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The eye has been at the forefront of translational gene therapy largely owing to suitable
disease targets, anatomic accessibility, and well-studied immunologic privilege. These
advantages have fostered research culminating in several clinical trials and adeno-
associated virus (AAV) has emerged as the vector of choice for many ocular therapies.
Pre-clinical and clinical investigations have assessed the humoral and cellular immune
responses to a variety of naturally occurring and engineered AAV serotypes as well as
their delivered transgenes and these data have been correlated to potential clinical seque-
lae. Encouragingly, AAV appears safe and effective with clinical follow-up surpassing 5 years
in some studies. As disease targets continue to expand for AAV in the eye, thorough and
deliberate assessment of immunologic safety is critical. With careful study, the develop-
ment of these technologies should concurrently inform the biology of the ocular immune
response.

Keywords: adeno-associated virus, RPE65, gene therapy for rare diseases, immune privilege, translational medical
research, sub-retinal injection

INTRODUCTION
Visual impairment is a considerable burden to society. By the esti-
mates of disability-adjusted life years, visual disorders and related
diseases are comparable to diarrheal illness and HIV/AIDS when
measured globally (1). While the majority of blindness in the world
is avoidable by either prevention or therapy, little progress has
been made for the remaining etiologies, many of which stem from
well described genetic lesions. Gene transfer therapy has advanced
tremendously in recent decades, and achieved a milestone success
with the clinical efficacy of adeno-associated virus (AAV) medi-
ated gene augmentation in the eye for Leber Congenital Amaurosis
type 2 (2–4).

Other viruses such as lentivirus and adenovirus have been or are
currently under investigation for ocular gene delivery. Compared
to these viral and also non-viral modes of gene transfer, recombi-
nant AAV continues to be a popular vector used in the eye both
in basic science and translational studies (Figure 1). At present,
clinical trials involving ocular administration of AAV are ongo-
ing on four continents with an aggregate enrollment of over 200
participants (Figure 2). AAV, a helper-dependent single-stranded
DNA parvovirus has never been shown to cause disease in humans
or animals. It is appealing as a vector because it can stably and
efficiently induce gene expression in dividing or terminally differ-
entiated cells, has a favorable toxicity profile and benign immune
response. Also, manipulation of the AAV capsid as well as promot-
ers in the cDNA transgene effectively modulate cellular tropism
which is critical to the cell-specific pathophysiology of many eye
diseases (5).

Anatomically, the eye is highly compartmentalized and many
routes of AAV administration have been studied to target either
anterior or posterior tissues (Figure 3). For example, lacrimal
gland injection (6), topical eye drops (7, 8), intra-stromal corneal
injection (9), and intra-cameral injection (10) provide access
to the ocular surface, cornea, and anterior chamber which are

implicated in dry eye disease, corneal dystrophies, and glaucoma.
Intravitreal and sub-retinal injections access the neurosensory
retina and the underlying retinal pigment epithelium (RPE). Sys-
temic administration of gene therapy reagents is a theoretical
alternative to intraocular surgery that avoids the potential com-
plications of sub-retinal injection. Intravenous or intramuscular
administration during the neonatal period in animals has been
shown to diffusely transduce the retina (11). A major limitation
of this approach, however, is the very large increase in vector
dose compared to intraocular delivery, although certain techni-
cal improvements could be investigated – for example, adaptation
of chemotherapy delivery methods via super selective cannulation
of the ophthalmic artery (12). The systemic strategy is further lim-
ited by the mature blood brain barrier, the many avascular regions
of the eye, and the potential for a detrimental inflammation in the
setting of a necessarily large antigen load. By contrast, each of the
intraocular compartments requires a relatively small volume of
injection and thus highly purified vector is effective in small doses
(13). The transparency of the eye is also advantageous in that it
affords non-invasive direct visualization of neural and vascular
tissue as well as other critical eye structures – facilitating research
in animal models and close follow-up in the clinic. Furthermore,
the symmetry of disease progression in most hereditary retinal
diseases allows one eye to be used as the experimental target and
the other as a control in research studies.

Thus far, diseases of the retina have garnered the most interest
among ocular targets for gene therapy and will be the focus of this
review.

IMMUNITY IN THE EYE
To maintain the transparent structures required for vision, the eye
has conserved a number of adaptations that selectively diminish
a maximal immune response. For example, complement-fixing
antibodies, neutrophils, and macrophages are generally excluded
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FIGURE 1 |Trends in vectors studied for gene therapy in the eye. (A)
Number of results returned when the MEDLINE database was queried via
PubMed for “aav eye 2001” etc. (B) Newly registered clinical trials by year

from the database Gene Therapy Clinical Trials Online from the Journal of
Gene Medicine. Results restricted to “ocular diseases” and sorted by date
approved.

FIGURE 2 | Clinical trials of ocular AAV registered on www.clinicaltrials.gov. Searched as search term = eye and interventions = adeno-associated virus OR
AAV OR rAAV. Number of patients reported as actual or planned numbers for enrollment.

from the eye as potential collateral damage could lead to lesions
and opacities. Anatomically, the retina is an extension of the central
nervous system and is protected by a selective blood-retinal barrier
(BRB) established by non-fenestrated capillaries in the retinal vas-
culature and tight junctions in the RPE. Also, the avascular nature
of much of the eye and the lack of lymphatics draining the anterior
chamber, vitreous cavity, or sub-retinal space further limit classical
antigen presentation and immune response (14). If soluble or cell-
associated molecules bypass these obstacles, antigens are subject
to a so called “deviant” immune response in the eye. The anterior
chamber is the most studied entry point of these responses, and
was originally described by Nobel Laureate Peter Medawar in his
study of corneal transplants and their survival without immuno-
suppression (15). Termed anterior-chamber associated immune
deviation (ACAID), this phenomenon is classically characterized
by the elimination of the delayed-type hypersensitivity (DTH)

response to the introduced antigen. This response is mediated by
a population of antigen-specific regulatory T cells (Treg) that are
elaborated in a multi-stage process involving the eye as well as the
spleen, and these mechanisms are thoroughly reviewed by Streilein
(14). This population of Treg cells can be transferred to naïve ani-
mals which adopt suppression of the DTH. Not surprisingly, this
mechanism of immunosuppression is of considerable interest for
treatment of autoimmune diseases and reproducing the necessary
cytokine environment in vivo or in vitro has been shown to effec-
tively cultivate similar Treg populations that mitigate autoimmune
encephalomyelitis in animal models (16). Similar to the anterior
chamber, antigens introduced to the vitreous and sub-retinal space
exhibit an analogous immune deviant response (14, 17).

The cytokine environment in each of these ocular compart-
ments is thought to be critical for a deviant response. For exam-
ple, transforming growth factor β 2 (TGFβ2) was the first such
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FIGURE 3 | Schematic of anatomic approach to administration of gene
therapy vectors in the eye. Counterclockwise from upper left – LG,
lacrimal gland; T, topical eye drop; IS, intra-stromal of cornea; IC,
intra-cameral, i.e., anterior chamber; IVI, intravitreal; SR, sub-retinal; Sys,
systemic.

cytokine described and is present in the vitreous, retina, and aque-
ous humor. The retina additionally contains vasoactive intestinal
peptide (VIP), and somatostatin (SOM) while the aqueous humor
contains these as well as α-melanocyte-stimulating hormone (α-
MSH) and calcitonin gene-related peptide (CGRP). While all of
these molecules are thought to contribute to immunosuppression,
their various combinations in separated ocular compartments
may underlie the subtle differences in immune deviation between
them (18).

Following antigen exposure, the cellular immune response in
the eye is similarly modulated by cytokines. The T cell helper
Type 1 (Th1) response, for example, is generally injurious to the
ocular tissues. Th1 cells secrete Interferon γ (Ifn-γ) which in
turn activates phagocytes and stimulates production of IgG2a –
a complement-fixing class of antibodies which incur collateral
damage. By contrast, Th2 responses are thought to be better tol-
erated in the eye and can suppress macrophage activation. They
are characterized by the anti-inflammatory cytokines IL-4, IL-10,
and IL-13 – a milieu that favors IgG1, IgG3, and IgG2b which
do not fix complement proteins. It is unclear in the literature if
this sometimes termed “cross regulatory” population of Th2 cells
in fact overlaps with the Treg population. Both are thought to
be elaborated in the environment of TGFβ and IL-10 and both
are known to suppress phagocyte activation. Treg cells are CD25+

and FoxP3+ and contain sub-populations of CD4+ “afferent” cells
that suppress initiation of Th1 cells and CD8+ “efferent” cells that
suppress Th1 action (18).

The regulation of these immune responses is critical to the
safety of gene transfer in the eye. An unchecked inflammatory
response could potentially damage neural tissue such as the pho-
toreceptors which are post-mitotic at birth and do not regenerate
throughout life. The efficacy of gene transfer events similarly
depends on immune tolerance to a viral vector as well as the
products of a transgene that may be novel to the host organism.
Research into gene transfer therapies, therefore, has attempted to

describe both the cellular and humoral immune responses to gene
augmentation in the eye in animal models and ongoing human
trials.

ASSAYS FOR MEASURING IMMUNE RESPONSE TO AAV
Several techniques have been commonly adopted to character-
ize the ocular immune response to AAV technologies. Humoral
responses are typically assayed by enzyme-linked immunosorbent
assay (ELISA) which provides quantitation of specific antibody
production and can also be refined to sub-type classes of anti-
bodies characteristic of certain immune pathways (19). These
antibodies can be measured in sera as well as vitreous and aque-
ous humor, and a comparison known as the Goldmann–Witmer
(GW) coefficient has historically been used to localize antibody
production either inside or outside the eye (19, 20). In addition,
an in vitro functional test of AAV transduction can be conducted in
the presence of test sera, commonly called a neutralizing antibody
(NAb) assay. In this experiment, serum dilutions that inhibit trans-
duction can be compared, and reflect the presence of neutralizing
factors – presumably antibodies – that inhibit AAV transduction.

Cellular immune responses can also be precipitated by AAV
or transgene products. An enzyme-linked immunosorbent spot
(ELISPOT) is often used to quantitate populations of leukocytes
that are activated in response to epitopes of interest. Commonly,
Ifn-γ production is used to define activation and generally reflects
a Th1 type response, although other markers can be used (21).
Recent studies have also monitored cellular immune responses
by flow cytometry detecting activation markers within the CD4+

and CD8+ compartments, such as Ki67, HLA-DR, and Bcl-2 (22,
23), however this method does not allow epitope characterization
using specific peptide pools.

Finally, in animal studies, histological changes also reflect
local immune responses in tissues of interest. Glial cell pro-
liferation is one reaction to CNS insult and can be visualized
by immunohistochemical probes detecting Glial fibrillary acidic
protein (GFAP) (24, 25). Also, infiltrating leukocytes including
activated macrophages can be visualized with antibodies against
CD45, CD68, Iba1, and others (19, 24).

CLINICAL TRIALS FOR RETINAL DEGENERATION
Four independent groups have published results of safety and effi-
cacy in clinical trials of gene augmentation with AAV2 for patients
deficient in the isomerase RPE-specific 65 kDa protein (RPE65)
(2–4, 26). The gene encoding RPE65 is one of at least 18 genes,
when mutated, known to cause the rapid retinal degeneration
known as Leber Congenital Amaurosis1. Some of the initial tri-
als excluded patients with null mutations to remove the possibility
of the introduced RPE65 protein being recognized as non-self (4),
however some did not make this exclusion (2). Safety from an
immunologic standpoint was assessed clinically as well as through
laboratory evaluation.

Follow-up has surpassed 5 years for the first three groups and
to date no major adverse events have been reported (27–29).
By clinical exam, no significant inflammatory response has been

1http://www.sph.uth.tmc.edu/RetNet
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attributed to the AAV or transgene product. Biodistribution stud-
ies have been part of each of the three initial trials and utilized
polymerase chain reaction of AAV sequences in various com-
partments including tears, serum, saliva, and semen. Results have
generally been negative with the exception of transient positivity
in serum and tears which resolved within a few post-operative
days.

To assess adaptive humoral response to the AAV2 capsid, func-
tional assays of NAbs were performed. Generally, NAb assays were
negative with the exception of one patient in the study by Maguire
et al. (2) who experienced an increase in NAb titer which then
decreased to a level slightly above baseline. In the Hauswirth et al.
study (3), NAb titers were not measured functionally, but antibod-
ies as assessed by ELISA were positive in one subject transiently.
In the eye these responses have been much less than those induced
by systemically injected AAV by several log units (30). Adaptive
humoral responses to the transgene were assessed by serum ELISA
in the Maguire and Bainbridge studies and results were negative
(2, 4, 31).

Adaptive cellular immunity to the AAV2 capsid measured via
ELISPOT was negative in each of the three seminal studies (2–4).
Additionally, Hauswirth et al. assayed antigen-specific lympho-
cyte proliferation response (ASR) by thymidine uptake following
exposure to AAV2 antigen, which was negative initially and at
1 year of follow-up (3, 32). Finally, adaptive cellular immunity
against the delivered RPE65 gene product was assayed by Bennett
et al. via ELISPOT and were generally negative with two exceptions
which are presumed to be artifact (2, 31). The benign immuno-
logic results of sub-retinal re-administration of AAV2.hRPE65 are
discussed later in this report (19).

EXPANDING RETINAL DEGENERATION TARGETS
Many inherited retinal degenerations (RD) that were first charac-
terized clinically now have a described genetic etiology and rele-
vant testing is becoming cheaper and more available to clinicians.
The national eye institute (NEI) now provides a program called
eyeGENE that tests for known heritable eye diseases and com-
piles results into a database that is freely available to researchers
and clinicians (33). Perhaps the most amenable of these genetic
targets are autosomal recessive (AR) diseases that confer a loss-
of-function mutation which can be potentially compensated by
gene augmentation. As discussed above, the first of these specific
mutations to be targeted for gene therapy in humans was the AR
LCA2. This was an appealing initial target because (1) the 1.6 kB
transgene is small enough to fit in the AAV2 capsid (<4.7 kB),
(2) mouse and canine models of the disease are available, (3) the
degenerative component in this particular disease is slow, thereby
providing a wide therapeutic window, and (4) the primary cells
effected are RPE which are efficiently transduced by sub-retinal
injection of AAV2. LCA2 is a rare disease, however, with an inci-
dence of ∼1:200,000, which amounts to an estimated 500 cases in
the United States.

Proof-of-concept of gene augmentation therapy has been
demonstrated in animals without significant inflammatory
response in a number of other recessive somatic and X-linked
RD targets using recombinant viruses including oculocutaneous
albinism (34), x-linked juvenile retinoschisis (XLRS) (35, 36), and

achromatopsia (37, 38). The retinitis pigmentosa (RP) phenotype
encompasses >100 mutations, some of which include the LCA
phenotype by certain nomenclatures. In this category, several AR
gene targets have been similarly validated in animal models for
possible gene augmentation: RPGR (39), GC1 (40), RPGRIP1 (41),
MERTK (42), and AIPL1 (43). Furthermore, analogous studies
have been done for Stargardt disease with mutations in ABCA4
using lentivirus (44) as well as Usher Syndrome Ib caused by
mutations in MYO7A using AAV (45).

Also, toxic gain-of-function mutations characteristic of auto-
somal dominant disease can be targeted in a two-step approach –
first by knocking down the defective gene with RNA interference
(RNAi) then supplying a replacement molecule resistant to the
introduced RNAi. This approach is being studied in mutations of
rhodopsin (46, 47) and rds/peripherin (48). Alternatively, deliv-
ery of a wild-type molecule may be sufficient in some instances
(49). So far there has not been any clear toxic effect of delivering
rhodopsin or rds/peripherin in animals deficient in these proteins.

Delivery of generic pro-survival and anti-apoptotic factors has
been investigated as a generalized treatment for a diverse set
of retinal diseases, ranging from RP to achromatopsia, to mac-
ular degeneration2. AAV-mediated delivery of one such factor,
ciliary-derived neurotrophic factor (CNTF) has been carried out
in animal models with excellent success (50). In certain circum-
stances, however, it appears that the anatomical protective effect of
CNTF can simultaneously diminish retinal function as measured
by electrophysiology. Glial cell line-derived neurotrophic factor
(GDNF) is a potential alternative that provides structural neuro-
protection without adverse electrophysiologic effects at the same
dose (51). Additional studies in cell and animal models have iden-
tified alternative neuroprotective agents, such as erythropoietin
(EPO) (52), rod-derived ciliary neurotrophic factor (RdCVF) (53),
and X-linked inhibitor of apoptosis (XIAP) (54). So far, there have
not been significant toxic immune-related responses in animal
models to these native proteins.

Retinoblastoma and other ocular neoplasms are also potential
targets for gene therapy using AAV to deliver therapies that are not
well tolerated systemically, such as the anti-cancer signaling pro-
tein interferon beta (Ifn-β) (55) or cytotoxic compounds (56). In
mouse models, intravitreal injection of AAV2.Ifn-β showed anti-
tumor effects and transgene expression was limited to the eye. No
overt immune response was reported, and in these situations, some
degree of immune activation could improve tumor regression.

ANTI-ANGIOGENESIS
Retinopathies involving the vasculature are the leading cause of
blindness in working-age and elderly adults in developed coun-
tries, comprising diabetic retinopathy (57) and the neovascular
form of age-related macular degeneration (58), respectively. Effi-
cacious treatment is now available in the form of molecules that
inhibit vascular endothelial growth factor (VEGF), but their effects
are temporary and require repeated intravitreal injections that can
be inconvenient for patients and providers. The use of gene therapy

2www.clinicaltrials.gov
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to induce the production of anti-angiogenic molecules by endoge-
nous cells could represent a durable solution for these common
conditions.

Pigment epithelium derived factor (PEDF) is an attractive anti-
angiogenic target because it opposes the action of VEGF and is
also a pro-survival factor for retinal neurons. Extensive animal
studies led to a clinical trial of adenovirus to deliver PEDF (59),
and some mild to moderate inflammation was detected in 25%
of patients but otherwise no adverse effects were noted. While
adenovirus appears to have an acceptable safety profile in this
study, the limited durability of the response favors AAV for future
studies. Two additional trials currently underway employ AAV2
to deliver the soluble VEGF receptor sFlt intravitreally (in one
study) and sub-retinally (in the other) (see text footnote 2). Non-
human primate data supporting the intravitreal AAV2.sFlt trial
(60) assessed immunologic responses and found mild to moder-
ate effects evident on clinical exam as well as laboratory testing
including induced antibodies to AAV2 in all animals. Time will
tell if such effects are identified in humans.

METHODS TO ENHANCE EFFICIENCY
Several technical methods of enhancing the efficiency and speci-
ficity of AAV transduction in the eye have been investigated,
such as use of cell-specific transgene promoters (61), engineered
serotypes of AAV (24, 25), ultrasound micro bubbles (62), and
co-administration of either chemo-therapeutic drugs (63) or ade-
novirus (64). It is unknown how these adjunctive techniques could
affect the immune response in humans, but it could be specu-
lated that additional antigens and disruption of cellular barriers
could influence antigen presentation and immune infiltration.
At present, gene transfer therapy in the human eye for LCA2 is
not clearly limited by transduction efficiency, but as more indi-
cations are developed, the need for an adjuvant may become
relevant. In situations where the dose of transgene is limiting,
it could be preferable to increase the efficiency of viral trans-
duction or modulate promoters to increase transgene protein
expression, rather than increasing the dose of potentially immuno-
genic viral vectors. Similarly, it could be advantageous to use
transgene constructs that are pharmacologically inducible, so that
initial immune responses to surgical injury and viral capsids do not
lead to bystander-induced immunity against therapeutic transgene
products (65).

REPEAT ADMINISTRATION OF AAV
A practical and ethical consideration for clinical trials of AAV in
the eye is the timing of treatment of the contralateral eye. There
is a theoretical concern that following exposure to AAV capsid
or transgene during the initial treatment, the immune system
could adopt memory. Thus, a subsequent injection in the con-
tralateral eye could result in a primed immune system response
that diminishes the efficacy of therapy, or worse, triggers destruc-
tive inflammation. An alternative theory supported by current
data is that ocular gene therapy induces an immune deviant
response analogous to ACAID as discussed earlier. In this model,
the cytokine milieu of antigen presentation induces a systemic
population of Treg which inhibit the cellular immune response
to a second presentation of AAV or transgene. This ACAID-like

response, however, varies with the ocular compartment injected.
While sub-retinal injection seems to mirror the anterior chamber
with respect to an immunosuppressive deviant response (17, 66), it
has been shown that intravitreal injection of one eye can stimulate
NAbs that diminish transduction events in the contralateral eye in
animal models (67) – including novel AAV serotypes engineered
to transduce the outer retina via an intravitreal injection (24).

Similarly, systemic re-administration of gene therapy vectors
for other disease targets have demonstrated neutralization of
transduction events due to preformed antibodies in several ani-
mal models including cystic fibrosis (68) and hemophilia B (69).
In initial clinical trials for hemophilia B patients, therapeutic levels
of the deficient coagulation factor IX were achieved, but only per-
sisted ∼8 weeks (21). In this case, it seems that although patients
with pre-existing neutralizing antibodies were excluded, a cellular
response to AAV capsid incurred selective removal of transduced
cells, and recent studies suggest that this limitation can be cir-
cumvented with certain immunosuppressive regimes (70). These
immune responses to systemic administration in the presence of
NAbs appear to differ from sub-retinal repeat administration pos-
sibly due to the immune-privileged and enclosed space of the
sub-retinal compartment. Yet, other studies in non-ocular tissues
have shown that despite the presence of NAbs, transduction events
at systemic sites can still occur (71), underscoring the variability
of response in different tissues and disease states.

In the eye, sub-retinal injection is the most thoroughly stud-
ied route for gene therapy and re-administration of AAV in this
manner has been shown to be efficacious in affected dogs and safe
in dogs and non-human primates (19, 72), as well as for three
patients with 1 year of follow-up after re-administration (13). An
alternative clinical strategy to avoid adaptation by the immune sys-
tem would be to inject both eyes simultaneously. Bilateral surgery,
however, incurs an increased risk to the patient’s residual vision
in the event of a surgical complication. As a compromise, current
bilateral studies in humans aim to operate on each eye 7–14 days
apart, which is a short enough time to be considered one “event”
by the immune system (see text footnote 2; NCT00999609).

CONCLUSION
The eye has played a leading role in the clinical translation of gene
transfer therapies. As the range of therapeutic targets increases in
the eye, the immune response to these vectors and transgenes will
continue to shape both efficacy and safety. The greater variety of
tissues targeted as well as the sheer number of treated patients
will likely reveal the diversity of immune responses possible in the
eye which can further inform the way we study and execute these
therapies.

While it is certainly advantageous that many parameters of
these technologies can be engineered – surgical delivery, viral
capsids, transgene cassettes etc. – it also complicates efforts to
aggregate the safety data. For example, optogenetic therapy has
been proposed for end-stage retinal disease (73). In this technique,
simplified light-sensitive ion channels borrowed from Archea and
plants could potentially be expressed in human retinal tissues.
Clearly, the introduction of such foreign molecular patterns mer-
its thorough study, even though the AAV vector has been shown
to be generally safe.
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Testing each technical modification for immune safety in
animal models can be exhaustive and taxing on resources.
However, given the capacity of the immune system for sensitive
pattern detection as well as a potentially dangerous inflammatory
response, it is critical that researchers remain vigilant in under-
standing the biology of the immune system and how it interfaces
with these novel therapies.
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