
AntimicrobiAl peptides Are 
promising Antibiotic compounds
The development of novel methods to 
overcome the inevitable resistance that 
develops with common antibiotics is an 
important area of current research. Recent 
studies have shown that antimicrobial pep-
tides (AMPs) have the potential to become 
excellent antibiotic compounds toward 
a broad-spectrum of Gram-positive and 
Gram-negative bacteria with less potential 
for bacterial resistance than conventional 
antibiotics (Shai, 2004). Because these com-
pounds are highly selective toward bacteria 
and bacteria have difficulty in developing 
resistance to their effects, a large number 
of studies have focused on designing potent 
AMPs for potential pharmaceutical appli-
cations (Maloy Biopolymers; Marsh et al., 
2009). One of the designed peptides, MSI-
78 (also known as pexiganan), rose success-
fully to phase II clinical trials for treating 
infection in the case of diabetic foot ulcer 
(Gottler and Ramamoorthy, 2009).

composition of membrAnes is key 
to Amp selectivity
Bacteria have difficulty in developing resist-
ance to AMPs because the toxicity of AMP is 
mostly mediated by a non-specific process 
rather than by an interaction with a specific 
protein target. Most AMPs lyse bacteria by 
directly interacting with the lipid bilayer of 
the bacterial cell membrane and disrupting 
the lipid bilayer structure (Oren and Shai, 
1998; Epand and Vogel, 1999; Shai, 2002; 
Bechinger, 2011). The development of more 
potent and selective AMPs requires that 
the molecular basis of activity and selec-
tivity be understood. Substantial progress 
has been made in recent years in this area, 
particularly using cutting-edge solid-state 
NMR spectroscopy to provide insights into 
the mechanisms of membrane disruption 

by AMPs (Bechinger, 1999; Durr et al., 
2006; Bhattacharjya and Ramamoorthy, 
2009; Ramamoorthy, 2009; Nguyen et al., 
2011). For example, the high-resolution 
3D structure, membrane orientation, and 
mechanism of membrane disruption are 
reported for several important peptides 
including LL-37 (Wildman et al., 2003; 
Porcelli et al., 2008), MSI-78 (Hallock et al., 
2003), MSI-594 (Ramamoorthy et al., 2006; 
Bhunia et al., 2009), and pardaxin (Hallock 
et al., 2002; Porcelli et al., 2004; Bhunia et al., 
2010). Biophysical studies have also revealed 
the role of anionic lipids, (Thennarasu et al., 
2010) cholesterol, and lipopolysaccharides 
(Bhunia et al., 2009, 2010; Domadia et al., 
2010) in Gram-negative bacteria on the 
antimicrobial activities of these AMPs. In 
addition, substantial progress has been in 
understanding the molecular determinants 
of AMP activity. For example, recent studies 
have shown the ability to form oligomeric 
aggregates in the cell membrane enhances 
the potency of an AMP (Toke et al., 2004; 
Tremouilhac et al., 2006; Marquette et al., 
2008; Ramamoorthy et al., 2008; Strandberg 
et al., 2008). Studies have also shown that 
the presence of d-amino acids (Mangoni 
et al., 2006) and disulfide bridges (Dhople 
et al., 2006) can enhance resistance against 
proteolytic degradation without affecting 
the antimicrobial activity.

From these studies, a picture of how 
AMPs preferentially target bacteria has 
begun to emerge. The selectivity of AMPs 
therefore largely lies in their ability to dis-
tinguish between prokaryotic and eukary-
otic membranes (Glukhov et al., 2005; 
Epand et al., 2006b). Biophysical studies 
have shown the importance of two factors 
in the membrane selectivity of an AMP 
(Figure 1A): (a) the electrostatic interac-
tion between a cationic AMP and the acidic 
bacterial membrane which is composed of 

about ∼25% anionic lipids (POPS, POPG, 
and/or cardiolipin; Glukhov et al., 2005; 
van Meer et al., 2008; Epand et al., 2010) 
and (b) the presence of a large amount of 
cholesterol in a eukaryotic cell membrane 
which inhibits membrane disruption 
by rigidifying the lipid bilayer structure 
(Benachir et al., 1997; Matsuzaki, 1999; 
Glukhov et al., 2005; Epand et al., 2006a; 
Verly et al., 2008). These factors controlling 
the membrane selectivity of AMPs can also 
be exploited for other pharmaceutical tar-
gets. For example, several AMPs have been 
shown to have anticancer activities; this 
property has been attributed to the presence 
of anionic lipids in the outer leaflet of the 
cancer cell plasma membrane (Hoskin and 
Ramamoorthy, 2008). Similarly, most AMPs 
also kill fungi, protozoa, and even enveloped 
viruses, which all show a lipid distribution 
different than a normal eukaryotic cell 
(Oren and Shai, 1998; Epand and Vogel, 
1999; Shai, 2002; Bechinger, 2011; Nguyen 
et al., 2011; Pius et al., 2012). Despite this 
progress in understanding the molecular 
determinants of AMP activity, there are 
still unresolved questions, particularly with 
regards to the preferential targeting of bac-
terial membranes. While the role of anionic 
lipids in membrane targeting of AMPs is 
well established, the role of cholesterol is 
still not clear. Accordingly, this opinion arti-
cle focuses on the distinct roles of choles-
terol in homogenous versus heterogeneous 
lipid bilayers.

cholesterol is believed to plAy A 
role in bActeriAl selectivity of 
Amps
One of the major differences between bac-
terial and eukaryotic cell membranes is the 
presence of a large amount of cholesterol 
in eukaryotic cell membranes and a com-
plete absence in bacterial cell membranes 
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(Figure 1A). Cholesterol has been shown 
to protect human erythrocytes from attack 
by magainin 2 (Matsuzaki et al., 1995b). 
Similar studies on model membranes have 
demonstrated that the presence of choles-
terol reduces AMP binding and suppresses 

the disruption of lipid bilayer structure by 
AMPS (Feigin et al., 1995; Matsuzaki et al., 
1995a; Tytler et al., 1995; Raghuraman and 
Chattopadhyay, 2004; Glukhov et al., 2005; 
Verly et al., 2008; Wu et al., 2010). Solid-
state NMR studies have provided high-res-

olution insights into the role of cholesterol 
against the function of several AMPs 
(Benachir et al., 1997; Wildman et al., 2003; 
Ramamoorthy et al., 2010). Cholesterol is 
known to increase membrane cohesion and 
mechanical stiffness (Evans and Waugh, 
1977; Henriksen et al., 2006) which may 
resist the membrane bending required for 
many AMPs to function (Allende et al., 
2005). This interaction reduces the tilt of 
the paradaxin helix relative to the bilayer 
normal, which in turn reduces the stabil-
ity of the paradaxin pore (Ramamoorthy 
et al., 2010). However, for most AMPs a 
noticeable inhibitory effect of cholesterol 
is only noticeable after the formation of 
liquid ordered lipid phase at high concen-
trations of cholesterol (∼20%; McHenry 
et al., submitted) which suggests it may be 
due to an indirect effect due to a modula-
tion of membrane properties rather than 
a direct interaction (Feigin et al., 1995). 
Despite these advances, the actual reason 
for the reduced affinity of many AMPs for 
cholesterol containing membranes is not 
fully understood. As noted above, this is 
traditionally been interpreted as a conse-
quence of the increased acyl chain order 
in the liquid ordered phase of cholesterol 
containing membranes. In this context, it is 
interesting to compare cholesterol’s effects 
on AMPs which do not clearly prefer the 
disordered liquid crystalline lipid phase or 
ordered gel phase. Surprisingly, cholesterol 
still strongly inhibits these peptides, which 
suggests an additional factor, such as dehy-
dration of the headgroup region (M’Baye 
et al., 2008) is partially responsible for cho-
lesterol’s effect.

cholesterol loses its 
effectiveness in inhibiting Amps 
when incorporAted into rAft-like 
domAins
While biophysical studies have shown the 
ability of cholesterol to suppress the action 
of an AMP against a homogeneous lipid 
bilayer, recent studies have revealed that 
cholesterol does not have this same effect 
in heterogeneous lipid systems (Pokorny 
and Almeida, 2005; Pokorny et al., 2006). 
Though few studies have looked at mem-
brane disruption by AMPs in heterogeneous 
systems with phase separation [particularly 
in liquid ordered (l

o
) liquid-disordered (l

d
) 

domain coexistences often referred to as 
“lipid rafts”], two studies by the Almeida 

Figure 1 | (A) Role of cholesterol on the bacterial selectivity of antimicrobial peptides. Lipid bilayers 
mimicking bacterial (A) and eukaryotic (B) cell membranes are commonly used in in vitro studies on AMPs. 
In eukaryotic cell membranes, the outer leaflet consists primarily of zwitterionic phosphatidylcholine lipids 
(such as POPC), and cholesterol (∼25%) while the inner leaflet contains anionic lipids (such as POPS). 
Bacterial cell membranes typically lack cholesterol and contain ∼25% acidic lipids (like POPG and cardiolipin), 
and ∼55% phosphatidylethanolamine (POPE). AMPs have been shown to directly interact with the lipid 
bilayer of bacterial cell membranes and lyse the cell by disrupting the membrane via one of the several 
proposed mechanisms including barrel-stave, toroidal-pore, and detergent-type disturbances. The presence 
of cholesterol in the eukaryotic cell membrane enhances the rigidity of lipid bilayers to inhibit the membrane 
disruption activities of antimicrobial peptides. The electrostatic interaction between a cationic antimicrobial 
peptide and the anionic lipids (POPS) present in the outer leaflet of bacterial membranes plays a vital role in 
bacterial selectivity and the absence of cholesterol makes the membrane disruption by an AMP easier. In the 
case of Gram-negative bacteria, the presence of anionic lipopolysaccharides attracts cationic AMPs. (B) 
Mechanism of action of an antimicrobial peptide in a raft-containing membrane. In a heterogeneous mixture 
of lipids, the presence of cholesterol in the raft domain (lo) resists the permeation of an antimicrobial peptide 
while the disordered (ld) lipid domain is easily disrupted by an antimicrobial peptide.
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future scope
While the development of AMPs for anti-
biotic applications is highly important, it is 
essential to understand the origin of their 
bacterial selectivity. As mentioned above, 
recent studies have shown that AMPs easily 
disrupt the structure of heterogeneous lipid 
systems, and therefore cholesterol is unlikely 
to play a major role in reducing the toxic-
ity or increasing the selectivity of AMPs. 
Since a natural eukaryotic cell membrane 
contains heterogeneous lipid systems and 
domains, cholesterol poor domains must 
be easily disruptable by an AMP. Further 
studies probing the role of cholesterol in 
different types of lipid bilayers with a variety 
of AMPs are essential to better understand 
the exact role of cholesterol on the toxicity 
and selectivity of AMPs. Such studies would 
aid in the design of more efficient AMPs.
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