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Dysregulated expression of key immune genes may cause breakdown of immunologi-
cal tolerance and development of autoimmune disorders such as type 1 diabetes (T1D).
General immune insufficiencies have also been implicated as a trigger of autoimmunity,
due to their potential impact on immune homeostasis. Recent studies have detected evi-
dence of systemic reduction in immune gene expression in long-term diabetic patients but
the changes were not present before or at T1D onset. The changes could not be merely
correlated with alteration in metabolic parameters. The studies also identified a dynamic
expression pattern of several well-known as well as little-studied, immune-related genes
during the course of T1D. An intriguing “ratio profile” of immune regulatory genes, such
as CTLA4 and members of the S100 family, versus “baseline” immune genes, such as
CD3G, prompted us to further examine immune gene expression relationships for a set
of molecules representing T cells, B cells, and myeloid cells. No evidence was found to
suggest an overall breach of tolerance equilibrium in T1D. Perplexingly, patients with long-
term T1D presented a gene expression profile that was surprisingly more coordinated in
analyses of “networking” relationship. Computational analyses of the “ratio profiles” or
“relationship profiles” of immune gene expression might provide a clue for further studies
of immunobiology in human T1D and other autoimmune diseases, as to how the profiles
may be related to the pathogenic cause of the disease, to the effect of the diseases on
immune homeostasis, or to an immunological process associated with the course of the
diseases but is neither a direct cause nor a direct effect of the diseases.
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IMMUNOBIOLOGY AND IMMUNE BIOMARKERS IN T1D
It is generally accepted that type 1 diabetes (T1D) develops as
a result of breakdown in immunological tolerance induction
mechanisms. The contribution of various tolerance mechanisms
has been clearly delineated with the aid of animal models of
T1D. It is postulated that T1D and other autoimmune dis-
eases are likely caused by specific breaches in a network of
immunological tolerance mechanisms (Mathis and Benoist, 2010).
However, a general defect at a system level has also been impli-
cated by clinical and experimental evidence (Gallegos and Bevan,
2004; King et al., 2004; Schuetz et al., 2010). Indeed, studies
with animal models suggested that autoimmune diabetes could
be caused by either specific defects in immune dysregulation
(for review, see Lehuen et al., 2010), or a general immune
insufficiency (lymphopenia; King et al., 2004). However, it is
difficult to pinpoint the breakdown of immunological toler-
ance in human patients. In common cases of human T1D,
the status of the immune system remains a vaguely delineated
framework that awaits characterization at molecular and cellular
levels.

In the mean time, studies of biomarkers that are associated
with T1D are expected to provide important tools for clinical
management of the disease. Biomarkers can be derived from a
broad spectrum of factors (Purohit and She, 2008), for example,
T1D-associated genetic loci, antibodies against endocrine pan-
creatic tissues and products, potentially pathogenic or protective
cytokines, and expression profiles of immunological or metabolic
genes. The best examples are perhaps the predicative values of
anti-insulin and anti-islet-cell antibodies for T1D development
(Eisenbarth et al., 1998). Another well-recognized example is the
measurement of hemoglobin A1c (HbA1c), which is commonly
used for clinical diabetes management. Since immunological pro-
cesses are believed to play critical roles in all stages of T1D
development, immune gene expression profiles can potentially
be used as biomarkers for staging T1D development as well as
gauging the impact of the disease.

Microarray gene expression profiles of peripheral blood pro-
vided new insights into pathogenesis of T1D (Reynier et al.,
2010). Such studies could reveal differences in immune respon-
siveness between patients with T1D and healthy controls, and
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may identify changes in gene expression that associate with pro-
gression of T1D. Studies of the peripheral immune system of
new-onset T1D patients have shown significantly higher levels
of IL-1α, IFN-γ, and TNF-α as compared to normal con-
trols (Hussain et al., 1996; Kallmann et al., 1997). Patients with
childhood-onset T1D show abnormal monocyte gene expres-
sion levels with an altered gene expression network, implicating
monocyte abnormalities in susceptibility to diabetes (Beyan et al.,
2010). Two distinct gene expression profiles have been reported
in monocytes from peripheral blood: a proinflammatory pro-
file mainly associated to adult-onset and a chemotaxis, adhesion,
and metabolism profile mainly associated to juvenile-onset dia-
betes (Padmos et al., 2008). Recently, a study showed that healthy
first-degree relatives of patients with T1D exhibited significant
differences in expression pattern of genes involved in the regu-
lation of innate immune responses such as TLR signaling and
CCR3 signaling in eosinophils, costimulation, and cytokine
responses mediated by CD137, CD40, and CD28 signaling and
IL-1 proinflammatory pathway, as compared to healthy controls
(Stechova et al., 2011).

One of the major subsets in the adoptive immune system, B
lymphocytes, have been implicated to play a role in T1D devel-
opment and disease progression (Serreze et al., 1998; Silveira and
Grey, 2006), but the actual role that B cells play remains to be
elucidated (Serreze et al., 1998; Wong et al., 2004). Several stud-
ies from animal models of autoimmune disease have shown that
B cells can serve as antigen-presenting cells and prime β cell-
specific T cells (Falcone et al., 1998; Serreze et al., 1998; Bouaziz
et al., 2007). Data from a recent clinical trial demonstrated that
treatment of new-onset T1D patients with anti-CD20 (Rituxan)
preserved residual insulin secretion for at least 1 year (O’Neill
et al., 2009; Pescovitz et al., 2009). B cells may also contribute
to immune responses through the secretion of effector cytokines
(Harris et al., 2005a,b; Duddy et al., 2007). Gene expression levels
of two key B cell markers, activation-induced cytidine deaminase
and immunoglobulin G gamma chain, were found significantly
lower in long-term T1D patients as compared to healthy controls
or new-onset patients (Han et al., 2011). The cytotoxic lympho-
cyte gene products granzyme B (GB), perforin, and fas ligand
(FasL) have been shown to play a vital part in the T1D devel-
opment (Kreuwel et al., 1999; Moriwaki et al., 1999; Kreuwel and
Sherman, 2001; Yoon and Jun, 2001). mRNA levels of perforin and
FasL genes were found significantly lower in patients with long-
term T1D as compared to healthy controls (Giordano et al., 1995;
Han et al., 2005).

It can perhaps be agreed that there are a plethora of examples
of conflicting reports in immune-related changes in the course
of T1D. For example, conflicting evidence exists on whether an
active Th1-like immune response destroys beta cells, followed by
presentation of autoantigens during the prediabetic phase (Karls-
son Faresjo et al., 2004; Hedman et al., 2006). Th17 cells have been
shown to play a critical role in the induction of autoimmune tissue
injury and inflammation, and might be involved in exacerbation
of diabetes, but its role in T1D remains to be clarified (Cooke,
2006; Bending et al., 2009; Emamaullee et al., 2009; Martin-Orozco
et al., 2009; Honkanen et al., 2010). Increased levels of IL-17
secreting T cells were found in children with new-onset T1D

(Marwaha et al., 2010). There are also conflicting reports about
the levels of cytokine secretion and cytokine mRNA expression in
at-risk, new-onset, and long-term T1D patients (Halminen et al.,
2001; Nicoletti et al., 2002). These discrepancies might be con-
tributed by different stages of the disease even within the same
group, or sampling variations.

Another example is CTLA4, an immunoregulatory molecule
that plays a key role in negatively regulating T cell responses (for
review, see Teft et al., 2006). Genetic variations in the CTLA4
locus is associated with a number of autoimmune diseases (for
review, see Kristiansen et al., 2000). Many groups studied potential
dysregulation of CTLA4 expression in T1D. The mRNA expres-
sion level for CTLA4, as well as ICOS and GITR, was found
lower in regulatory T (Treg) cells of children with newly diag-
nosed diabetes as compared to the healthy controls (Luczynski
et al., 2009). CTLA4 protein expression was reported lower in the
patients with diabetes (Haseda et al., 2011; Ryden et al., 2012) and
with autoimmune thyroiditis as compared in controls (Kucharska
et al., 2009). The expression of CTLA4 is influenced by genetic
polymorphisms, although it remains debated how exactly each
of CTLA4 polymorphisms impact human T1D genetics and how
they contribute to CTLA4 expression variation (Ueda et al., 2003;
Anjos et al., 2005). It should be noted that the reported changes
in CTLA4 expression were subtle. A subtle reduction of CTLA4
could indeed impact T1D development (Chen et al., 2006), with
mechanism remain to be elucidated. On the other hand, induc-
tion of CTLA4 is associated with tolerogenic effect of a therapeutic
agent, the murine analog of anti-thymocyte globulin (ATG), in a
transgenic mouse model of T1D (Lu et al., 2011). In experimen-
tal settings of CTLA4-deficiencies, i.e., “all-or-nothing” modeling,
or anti-CTLA4-antibody-mediated blockade, it has been shown
that CTLA4 acts on both Treg and effector T (Teff) cells (Wing
et al., 2008; Peggs et al., 2009; Ise et al., 2010; Jain et al., 2010; Pruitt
et al., 2011; Miska et al., 2012). However, in a recent study of anti-
tumor immunity, Teff cells exhibited unique sensitivity to subtle
reduction of CTLA4 (Miska et al., 2012).

In our studies to identify potential biomarkers in association
with T1D progression, gene expression analyses were performed
with quantitative RT-PCR for the mRNA levels of a set of immune-
related genes using commercially tested primer and probe sets
(Han et al., 2011, 2012). In this initial stage of studies, whole blood
samples from at-risk, new-onset, and long-term T1D patients, as
well as healthy controls were preserved for analyses after collection,
without further processing or fractioning, to avoid any potential
loss and changes caused by processing. It was found that IFN-γ, IL-
4, and IL-10 mRNA levels were significantly higher in new-onset
as compared to at-risk and long-term T1D patients (Han et al.,
2011). The gene expression levels of most cytokines and effector
molecules were suppressed in long-term T1D patients as com-
pared to healthy controls (Han et al., 2011). Surprisingly, CTLA4
expression levels per se were not changed in the at-risk or new-
onset stages, but reduced in long-term diabetic patients (Han et al.,
2012). Unexpectedly, we found a significant difference between
healthy controls and T1D groups in mRNA levels for “baseline”
immune gene such as CD3G (representing T cells), CD20 (rep-
resenting B cells), and CD11b (representing myeloid cells). When
CTLA4 expression was examined in reference to CD3G expression,
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as a ratio of CTLA4/CD3G, we detected a decreased ratio in
the sample from at-risk and new-onset patients but an increased
ratio in samples from long-term T1D patients. The distinct “ratio
profiles” for various immune regulatory genes (Han et al., 2012)
prompted us to further examine the relationship of immune gene
expression in different stages of T1D.

“RELATIONSHIP PROFILE” OF INNATE AND ADAPTIVE
IMMUNE GENE EXPRESSION
It is thought that “cross-talk” between different subsets of immune
cells is crucial for immunological tolerance (Lehuen et al., 2010;
Suzuki et al., 2010), but it remains a challenge to study immune
cell interaction in human patients. The gene expression values
were obtained for T lymphocyte genes (CD3G and CTLA4), B
lymphocyte genes (CD19 and CD20), and myeloid cell-related
genes (CD11b, TLR9, and ARG1), as well as a subset of members
of the S100 family that has been implicated in immune regu-
lation (Han et al., 2012). We probed the relationship of these
values, by a computational approach, to gain a clue to the sys-
temic and regulatory relationships among T-, B-, and myeloid
cells. Whereas the well-established immunological relationships
between CD3G and CTLA4, as well as CD19 and CD20, should
validate the experimental and computational methods of gene
expression relationship and network analyses, the inclusion of
the S100 family members in the expression analyses (Han et al.,
2012) attests the approaches’ utility to explore novel relationships
between a gene with a well-defined immunological function and
another gene with a yet-to-be characterized role in immunity and
tolerance.

Gene expression networks were analyzed by calculating Pear-
son’s correlation coefficient among the expression values of each
pair of genes, measured in a previously reported study (Han et al.,
2012). Correlation between any two genes with an absolute coef-
ficient value greater than 0.8 was presented in gene expression

network graphs (Figure 1). A robust correlation between four
pairs of genes was expected in the healthy samples, based on
the established function of these genes: (1) CTLA4 and CD3G;
(2) CD19 and CD20; (3) CD11b and TLR9; and (4) S100A8
and S100A9. The anticipated relationships were designed to be
a “positive” control for the computational method. Indeed, strong
correlations of expression between all four pairs of genes were
validated in the healthy control samples (Figure 1A). The cor-
relation between the T cell pair and the B cell pair appeared to
be relatively weak (<0.8) in the healthy group (Figure 1A). The
sample size in the at-risk group (n = 19; Han et al., 2012) may
be too small to estimate correlation coefficients reliably. There-
fore, the at-risk group was not included in this computational
analysis. In the healthy control group, one sample was discarded
from this analysis because it contained statistical outliers (n = 69;
Han et al., 2012).

The gene expression network was constructed using a standard
formula for Pearson’s correlation coefficient. The computation
analysis with this formula does not predict how the correlation
coefficients of pairs of genes in one subject group would change
when the average expression levels of a set of genes are all reduced,
for example, whether the absolute values of the correlation coef-
ficients would increase, decrease, or remain similar. Intuitively,
we expected that the onset and duration of T1D might be asso-
ciated with a disruption of a gene expression correlation network
that exists in the healthy controls. Contrary to our expectation,
we did not detect an apparent disruption of the gene expression
correlations in the samples from the new-onset diabetes group
(n = 33; Figure 1B). Instead, it was clear that the basic correla-
tion pattern was preserved in the new-onset group as compared
to the HT controls. Surprisingly, when compared to healthy con-
trols (Figure 1A), the gene expression correlation network was
much strengthened overall in long-term diabetic patients (n = 59;
Figure 1C).

FIGURE 1 | Gene expression network analysis to examine

potential coordination among innate and adaptive immune

gene expression. Quantitative RT-PCR was used to assess the levels
of mRNA expression for thirteen innate (CD11b, TLR9, and S100 family)
and adaptive (CD3, CTLA4, CD19, and CD20) immune genes. Gene

expression relationships were analyzed for healthy controls (A) and
compared to that of new-onset (B) and long-term T1D patients (C).
Solid red lines, absolute value of correlation coefficient ≥0.9;
dashed blue lines, absolute value of correlation coefficient ≥0.8
but <0.9.
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As expected, the expression of several S100 genes correlated
with the mRNA level of CD11b, an indicator of myeloid cells.
Novel relationships of gene expressions were identified in the sam-
ples from the healthy group between S100 family genes and T cell
genes (CTLA4 and CD3G), but not with B cell genes (CD20 and
CD19). Surprisingly, although healthy controls and new-onset
T1D patients exhibited a similar pattern of gene expression rela-
tionships, more correlative relationships of gene expression were
identified in the long-term diabetic group than in healthy con-
trols, such that the expression of CD3G, CD11b, S100A6, S100A9,
S100A10, S100A11, or S100A13 correlated with a majority of the
other genes analyzed in the study, regardless of their primary
functional denotation in T-, B-, or myeloid cells. Distinct gene
expression relationships also emerged in the samples from the
new-onset and long-term T1D groups between the B cell gene
CD19 and TLR9, or between CD19 and members of S100 gene
family (Figures 1B,C).

The correlation coefficients were further used as a distance
metric in a hierarchical clustering analysis that yielded a den-
drogram, a commonly used method for depiction of relationship
analyses. The healthy, new-onset and long-term T1D groups gen-
erally exhibited similar clusters (Figure 2). Thus, the results from
the hierarchical clustering analyses support the finding from net-
work analyses, suggesting that the expression relationships of the
selected immune genes were well-preserved during progression
of T1D.

CROSS-GROUP ANALYSIS OF GENE–GENE INTERACTIONS
For experimental biologists to identify gene expression relation-
ship, the most straightforward method is perhaps to simply analyze
the ratio of gene expression levels for genes that are known to be
related (Han et al., 2012), as described above. Statistical analy-
ses of correlation coefficients, as described in Figures 1 and 2,
are also intuitively comprehensible and desirable by experimental
biologists to detect potential relationship. However, other types
of interactive relationships could exist and may necessitate more
sophisticated computation methods. In genetic association stud-
ies, interactions of several genetic loci were found, in addition to
the other well-established loci such as HLA, to be associated with
T1D (Cordell et al., 1995; Ide et al., 2004). Gene–gene interactions
are believed to be an important factor that may account for miss-
ing heritability for T1D (Pociot et al., 2010) and other complex
human diseases (Manolio et al., 2009). We therefore employed a
computational approach to identify gene–gene interactions that
were associated with a T1D group vis-à-vis the healthy controls,
using the gene expression values.

When we compared a T1D group with the healthy group, we
used an indicator variable Y to indicate whether a subject is from
the T1D group (Y = 1) or the healthy group (Y = 0), and then
employed the following logistic regression model to investigate the
effect of gene expression and the age on the status of the subject,

log

(
P(Y = 1)

P(Y = 0)

)
= β0 +

13∑
i=1

Xiβi +
12∑

i=1

13∑
j=i+1

XiXjβij + age × βa,

where P(Y = 1) or P(Y = 0) is the probability that the sub-
ject belongs to the T1D or healthy group, Xi is the expression

FIGURE 2 | Hierarchical clustering analysis of expression relationship

among innate and adaptive immune genes. A dendrogram was
presented based on correlation coefficient of gene expression levels. The
HT, NO, and LT groups exhibited a similar pattern of gene expression
correlation. Most of the 13 genes appeared in two clusters: a B cell cluster
and a cluster consisting of both T cell and myeloid cell genes. The sample
size in the AT group (n = 19) may not be sufficient for the clustering
technique.

level of gene i, and βi, βij , βa are regression coefficients to be
determined. This logistic regression model is similar to the one
used to detect gene–gene interactions in genome-wide association
analysis (Cordell, 2009), except the variables here are gene expres-
sion values and the age instead of genotypes. Since the number
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of variables in the model is greater than the number of samples
available, the traditional maximum likelihood approach cannot be
used to determine the regression coefficients. We thus employed
a method named elastic net (Zou and Trevor, 2005), which is
capable of selecting relevant variables from a set of a large num-
ber of variables. The elastic net was originally used to predict if
a leukemia patient has type 1 or 2 leukemia using the expression
levels of 7129 genes (Zou and Trevor, 2005). Specifically, the elastic
net determined the values of regression coefficients by maximizing
the following penalized likelihood function,

L(y|β) − λ(1 − α)

2

⎛
⎝ 13∑

i=1

β2
i +

12∑
i=1

13∑
j=i+1

β2
ij

⎞
⎠

− λα

⎛
⎝ 13∑

i=1

|βi| +
12∑

i=1

13∑
j=i+1

∣∣βij
∣∣
⎞
⎠ ,

where L(y|β) is the log likelihood function of the data with β stand-
ing for all regression coefficients, α (0 < α ≤ 1) and λ (>0) are two
constants that could be determined with cross-validation. We used
an efficient program named glmnet (Friedman et al., 2010) that
implemented the elastic net to fit the data to the logistic regression
model. The constants α and λ were chosen from leave-one-out
cross-validation that yielded the smallest deviance. The standard
errors of non-zero coefficients obtained from glmnet were then
calculated from the sandwich formula for the penalized regression
models (Fan and Li, 2001).

In the analysis for LT versus HT group, cross-validation yielded
α = 0.71 and λ = 0.01393. Hosmer–Lemeshow test for the good-
ness of fit of the model gave a p-value of 0.567 which implies that
the data fitted the model properly. The area under the receiver

operating characteristic (ROC) curve is 0.831, which also indi-
cates that the data fitted the model well. The regression coefficients
obtained from the glmnet were presented in Table 1. Three pair-
wise gene interactions were identified associating with long-term
T1D vis-à-vis healthy controls: ARG1 versus S100A6, ARG1 ver-
sus S100A9, and CD3G versus CD20, since their corresponding
regression coefficient is �=0 with a statistical significance <0.05.
To illustrate the effect of gene-gene interactions, let us denote the
probability of a subject belonging to the long-term T1D group as p
and correspondingly the probability of subject being in the healthy
group as 1 − p. The odds for the subject being associated with the
long-term T1D group is then o = p/(1 − p). Taking the analysis
of CD3G versus CD20 for illustration, the regression coefficient is
0.21 (Table 1).

In a hypothesized situation where the product of expression
levels of CD3G and CD20 is increased by onefold but all other
expression levels do not change, the odds of the subject being asso-
ciated with long-term T1D is denoted in this situation as o1 and
the odds ratio is defined as o1/o. The odds ratio o1/o = e0.21 = 1.23
implies that the relative likelihood of association with the long-
term T1D group is increased by 1.23 times if the product of
expression levels of CD3G and CD20 is increased by onefold under
this hypothesized situation. Of course, this kind of hypothetical
situation unlikely occurs, because (1) if the product of expression
levels of CD3G and CD20 changes, most likely expression levels
of CD3G and CD20 themselves change too, and (2) as we have
seen expression levels of some genes are highly correlated; mean-
ing, if expression levels of CD3G and CD20 change, expression
levels of some other genes may change too. Therefore, the number
does not really specify exact relative risk, but rather suggests that
a characteristic CD3G and CD20 interaction indicates a biased
association with the long-term T1D versus healthy condition.

Table 1 | Elastic net regression analyses of gene–gene interaction between the HT and LT-T1D groups.

ARG1 CD19 CD3G CTLA4 CD11b CD20 S100A10 S100A11 S100A13 S100A6 S100A8 S100A9 TLR9

ARG1 0 0 0.07 0 0 0 0 0 0.03 0.22* 0.01 −0.21* 0

CD19 0 0 0 0 0 0 0 0 0 0 0 0

CD3G 0 0 0 0.21* 0 0 0.06 0 0 0 0

CTLA4 0 0 0 0 0 0.03 0 0 0 0

CD11b 0 0 0.02 0 0 0 0 0 0

CD20 0 0 0 0.04 0 0 −0.15 0

S100A10 0 0 −0.05 0 0 0 0.11

S100A11 0 0 0 0 0 0

S100A13 −0.62** 0.09 0 −0.11 0.01

S100A6 0 0 0 0

S100A8 0 0 0

S100A9 0 0

TLR9 0

For a cross-group analysis of gene expression and interaction, gene expression data were fitted to a penalized logistic regression model named elastic net, according
to an algorithm described in the text. Numbers in the table are the regression coefficients obtained from the analysis for healthy controls (HT) versus the long-term
(LT)T1D group. *p < 0.05; **p < 0.0005.This approach of multiple penalized regression did not detect any gene–gene interaction between HT versus AT, or HT versus
NO groups.
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The immunological significance of this finding, as to how it is
related to T1D, remains to be tested. It might suggest, although
purely speculative at this point, an altered T–B collaboration in
an established diabetes condition. Collaboration of T- and B-
lymphocytes is critical for a productive immune response and its
regulation.

Notably, this penalized regression model identified only one
main effect of single genes between long-term T1D patients and
healthy individuals (S100A13, p < 0.0005; Table 1), although both
Student’s t test and linear regression analyses involving single genes
and age indicated significant reduction of expression in 10 of the
13 genes (Han et al., 2012). This was due to the fact that the correla-
tions among genes were high and the multiple penalized regression
analysis only picked out the gene whose difference between the two
groups was most significant. This approach did not identify any
gene–gene interaction in cross-group analyses between HT versus
AT, or HT versus NO.

SUMMARY
A large on-going effort has been devoted by many groups
to identify biomarkers for T1D and other autoimmune dis-
eases. Undoubtedly, those biomarkers, including differential gene
expression profiles, will be instrumental to improve the clini-
cal management of the diseases. For some autoimmune diseases,
T1D as a well-known example, even though diagnosis criteria are
straightforward, biomarkers may prove to be a great aid in stag-
ing the disease as well as predicting disease development before
and after onset. Given the immune origin of an autoimmune dis-
ease, immune gene expression profiles are logical candidates of
biomarkers. Such profiles may or may not necessarily be directly
related to the disease cause or effect, but regardless may be useful
indicators for the status of the immune system, the “immunolog-
ical wellness,” during the disease progression (Han et al., 2012).

Successful prevention or cure of T1D and other autoimmune
diseases will require a better understanding of the mechanisms of
the diseases. In this regard, substantial progress has been made.
Multiple genetic risks and environmental factors are implicated in
the immunological tolerance breakdown that leads to T1D. Rare
cases of T1D caused by Mendelian genetic mutations at either
the AIRE or FOXP3 locus highlight the critical role of central tol-
erance by thymic deletion or peripheral tolerance by regulatory
T lymphocytes, respectively (Mathis and Benoist, 2010). On the
other hand, a surprisingly limited spectrum of autoimmune dam-
age in Aire/Foxp3 double-deficient mice suggests robustness of
an immunological tolerance framework reinforced by a network
of known and unknown elements (Chen et al., 2005). Clini-
cal observations and experimental studies suggest that a general
immune insufficiency may cause autoimmune diseases (Gallegos
and Bevan, 2004; King et al., 2004; Schuetz et al., 2010). For a

T1D population consisting of common cases that are not caused
by monoallelic genetic mutations, however, the overall immuno-
logical status during T1D initiation and progression remains a
challenge to characterize, due to a lack of experimental approaches
for a system level assessment. A daunting task remains to study the
immunobiology and pathophysiology behind human T1D and
other autoimmune diseases, due to obvious clinical and logistic
limitations and ethical concerns.

Perhaps, it is fair to critique that the computational analyses
would be difficult to interpret in the absence of experimental
evidence, and therefore may not be suitable for an experimen-
tal journal unless experimental evidence is provided. Currently
available experimental biology approaches are not handy yet to
definitively tackle human immunology at a system level in a com-
plex disease setting such as T1D. Subtle and specific imbalances in
innate and adaptive immune regulation, e.g., CTLA4/CD3 ratios,
could be detected and may be associated with the T1D devel-
opment. Systemic perturbations might occur, apparently not as
a cause of T1D but as a part associated with the T1D course
(Han et al., 2012). Of course, the computational analysis of the
gene expression relationships could be regarded as just another
approach by another “blind man” to the disease “elephant.” How-
ever, we argue that it may provide a clue to the biology behind
the disease, suggesting that T1D pathogenesis in humans is not
due to a gross encroachment of the integrity of immune regula-
tory network, nor to a general insufficiency in the immune system.
For a reason(s) yet to be determined, a strengthened correlation
of immune gene expression was associated with T1D progres-
sion. It remains to be understood whether and how the altered
relationships may impact immune function and immune toler-
ance induction. A tightened immune regulatory network might
facilitate tolerance induction. On the other hand, an increased
rigidity of a network might also affect its responsiveness. In that
vein, the general insufficiency of immune gene expression in long-
term diabetes, together with a tightened network of immune gene
expression, might pose a secondary risk of suboptimal immu-
nity, and a perturbation in the homeostasis of the immune
system.
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