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Monocyte chemoattractant protein-1 (MCP-1)/CCL2 is a chemokine regulating the recruit-
ment of monocytes into sites of inflammation and cancer. MCP-1 can be produced by
a variety of cell types, such as macrophages, neutrophils, fibroblasts, endothelial cells,
and epithelial cells. Notably, macrophages produce high levels of MCP-1 in response
to proinflammatory stimuli in vitro, leading to the hypothesis that macrophages are the
major source of MCP-1 during inflammatory responses in vivo. In stark contrast to the
hypothesis, however, there was no significant reduction in MCP-1 protein or the number
of infiltrating macrophages in the peritoneal inflammatory exudates of myeloid cell-specific
MCP-1-deficient mice in response to i.p injection of thioglycollate or zymosan A. Further-
more, injection of LPS into skin air pouch also had no effect on local MCP-1 production in
myeloid-specific MCP-1-deficient mice. Finally, myeloid-specific MCP-1-deficiency did not
reduce MCP-1 mRNA expression or macrophage infiltration in LPS-induced lung injury.
These results indicate that non-myeloid cells, in response to a variety of stimulants, play a
previously unappreciated role in innate immune responses as the primary source of MCP-1.
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INTRODUCTION
Chemokines play a pivotal role in guiding leukocyte trafficking
during inflammatory responses (1). Although this is considered
their primary function, chemokines also control the organization
of the entire hematopoietic/lymphopoietic system, including the
regulation of stem cell maturation, the formation of secondary
lymphoid tissues, and angiogenesis (2–5). Moreover, chemokines
and their receptors are intimately involved in the orchestration of
inflammatory responses, in the pathogenesis of acquired immun-
odeficiency syndrome (6) and the progression of cancer (7). There-
fore, they are considered to be important potential therapeutic
targets in these diseases (8).

Some chemokines, such as stromal cell-derived factor
1/CXCL12, are constitutively produced by restricted cell types,
such as stromal cells; however, production of many chemokines
is induced in multiple cell types upon tissue injury (9). Mono-
cyte chemoattractant protein-1 (MCP-1) is a potent mono-
cyte chemoattractant that also attracts T cells, NK cells, and
dendritic cells (10). It is produced by a variety of cell types,
including macrophages, endothelial cells (ECs), epithelial cells,
and neutrophils, in response to proinflammatory stimuli (11).
Macrophages have been demonstrated to produce MCP-1 at
many human and animal disease sites; thus, they are con-
sidered to be an important cellular source of MCP-1 and
contribute to the further recruitment of monocytes, T cells,
and DCs during inflammatory responses (12, 13). However, it
remains unclear whether, in a complex environment of injured
tissue, other cell types also produce significant levels of MCP-1.

Determination of the exact cell types producing MCP-1 in dis-
eases and the mechanisms by which they produce MCP-1 may
allow us to target those cells for effective inhibition of its
production.

To determine the precise cellular source of MCP-1 in immune
responses, we generated MCP-1flox/flox mice for tissue-specific
deletion of this chemokine. In the present study, we used myeloid
cell-specific MCP-1-deficient mice to evaluate whether myeloid
cells, such as neutrophils and macrophages, are the main source
of MCP-1 in innate immune responses. Here we report that in
contrast to the original hypothesis, myeloid cell-specific MCP-
1-deficiency did not reduce MCP-1 production in experimental
mouse peritonitis, skin air pouch, or LPS-induced lung injury.
Thus, non-myeloid cells are major MCP-1 producers and play
a previously unappreciated role in the development of innate
immune responses.

MATERIALS AND METHODS
MICE
The generation of MCP-1 foxed mice (MCP-1flox/+) mice was
previously described (14). MCP-1flox/+ mice was backcrossed
to WT C57BL/6Ncr mice (Charles River, Frederick, MD, USA)
for 10 generations, and the resulting mice were then crossed
to LysMCre mice (15) on a C57BL/6 background to gener-
ate LysMCre+, MCP-1flox/flox (JAX Stock No. 023347, B6;129-
Ccl2<tm1Tyos>/J). All experimental protocols for this study
were approved by the Frederick National Laboratory for Cancer
Research Animal Care and Use Committee, Frederick, MD, USA.

www.frontiersin.org January 2014 | Volume 4 | Article 482 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00482/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00482/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00482/abstract
http://www.frontiersin.org/people/u/32627
http://www.frontiersin.org/people/KeqiangChen/129055
http://www.frontiersin.org/people/LinoTessarollo/129176
http://www.frontiersin.org/people/u/42443
mailto:yoshimut@mail.nih.gov
http://www.frontiersin.org
http://www.frontiersin.org/Chemoattractants/archive
http://www.frontiersin.org/people/CaroleGalligan/127084


Yoshimura et al. The cellular source of MCP-1 in innate immunity

INDUCTION OF TG- OR ZYMOSAN A-INDUCED PERITONITIS
Eight- to twelve-week-old mice were intraperitoneally injected
with 1 ml of sterile, 3% TG broth (Difco Laboratories, Detroit, MI,
USA) or 0.5 ml of 400 µg/ml zymosan A (Sigma-Aldrich, St. Louis,
MO, USA). The mice were sacrificed 4 h after injection to measure
MCP-1 concentration or 4 days to evaluate macrophage infiltra-
tion. Peritoneal exudates were harvested by peritoneal lavage using
5 ml cold PBS. The concentration of peritoneal exudates cells
(PEC) was counted using a hemocytometer under microscope.
Cells were applied to microscope slides, using a cytospin cen-
trifuge (Shandon),and stained with Diff-Quick (Baxter Healthcare
Corp.), and differential cell counts were obtained by morphologi-
cal analysis. The number of macrophages was calculated, using the
total cell number and the percentage of macrophages in the same
sample.

AIR POUCH MODEL
Air pouches were raised on the dorsum of 6- to 8-week-old mice
as described previously (16). Mice with a well-formed air pouch
were randomized into groups. Each mouse was given an injection
with 1 ml endotoxin-free PBS alone or PBS containing 1 mg LPS
(Sigma-Aldrich) into the air pouches. Four hours after injection,
mice were euthanized by CO2 asphyxiation, and cells in the air
pouches were harvested with 2 ml PBS with heparin.

LPS-INDUCED LUNG INJURY
Mice were placed in a Mass Dosing Chamber (PLY5000, Buxco
Research Systems, Wilmington, NC, USA) connected to an Aero-
gen Aeroneb nebulizer in a ventilated biological hood. LPS (100 or
1000 µg/ml in 10 ml PBS) was added to the nebulizer and aerosol
was produced. Mice were exposed to LPS aerosol for 30 min,
and then returned to cages. Four or 24 h after LPS exposure,
mice were euthanized by CO2 and bronchoalveolar lavage flu-
ids (BALFs) were collected by injecting 1 ml PBS into the lung
through trachea.

NORTHERN AND SOUTHERN BLOTTING
Northern blot and southern analyses were performed as described
(14, 17). Filters were hybridized at 42°C overnight in 50% for-
mamide, 5× SSC, 5× Denhardt’s solution, 50 µg/ml sheared-
denatured salmon sperm DNA, 1% SDS, and l× 106 dpm/ml of
32P-labeled cDNA probe (Perkin Elmer, Cambridge, MA, USA).
Filters were washed twice with 2× SSC, 0.5% SDS at room tem-
perature for 15 min and 0.1× SSC, 0.5% SDS at 60°C for 30 min
prior to autoradiographic exposure.

ELISA
The concentrations of MCP-1 were measured in the Lymphokine
Testing Laboratory, Clinical Services Program, SAIC-Frederick,
Frederick, MD, USA with an ELISA kit specific for mouse MCP-1
(R&D Systems).

STATISTICAL ANALYSIS
Statistical analysis was performed by Student’s t -test or Log-rank
(Mantel–Cox) test, using the GraphPad Prism, Version 4 and 5,
GraphPad Software, San Diego, CA, USA. A value of p < 0.05 was
considered to be statistically significant.

RESULTS
GENERATION OF MYELOID CELL-SPECIFIC MCP-1-DEFICIENT MICE
Myeloid cell-specific MCP-1-deficient mice were generated by
crossing MCP-1flox/flox mice to LysMCre+MCP-1flox/flox mice. We
first examined the efficiency of MCP-1 gene deletion in myeloid
cells. As shown in Figure 1A, there was an approximately 70%
reduction in the amount of WT MCP-1 allele in TG-induced
PEC of LysMCre+, MCP-1flox/flox mice by Southern blotting,
and approximately 90% reduction in MCP-1 concentration in
the culture supernatants of TG-induced PEC from LysMCre+,
MCP-1flox/flox mice activated by LPS for 24 h (Figure 1B). When
myeloid cells, especially macrophages, were enriched by incubat-
ing PEC in a tissue culture plate at 37°C for 3 h and removing
non-adherent cells, almost 100% of the MCP-1 allele was the
mutated allele (Figure 1C). These results indicate that the MCP-
1 gene was effectively deleted in the myeloid cells of LysMCre+,
MCP-1flox/flox mice.

MYELOID-SPECIFIC MCP-1 DELETION DID NOT AFFECT SERUM MCP-1
CONCENTRATION IN ADULT MICE
Previous reports have shown detectable levels of MCP-1 in the
sera of healthy human or mice (18, 19). To determine whether

FIGURE 1 | Generation of myeloid cell-specific MCP-1-deficient mice.
(A) Genomic DNA was isolated from 4-day TG-induced PEC or spleen of
LysMCre −, MCP-1flox/flox or LysMCre+, MCP-1flox/flox mice. The DNA were
digested with Pst I and subjected to Southern blotting for the presence of
WT or mutant (Mu) allele. (B) 1.8×106 PEC from LysMCre−, MCP-1flox/flox

or LysMCre+, MCP-1flox/flox mice were cultured in 1 ml medium for 24 h in
the absence or presence of 100 ng/ml LPS. The concentration of MCP-1 in
the culture supernatants was measured by ELISA. Data is presented as
the mean±SD obtained with cells from three mice. (C) PEC isolated 4
days after TG injection were incubated in tissue culture plates at 37°C
overnight, non-adherent cells were removed, and then adherent cells
were lysed to obtain genomic DNA. The DNA were digested with PstI and
then subjected to Southern blotting for the presence of WT or mutant
(Mu) allele.
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MCP-1-deficiency in myeloid cells affects the MCP-1 level in sera,
we obtained sera from adult MCP-1flox/flox or LysMCre+, MCP-
1flox/flox mice and measured MCP-1 concentration. As shown in
Figure 2, there was no difference in serum MCP-1 concentration
between MCP-1flox/flox and LysMCre+, MCP-1flox/flox mice, indi-
cating that myeloid cells do not play a significant role in MCP-1
production under steady state conditions.

MYELOID-SPECIFIC MCP-1 DELETION HAD NO EFFECT ON MCP-1
PRODUCTION OR MACROPHAGE INFILTRATION IN PERITONITIS
To determine whether myeloid cells contribute to MCP-1 produc-
tion during innate immune responses, we induced peritonitis in
MCP-1flox/flox and LysMCre+, MCP-1flox/flox mice by i.p injection
of TG or zymosan A and examined the concentration of MCP-1
and the number of accumulated macrophages in peritoneal exu-
dates. We previously demonstrated that i.p. injection of TG or
zymosan A into normal mice induced the production of MCP-1
which peaked at 4 h and systemic MCP-1 deficiency significantly
reduced the accumulation of macrophages into the peritoneal cav-
ity (14). As shown in Figures 3A,B, similar levels of MCP-1 protein
were detected in peritoneal exudates of both mouse strains after
i.p. injection with either TG or zymosan A. Additionally, there
was no difference in the number of macrophages that accumu-
lated in the peritoneal cavity 4 days after induction of peritonitis
(Figures 3C,D).

To further evaluate the role of peritoneal resident macrophages
in MCP-1 production in TG-induced peritonitis, we adoptively
transferred WT resident peritoneal cells into the peritoneal cav-
ities of systemic MCP-1−/− mice, followed by TG-injection. As
shown in Figure 3E, there was no detectable level of MCP-
1 in the peritoneal exudates of MCP-1−/− mice that received
adoptively transferred WT peritoneal resident cells 4 h after TG-
injection. These results indicate that myeloid cells are not a
major source of MCP-1 during TG- or zymosan A-induced
peritonitis.

MYELOID-SPECIFIC MCP-1 DELETION DID NOT AFFECT MCP-1
PRODUCTION IN LPS-INDUCED INFLAMMATION IN SKIN AIR POUCH
It was previously shown that MCP-1 is produced during arthri-
tis in human and in animal models (20, 21). We used an air
pouch model as a tool to evaluate the role of myeloid cells in
MCP-1 production during arthritis. Since repeated injection of
air into subcutaneous connective tissue in the skin results in the
formation of a cavity (air pouch) with a lining structure closely
resembling synovial tissue, the air pouch model has been used
as a convenient model for studying the behavior of synovial lin-
ing tissues (22). We injected PBS or LPS (1 mg in 1 ml PBS)
into the air pouch and measured MCP-1 concentration in the
lavage after 4 h. As shown in Figure 4, only low levels of MCP-
1 were detected in the lavage after PBS injection, whereas high
levels of MCP-1 were detected in the lavage after LPS injection
in both MCP-1flox/flox and LysMCre+, MCP-1flox/flox mice with
no significant difference between the two strains. These results
indicate that, similar to peritonitis, myeloid cells are not a major
source of MCP-1 during LPS-induced inflammation in skin air
pouch.

FIGURE 2 | MCP-1-deficiency in myeloid cells did not affect serum
MCP-1 concentrations in normal adult mice. Serum was collected from
18- to 20-weeks untreated MCP-1flox/flox or LysMCre+, MCP-1flox/flox mice and
MCP-1 concentration was measured by ELISA.

MYELOID-SPECIFIC MCP-1 DELETION DID NOT AFFECT MCP-1
PRODUCTION OR MACROPHAGE INFILTRATION IN LPS-INDUCED LUNG
INJURY
We next examined LPS-induced lung injury in mice, a model sim-
ilar to human lung injury that occurs during pneumonia or sepsis.
A number of macrophages reside in both alveolar space and lung
tissues and these macrophages can be activated in response to LPS
to produce MCP-1. We obtained mouse lungs 6 and 24 h after the
exposure to LPS and evaluated MCP-1 mRNA expression in whole
lung tissue. As shown in Figure 5A, there was no detectable MCP-1
mRNA in normal lung tissue of either MCP-1flox/flox or LysMCre+,
MCP-1flox/flox mice. After LPS treatment, the expression of MCP-
1 mRNA in the lung was readily detectable at 4 h and returned
almost to the basal levels by 24 h in both strains. Thus, MCP-1
deletion in myeloid cells did not alter the level of MCP-1 mRNA
in LPS-challenged lungs. Accordingly, there was no decrease in
the number of macrophages contained in BALFs of LysMCre+,
MCP-1flox/flox mice 24 h after LPS exposure (Figure 5B).

DISCUSSION
Macrophages play an important role in the initiation and devel-
opment of innate immune responses by producing an array of
proinflammatory mediators, including cytokines and chemokines
(23). Since macrophages produce high levels of MCP-1 in culture
in vitro and they were often associated with MCP-1 in inflamed
tissues, we hypothesized that monocyte/macrophage-specific dele-
tion of the MCP-1 gene might lead to decreased MCP-1 levels
at inflammatory sites and subsequent reduction in macrophage
accumulation. To test this hypothesis, we generated myeloid cell-
specific MCP-1-deficient mice, and evaluated the role of myeloid
cells, especially macrophages, in MCP-1 production during innate
immune responses. In contrast to our hypothesis, deletion of the
MCP-1 gene in myeloid cells had no effects on either MCP-1 pro-
duction or subsequent macrophage infiltration in three models
of innate immune response, indicating that non-myeloid cells are
critical in regulating the development of innate immune responses
as the primary MCP-1-producing cells.
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FIGURE 3 | MCP-1-deficiency in myeloid cells does not affect the
concentration of MCP-1 or the accumulation of macrophages in
peritoneal fluids in response toTG or zymosan A. (A,B) Peritoneal fluids
were collected 4 h after i.p. injection of 1 ml of 3% TG (A) or 0.5 ml of
400 µg/ml zymosan A (B) and the concentration of MCP-1 in cell-free fluids
was measured by ELISA. Data is presented as the mean±SD obtained from
the indicated number of mice. (C,D) Mice were i.p. injected with 1 ml of 3%
TG (C) or 0.5 ml of 400 µg/ml zymosan A (D). Peritoneal cavities were flushed

with 5 ml PBS 4 days after injection and the number of macrophages was
counted. Data is presented as the mean±SD. (E) Peritoneal resident cells
were collected from WT C57BL/6 mice and transferred into the peritoneal
cavity of MCP-1 KO mice. WT and MCP-1 KO mice adoptive transferred with
WT peritoneal cells were i.p. injected with 1 ml of 3% TG. Peritoneal cavities
were flushed with 5 ml PBS 4 h after injection and the concentration of MCP-1
in the peritoneal fluids was measured by ELISA. Data is presented as the
mean±SD obtained from three mice.

Sera from healthy human donors contain a wide range of
MCP-1 concentrations (18), presumably due to variable degree
of stimulation. Sera from normal mice also contain a detectable
level of MCP-1 (19). In the present study, myeloid cell-specific

MCP-1-deficiency had no effect on the level of serum MCP-
1 in naive mice, indicating that MCP-1 is produced by non-
myeloid cells and released into serum. We previously examined
the cellular sources of MCP-1 in human atherosclerotic lesions
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FIGURE 4 | MCP-1-deficiency in myeloid cells does not alter the
production of MCP-1 in response to LPS in air pouches. Each mouse
was given an injection with 1 ml PBS or PBS containing 1 mg LPS into the
air pouch. Four hours after injection, air pouches were flushed with 2 ml
PBS with heparin. The concentration of MCP-1 in the air pouch fluids was
measured by ELISA. Data is presented as the mean±SD.

by immunohistochemistry. Although foam cells infiltrating the
aorta were strongly positive for MCP-1, ECs were also positive.
Furthermore, aortic ECs from an individual with no apparent
atherosclerosis were positive for MCP-1 (24). Thus, non-myeloid
cells, likely ECs, appear to be the source of MCP-1 found in sera
of human and mice.

To determine the cellular source of MCP-1 in innate immune
responses, we utilized two mouse peritonitis models, induced by
TG or zymosan A. The MCP-1 concentration in the exudates of
myeloid cell-specific MCP-1-deficient mice was not decreased in
either peritonitis model, indicating that non-myeloid cells are
the primary source of MCP-1. The role of peritoneal resident
macrophages and mast cells in chemokine production in acute
inflammation was previously investigated in mouse peritonitis
models (25). Depletion of either macrophages or mast cells had
no effect on the production of MCP-1 or the neutrophil attract-
ing chemokine KC after TG-injection into WT mice. Removal of
either macrophages or mast cells resulted in attenuation of neu-
trophil infiltration into the peritoneal cavity of WT mice without
affecting the levels of MCP-1 and KC in response to intraperi-
toneal administration of LPS; however, depletion of resident mast
cells inhibited neutrophil accumulation as well as MCP-1 and KC
production in response to zymosan, suggesting that mast cells
may be the primary source of MCP-1 in peritonitis caused by cer-
tain stimuli, such as zymosan. Mesothelial cells form a monolayer
that lines the pleural, peritoneal, and pericardial cavities as well
as internal organs (26), and produce chemokines, including KC
and MCP-1, in response to ligands of Nod1 or TLRs (27). There-
fore, mesothelial cells may be a potential cellular source of MCP-1
in our study. These findings support our conclusion that non-
myeloid cells in the peritoneal cavity, but not resident peritoneal
macrophages, are the major source of MCP-1 in innate immune
responses.

FIGURE 5 | MCP-1-deficiency in myeloid cells does not alter the
production of MCP-1 in LPS-induced lung injury. Mice were exposed to
LPS aerosol (100 or 1000 µg/ml in 10 ml PBS) for 30 min. Four or 24 h after
LPS exposure, mice were euthanized by CO2 and BALFs were collected.
(A) The expression of MCP-1 mRNA was examined by Northern blotting.
(B) The number of macrophages was counted. Data is presented as the
mean±SD.

In addition to the peritonitis models, we used a LPS-induced
lung injury model to identify the source of MCP-1 in innate
immune responses. A previous study indicated that MCP-1 pro-
duced by alveolar macrophages mediated systemic inflammation
caused by acute alveolar hypoxia, using rats in which alveolar
macrophages were depleted by airway instillation of clodronate-
containing liposomes (28). In our study using genetically engi-
neered mice, we demonstrate that non-myeloid cells were the
primary source of MCP-1 in LPS-induced lung injury. Addi-
tionally, intraperitoneal injection of LPS in both MCP-1flox/flox

and LysMCre+, MCP-1flox/flox mice induced high levels of MCP-1
mRNA in the lung of both strains (data not shown). Thus, non-
myeloid cells in the lung, such as bronchoalveolar cells which have
the capacity to express MCP-1 (29), likely are the cellular source
of MCP-1 to regulate the accumulation of macrophages in this
model.

Myeloid cells, such as macrophages, have been thought to be
the major contributor to the development of innate immune
responses by releasing a variety of proinflammatory mediators,
including chemokines. However, our study has clearly demon-
strated that non-myeloid cells play a previously unappreciated role
in the development of innate immune response by acting as the
major producer of MCP-1. While we did not observe an effect of
myeloid-specific MCP-1 deletion in these models, there is a possi-
bility that effects may be observed in other models of disease. This
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may be especially true in chronic models of inflammation, in cases
of monocyte-macrophage infection with intracellular pathogens,
such as L. monocytogenes or in tumor-associated macrophages in
cancer. Therefore, our MCP-1flox/flox mice will be a great tool
to investigate the relative contribution of different cell types to
the development of immune responses and also cancer in which
MCP-1 contribute to its progression.
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