able to activate MC transcription machin-
ery (Oh and Metcalfe, 1996). Adhesion of HMC-1 human MC
line, or murine BMMCs, to activated T lymphocytes induces MC
degranulation and TNF-α production (Bhattacharyya et al., 1998).
Moreover, the MC-T cell cross-talk results in the release of matrix
metalloproteinase (MMP)-9 and the tissue inhibitor of metallo-
proteinase 1 from HMC-1 human MCs or from mature peripheral
blood-derived human MCs. This effect, as well as the secretion
of β-hexosaminidase and several inflammatory cytokines (TNF-α,
IL-4, and IL-6), is mediated by a direct contact of activated, but not
resting, T cell membranes with MCs (Baram et al., 2001). In accor-
dance with these findings, a recent study revealed that activated
T cell microparticles, small membrane-bound structures released
from cells during activation or apoptosis, are able to induce the
production of soluble mediators from LAD2 human cell line and
human cord blood-derived MC cultures. By releasing microparti-
cles, T cells may convey surface molecules and activate distant MCs
within the same inflammatory site (Shefler et al., 2010). Other
heterotypic adhesion-induced effects on MC activation have been
described. The proximity of activated T lymphocytes to HMC-1
promotes MC adhesion to the receptor of endothelial cells as well
as to the extracellular matrix ligands (Brill et al., 2004).

The adhesion pathway mediated by LFA-1and its ligand ICAM-
1 induced FcεRI-dependent murine BMMC degranulation after
heterotypic aggregation with activated T cells and was the first
membrane-bound pathway involved in MC/T cell cross-talk to
be described (Inamura et al., 1998). In addition, lymphotoxin-β
receptor (LTβR) expressed on murine BMMCs can be triggered
by LTβR ligands expressed by T cell lines and transduces a co-
stimulatory signal leading to the release of cytokines (IL-4, IL-6,
TNF-α) and chemokines (CXCL2 and CCL5) from ionomycin-
activated BMMCs (Stopfer et al., 2004). Moreover, the engagement
of OX40 on activated CD4+ T cells by OX40L-expressing MCs,
together with the secretion of soluble MC-derived TNF-α, cos-
timulates proliferation and cytokine production from activated
CD4+ T cells (Nakae et al., 2006). Similar results were also estab-
lished in a culture system of human tonsillar MCs and human
T cells which confirmed the enhancement of T cell proliferation
upon direct OX40/OX40L engagement demonstrating the pres-
ence of a bi-directional cellular cross-talk among these cell types
(Kashiwakura et al., 2004). The existence of functional MC-T cells
interaction also arises from the observation that murine BMMCs
could present antigenic peptides to T cell lines and CD4+ T cell
hybridoma (Frandji et al., 1995, 1996). MHC-II-dependent anti-
gen presentation to CD4+ T cells by MCs was also demonstrated
in rat and human cell systems (Fox et al., 1994; Poncet et al., 1999)
reinforcing the concept that MCs can serve as unconventional anti-
gen presenting cells for T lymphocytes (Valitutti and Espinosa,
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2010). More recently, it has been proposed the possibility that
MCs can be primed to acquire APC phenotype. To date, inducible
expression of MHC-II molecules, MHC-II associated molecules
as well as OX40L and PD-L1, by murine BMMCs, spleen-derived
MCs, and peritoneal MCs has been reported in response to vari-
ous in vitro treatments (Gaudenzio et al., 2009; Kambayashi et al.,
2009; Nakano et al., 2009). It has been shown that Notch signaling
induces MHC-II and OX40L expression and can thus elicit the
commitment of BMMC to an APC population, which promotes
the differentiation of naive CD4+ T cells toward conventional Th2
cells (Nakano et al., 2009). It also appears that MHC-II expression
grants MCs the ability to effectively support T cell proliferation and
effector functions and causes expansion of Treg cells (Kambayashi
et al., 2009). In addition, a recent work provides experimental
morphological evidence of direct antigen presentation by peri-
toneal cell-derived MCs and freshly isolated peritoneal MCs at a
single-cell level, eliciting functional responses in effector T cells,
but not in their naïve counterparts (Gaudenzio et al., 2009). Sim-
ilarly, MCs are capable of inducing antigen-specific CD8+ T cell
responses in vitro and in vivo. Murine BMMCs can, in fact, process
Ag from phagocytosed bacteria for presentation via MHC class I
molecules to T cells (Malaviya et al., 1996). Moreover, MHC class
I dependent cross presentation of BMMCs and peritoneal MCs to
CD8+ T cells was recently shown to increase CD8+ T cell prolif-
eration, cytotoxic potential, and degranulation. In turn, CD8+ T
cells induce MHC class I and 4-1BB expression on BMMCs as well
as the secretion of osteopontin (Stelekati et al., 2009).

MCs and natural and inducible regulatory T cells
In the complex network of immune interactions, the amount of
information available on the functional interaction between MCs
and immunoregulatory cells is going to increase. MCs and nat-
ural CD25+ Foxp3+ Treg cells have been demonstrated to reside
in close proximity in secondary lymphoid tissues as well as in
mucosal tissues (Vliagoftis and Befus, 2005; Gri et al., 2008) and to
influence each others’ function. Indeed, activated Treg cells caused
a reduction in the expression of FcεRI on murine BMMCs by
contact-dependent mechanism and production of soluble fac-
tors such as TGF-β and IL-10 (Kashyap et al., 2008). Treg cells
can hinder BMMC degranulation and immediate hypersensitivity
response through the engagement of OX40L on MCs (Gri et al.,
2008). Treg cell-mediated inhibition of MC function is regulated
at a single-cell level and is not restricted to BMMCs, but is a com-
mon feature of murine PCMCs and human LAD2 MC line (Frossi
et al., 2011).

A recent study confirmed that co-culture of Treg cells with
murine BMMC suppresses degranulation but primes MCs for
production of IL-6 via a contact-dependent surface-bound TGF-β
mechanism (Ganeshan and Bryce, 2012). Interestingly, in a model
of colorectal cancer, highly suppressive Treg cells lose the abil-
ity to suppress human LAD2 MC degranulation (Blatner et al.,
2010), suggesting that a complex interaction between MCs and
Tregs within tumor microenvironment exists, although the mech-
anism behind these events has not been yet discovered. Conversely,
MC activation breaks peripheral tolerance. Direct cell–cell con-
tact, dependent on OX40/OX40L interaction, and T cell-derived
IL-6 promotes Th17 skewing of Treg cells with loss of both Foxp3

expression and T cell suppressive properties in vitro. Activated
MCs, Tregs, and Th17 cells display tight spatial interactions in
lymph nodes hosting T cell priming in experimental autoim-
mune encephalomyelitis further supporting the occurrence of
an MC-mediated inhibition of Treg suppression in the establish-
ment of Th17-mediated inflammatory responses (Piconese et al.,
2009).

Under certain conditions such as in inflammation and immune
reactions, increasing expression of ICOSL might contribute to
the regulatory role of MCs. Indeed, in vitro experiments and the
in vivo model of neutrophilic airway inflammation, allowed the
identification of an intimate link between LPS-stimulated murine
BMMCs, which upregulate ICOSL surface expression, and the
generation of IL-10 producing inducible regulatory CD4+ T cell
with inhibitory ability on effector T cells function. Indeed, ICOSL-
deficient BMMCs are not able to sustain IL-10 producing T cell
activation (Nie et al., 2011).

MCs and B cells
Mast cells produce several cytokines, such as IL-4, IL-5, IL-6, and
IL-13, that are known to regulate, directly or in combination
with other factors, B cell development and function. Moreover,
the CD40L co-stimulatory molecule is expressed on the surface
of activated-BMMCs, skin MCs, and MCs under allergic inflam-
matory conditions (Gauchat et al., 1993; Pawankar et al., 1997).
These data further support the existence of a functional cross-
talk between these two cell types. The first evidence of an effective
MC-B cell cross-talk, mediated by the physical interaction through
the CD40L:CD40 axis, was reported by Gauchat and coworkers.
They showed that CD40L was expressed on both freshly puri-
fied human lung MCs and on the human cell line HMC-1 and
further demonstrated that these MCs can interact with B cells
to induce the production of IgE, in the presence of IL-4 and in
absence of T cells (Gauchat et al., 1993). Furthermore, the role
of the CD40-CD40L axis in the induction of IgE production by
B cells was also observed in perennial allergic rhinitis (PAR), an
IgE-mediated atopic disease. Nasal MCs (NMCs) from patients
with PAR displayed significantly higher expression levels of FcεRI,
CD40L, IL-4, and IL-13 compared to NMCs from patients with
chronic infective rhinitis (CIR). The essential role of CD40L in
this allergic disease context was further substantiated by the find-
ing that the IgE production was inhibited by anti-CD40L mAb
(Pawankar et al., 1997). The group of Mécheri was the first to
show that unstimulated BMMCs were able to induce resting B cells
to proliferate and to become IgM-producing cells. In this case, B
cell activation was mediated by MC-derived factors and contact
between these two cell types seemed not to be required (Tkaczyk
et al., 1996). Some years later, the same research group reported
that membrane vesicles, released by the MC cytoplasmic granules
and termed exosomes, were responsible of MC-driven B cell prolif-
eration and activation. Interestingly, they showed that important
co-stimulatory molecules, such as MHC-II, CD86, CD40, CD40L,
LFA-1, and ICAM-1, were associated with exosomes (Skokos et al.,
2002).

Only recently the study of the specific role of MCs in B cell
growth and differentiation has been investigated more in detail.
Merluzzi and coworkers proved that both resting and activated
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MCs were able to induce a significant inhibition of cell death and
an increase in proliferation of naïve B cells. Such proliferation was
further enhanced in activated B cells. This effect required cell–
cell contact and MC-derived IL-6. Activated MCs were shown to
regulate CD40 surface expression on unstimulated B cells and the
interaction between CD40 and CD40L on MCs, together with MC-
derived cytokines, were involved in the differentiation of B cells
into CD138+ plasma cells and in selective IgA secretion. These
data were corroborated by in vivo evidence of infiltrating MCs
in close contact with IgA-expressing plasma cells within inflamed
tissues (Merluzzi et al., 2010).

CONCLUDING REMARKS
In the last few years, our perception of MCs function has dramat-
ically changed. In fact, there has been mounting evidence that the
function of these cells is not limited to acting as first line of defense
against invading pathogens or as effector cells in allergy, but is
extended to perform additional and unexpected activities in strict
collaboration with adaptive immune and other non-immune cells.
Thus, MCs together with other innate and adaptive immune cells

orchestrate complex functional programs to promote host defense,
to control the development of self-tolerance, and to avoid autoim-
munity. In this context, the gene expression pattern, the pheno-
type, as well as MC function must rapidly change in a coordinate,
time-dependent manner in response to micro-environmental sol-
uble and cellular signals. In view of their extensive assortment
of membrane receptors able to mediate delivery of co-stimulatory
signals,of molecules involved in cell-extracellular-matrix adhesion
and in cell–cell contacts and of soluble pro- and anti-inflammatory
mediators, MC may profoundly influence the development, inten-
sity, and duration of adaptive immune responses that ultimately
serve for host defense, allergy, and autoimmunity. Considering
the continuously emerging findings in the field, it is predictable
that in the next years we will assist to the discovery of additional,
unsuspected biological features that MCs possess.
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