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A large number of potent broadly neutralizing antibodies (bnAbs) against HIV-1 have been
reported in recent years, raising hope for the possibility of an effective vaccine based on epi-
topes recognized by these protective antibodies. However, many of these bnAbs contain
the long heavy chain complementarity-determining region 3 (HCDR3), which is viewed as
an obstacle to the development of an HIV-1 vaccine targeting the bnAb responses.This mini-
review summarizes the current literature and discusses the different potential immunologic
mechanisms for generating long HCDR3, including D–D fusion, VH replacement, long N
region addition, and skewed D–J gene usage, among which potentialVH replacement prod-
ucts appear to be significant contributors. VH replacement occurs through recombinase
activated gene-mediated secondary recombination and contributes to the diversified naïve
B cell repertoire. During VH replacement, a short stretch of nucleotides from previously
rearranged VH genes remains within the newly formed HCDR3, thus elongating its length.
Accumulating evidence suggests that long HCDR3s are present in significant numbers in
the human mature naïve B cell repertoire and are primarily generated by recombination
during B cell development. These new observations indicate that long HCDR3s, though
low in frequency, are a normal feature of the human antibody naïve repertoire and they
appear to be selected to target conserved epitopes located in deep, partially obscured
regions of the HIV-1 envelope trimer. Therefore, the presence of long HCDR3 sequences
should not necessarily be viewed as an obstacle to the development of an HIV-1 vaccine
based upon bnAb responses.
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INTRODUCTION
The development of a protective HIV-1 vaccine is believed to be
the best hope in the battle against HIV-1/AIDS. However, this goal
remains elusive after 30 years of intense effort. Broadly neutralizing
antibodies (bnAbs) against the HIV-1 envelope protein (Env) can
be protective, as shown by passive immunization studies in non-
human primates and humanized-mouse models (1–11). However,
no HIV-1 vaccine candidate has been able to elicit a bnAb response.
In the last 5 years, many novel bnAbs have been identified and are
actively being pursued as templates for the rational design of an
effective HIV-1 vaccine (12–20). Understanding the immunologic
basis for the generation of these bnAb should help the design of
an effective HIV-1 vaccine.

HIV-1 BROADLY NEUTRALIZING ANTIBODIES HAVE UNIQUE
FEATURES
Many potent bnAbs have been isolated and characterized from
multiple subjects in the last 5 years (21–33), mainly due to the
application of efficient methods for isolation of human mono-
clonal antibodies (mAbs) (27, 30, 34–37). These new HIV-1 bnAbs
are much more potent and broader than previously described
neutralizing Abs. With the elucidation of crystal structures of
the HIV-1 Env trimer and gp120-antibody complexes (38–41),
the vulnerable epitopes on the HIV-1 Env targeted by bnAbs are

becoming clear. These new bnAbs can be categorized into four
groups (Table 1). The first group is CD4 binding site (CD4bs)
bnAbs represented by “VRC01-like” bnAbs (26, 28, 31, 32) that
block Env binding to the primary receptor CD4. The second group
includes the PGT series (29, 42–44),“PG9-like”bnAbs [PG9, PG16
(30), and CH01–04 (21)], which recognize both protein and glycan
elements involving the V1V2 and V3 regions of gp120. The third
group includes the recently described PGT151 series of bnAbs
and the redefined 8ANC195 bnAb, which recognize glycan-related,
gp120 and gp41 bridging regions (45–47). The fourth group tar-
gets the membrane-proximal external region (MPER) on gp41 and
includes the antibodies 2F5, 4E10, 10E8, and M66.6 (24, 48, 49).
These bnAbs collectively neutralize a majority of highly diverse
HIV-1 strains. The new bnAbs and the recent crystal structure of
HIV-1 Env trimer in complex with bnAbs have shed light on epi-
topes that could represent the basis for an Ab-based HIV-1 vaccine
design. However, there are some common features of bnAbs that
pose challenges to the development of a bnAb-based AIDS vaccine
[reviewed in Ref. (20, 50) and Table 1].

The first is that the new HIV-1 bnAbs are highly somatically
mutated, especially in the variable heavy chain region (VH) genes
(21, 22, 26, 28–32, 53). This is in contrast with other human
immunoglobulin G (IgG) antibodies and HIV-specific IgG anti-
bodies with limited neutralizing activity (27, 54, 55). Many of
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Yu and Guan Long HCDR3s in neutralizing antibodies

Table 1 | Characteristics of the heavy chain V-gene of HIV-1 broadly neutralizing antibody.

Category based on

epitope cluster

HIV-1 bnAb Heavy chain genes HCDR3 (IMGT) VH somatic mutation Auto/poly

reactivity**

Class Clone V gene D gene J gene Length Potential VH

replacement*

No. of

nt (%)

No. of

AA (%)

CD4 binding site

(CD4bs)

b12 b12 IGHV1-3 D1-1 J6*03 20 No 35 (12.2) 20 (20.8) No

VRC01 3BNC117 IGHV1-2 D6-25 J6*04 12 Yes 75 (26.0) 34 (35.4) Yes

3BNC60 IGHV1-2 D3-3 J6*04 12 Yes 82 (28.5) 38 (39.6) Yes

PG19 IGHV1-2 D6-25 J1*01 13 ND 66 (22.9) 30 (31.3) NR

VRC01 IGHV1-2 D2-21 J2*01 14 Yes 91 (31.6) 40 (41.7) Neg.R

VRC02 IGHV1-2 D5-12 J2*01 14 Yes 92 (31.9) 38 (39.6) Neg.R

VRC23 IGHV1-2 D5-24 J4*02 14 ND 62 (21.5) 30 (31.3) NR

PG20 IGHV1-2 D3-10 J1*01 15 ND 69 (24.0) 36 (37.5) NR

12A12 IGHV1-2 D4-17 J2*01 15 No 64 (22.2) 33 (34.4) Yes

12A21 IGHV1-2 D1-26 J2*01 15 Yes 60 (20.8) 30 (31.3) Yes

CH30 IGHV1-2 D3-16 J4*02 15 Yes 69 (24.0) 37 (38.5) Neg.R

CH31 IGHV1-2 D5-12 J4*02 15 Yes 72 (25.0) 37 (38.5) Neg.R

VRC03 IGHV1-2 D2-21 J4*02 16 Yes 85 (29.5) 39 (40.6) Neg.R

VRC-PG04 IGHV1-2 D2-8 J2*01 16 No 84 (29.2) 42 (43.8) Neg.R

VRC-PG04b IGHV1-2 D2-15 J2*01 16 Yes 82 (28.5) 42 (43.8) Neg.R

VRC06 IGHV1-2 D2-21 J5*02 17 ND 88 (30.6) 46 (47.9) NR

NIH45-46 IGHV1-2 D1-26 J2*01 18 Yes 94 (32.6) 39 (40.6) Yes

3BC176 IGHV1-2 D5-12 J3*01 21 ND 69 (24.0) 34 (35.4) Yes

3BC315 IGHV1-2 D5-12 J3*01 21 ND 48 (16.7) 24 (25.0) Yes

8ANC131 8ANC131 IGHV1-46 D3-16 J6*01 18 No 74 (26.0) 38 (40.0) Yes

8ANC134 IGHV1-46 D3-16 J6*01 18 No 76 (26.7) 37 (38.9) Yes

1NC9 IGHV1-46 D5-24 J4*02 21 Yes 71 (24.7) 36 (37.5) Yes

1B2530 IGHV1-46 D3-10 J5*02 18 Yes 80 (27.8) 39 (40.6) Yes

CH103 CH103 IGHV4-61 D4-23 J4*01 15 ND 45 (15.8) 19 (20.0) Yes

Glycan-dependent,

V1/V2 and V3 related

(QNE/supersite)

2G12 2G12 IGHV3-21 D1-26 J3*01 16 ND 61 (21.2) 31 (32.3) Yes

PGT145 PGT145 IGHV1-8 D4-17 J6*02 33 Yes 48 (16.7) 27 (28.1) NR

PGT141 IGHV1-8 D4-17 J6*02 34 Yes 46 (16.0) 27 (28.1) NR

PGT142 IGHV1-8 D4-17 J6*02 34 Yes 47 (16.3) 29 (30.2) NR

PG9 CH01 IGHV3-20 D3-10 J2*01 26 Yes 48 (16.7) 28 (29.2) Neg.R

CH02 IGHV3-20 D3-10 J2*01 26 ND 41 (14.2) 22 (22.9) Neg.R

PG9 IGHV3-33 D3-3 J6*03 30 No 40 (15.1) 18 (18.9) Neg.R

PG16 IGHV3-33 D3-3 J6*03 30 No 43 (14.9) 21 (21.9) Neg.R

PGT128 PGT135 IGHV4-39 D3/OR15-3a J5*02 20 Yes 54 (18.6) 28 (28.9) NR

PGT137 IGHV4-39 D2-15 J5*02 20 Yes 67 (23.0) 32 (33.0) NR

PGT125 IGHV4-39 D3/OR15-3a J5*02 21 Yes 60 (20.6) 28 (28.9) NR

PGT127 IGHV4-39 D3-16 J5*02 21 Yes 46 (15.8) 25 (25.8) NR

PGT128 IGHV4-39 D3-10 J5*02 21 Yes 59 (20.3) 29 (29.9) NR

PGT121 PGT121 IGHV4-59 D3-3 J6*03 26 Yes 56 (19.6) 23 (24.2) NR

PGT122 IGHV4-59 D3-3 J6*03 26 Yes 56 (19.6) 25 (26.3) NR

10-1074 IGHV4-59 D3-3 J6*03 26 ND 45 (15.8) 20 (21.1) NR

VRC24 VRC24 IGHV4-4 D3-9 J5*02 26 ND 64 (22.5) 29 (30.2) NR

Glycan-related, gp120/

gp41 bridging region

8ANC195 8ANC195 IGHV1-3 D3-3*01 J4*02 22 ND 80 (28.4) 40 (42.6) Yes

PGT151 PGT151 IGHV3-30* J6*02 28 ND 60 (20.8) 27 (28.1) Neg.R

PGT152 IGHV3-30 J6*02 28 ND 56 (19.6) 29 (30.2) Neg.R

PGT154 IGHV3-30 J6*02 28 ND 53 (18.4) 25 (26.0) NR

PGT158 IGHV3-30 J6*02 28 ND 61 (21.2) 30 (31.2) NR

(Continued)
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Table 1 | Continued

Category based on

epitope cluster

HIV-1 bnAb Heavy chain genes HCDR3 (IMGT) VH somatic mutation Auto/poly

reactivity**

Class Clone V gene D gene J gene Length Potential VH

replacement*

No. of

nt (%)

No. of

AA (%)

gp41 MPER MPER 4E10 IGHV1-69 D1-1 J4*02 20 ND 19 (6.6) 18 (18.8) Yes

2F5 IGHV2-5 D3-3 J6*02 24 ND 41 (14.1) 14 (14.4) Yes

10E8 IGHV3-15 D3-3 J1*01 22 ND 63 (21.4) 26 (26.5) Neg.R

M66.6 IGHV5-51 D3-10 J6*02 23 ND 11 (3.8) 9 (9.4) Yes

HIV-1 bnAb information was obtained from the Antibody Database, kindly provided by Dr. Anthony West (20) and the sequences were analyzed using IMGT V-QUEST

(51).

*Potential VH replacement footprints were determined as reported (52). ND, not determined.

**Neg. R, negative in in vitro assay reported; NR, not reported. It should be noted that an in vivo test will be needed to determine a truly negative auto-/poly-reactivity

as it was determined for b12. Although no direct auto-/poly-reactivity data for the PGT series bnAbs were reported, several representative antibodies of them

(PGT121, PGT128, 10-1074, etc.) were shown to mediate effective protection in in vivo passive immunization studies, which indicates that they are likely negative in

auto-/poly-reactivity.

the HIV-1 bnAbs also have insertions and deletions in their
complementarity-determining regions (CDRs) (17, 26). This may
reflect their prolonged, complex maturation path in vivo (17,
26, 56, 57), which would require extensive activity of activation-
induced cytidine deaminase (AID) in germinal center B cells
(58). Thus, induction of such highly somatically mutated anti-
body responses by vaccination is obviously a major challenge for
bnAb-based HIV-1 vaccine development (20, 50).

The second feature is that many of the HIV-1 bnAbs are
auto/poly reactive (26, 28, 31, 32, 59, 60). This might be a prop-
erty acquired in the development of HIV-1 specific B cells during
chronic HIV-1 infection that bypasses multiple B cell tolerance
checkpoints (37, 61, 62). This phenomenon might be one of the
reasons why a bnAb is usually generated after prolonged expo-
sure to viral antigen in some HIV-1 infected people (26, 61, 62).
Whether the auto/poly reactivity of these HIV-1 bnAbs is severe
enough to prevent the induction of these antibodies in vivo in
healthy individuals, which could be determined by in vivo testing
of antibody gene knock-in animal models (63), will be critical to
the success of a vaccine targeting these bnAbs (59). Alternatively,
bnAbs with no or minimal auto/poly reactivity should be chosen
as templates for HIV-1 vaccine (18, 24, 53, 61).

Another interesting feature is that many of the HIV-1
bnAbs have long (20–34 residues) heavy chain complementarity-
determining region 3 (HCDR3) sequences (Table 1), especially in
antibodies of the glycan-related V1/V2 and V3 category (Super-
site group), the gp120/gp41 bridging region category and the
gp41-MPER category. This contrasts with an average length of
16 residues of HCDR3 in human B cells (54). The HCDR3s of
CD4bs bnAbs are relatively short (Table 1). The PG9-like and
PGT128-like bnAbs in the Supersite group appear to have a long
HCDR3 that can penetrate the glycan shield of the Env trimer
and interact with the V1/V2 and/or V3 region of gp120. The new
MPER targeting 10E8 also uses a long CDRH3 loop to reach the
highly conserved hydrophobic residues on gp41 (42–44, 53). A
bias against long HCDR3s during B cell development has been
demonstrated in mice and rabbits (64, 65), which complicates

using small animal species as an HIV-1 bnAb-based vaccina-
tion model (66). Although humans do generate antibodies with
very long HCDR3s (67), the lower frequency of B cells encod-
ing long HCDR3s and the potential bias of auto-reactivity were
viewed as a challenge for eliciting bnAbs of long HCDR3s by
vaccination due to the negative regulation of these antibodies
during B cell development (14, 19, 37, 53, 64, 66). However,
it should be noted that, although many long HCDR3 antibod-
ies were reported to be auto-reactive and B cell precursors of
auto-reactive antibodies are under negative selection during B
cell development (37), the long HCDR3 and the auto-reactivity
are two distinct aspects of antibodies. It is neither true that
all long HCDR3 antibodies are auto-reactive, nor that all auto-
reactive antibodies have long HCDR3s, though a long HCDR3
and auto-reactivity can sometimes be present in the same anti-
body. Data with HIV-1 bnAbs indicate that the negative selection
against B cells encoding long HCDR3s is most likely a result
of negative selection against auto-reactivity instead of the long
HCDR3 itself. Many of the long HCDR3 bnAbs in the “Super-
site” group of HIV-1 bnAbs and the PGT151 series bnAbs are
not auto/poly reactive, while the CD4bs bnAbs group has many
auto/poly reactive antibodies with shorter HCDR3s [Table 1
and review of (60)]. B cell precursors of non-auto-reactive long
HCDR3 antibodies can pass negative selection checkpoints to
become mature B cells. This view is strongly supported by the
recent observation that long HCDR3s are present in significant
numbers in the human naïve B cell repertoire and that they are
primarily generated by the recombination events during B cell
development (68).

Here, we review the current literature on the immunologic
mechanisms for the generation of antibodies with long HCDR3s,
among which potential VH replacement products appear to make
a significant contribution in the generation of HIV-1 bnAbs.
Our view is that, though negatively selected during B cell devel-
opment, long HCDR3s are not necessarily an obstacle in the
development of an HIV-1 vaccine targeting long HCDR3 bnAb
responses.
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IMMUNOLOGIC MECHANISMS FOR GENERATING
ANTIBODIES WITH LONG HCDR3
HCDR3, a key determinant of antibody specificity (69), is a prod-
uct of combinatorial rearrangement of the variable (V), diversity
(D), and joining (J) gene segments. It is composed of the sequence
from the V–D junction, the D region, the D–J junction and the
5′ end of the J gene. The alternative use of D reading frames,
variation in junction sites due to P-nucleotides and addition of
N-nucleotides, in addition to VDJ recombination and somatic
hypermutation (SHM), contribute to HCDR3 diversity (70, 71).
Secondary mechanisms of receptor editing/revision, gene conver-
sion, and VH replacement also contribute to the HCDR3 diversity
(72–75). Among the diversities of HCDR3, the length of HCDR3
can have a large impact on the function of the antibody repertoire
and varies from mouse to human (64, 65). Four immunologic
mechanisms have been described that can increase the length
of HCDR3.

CONTRIBUTION OF SOMATIC HYPERMUTATION TO LONG
HCDR3s
The accumulation of insertions introduced during the SHM
process can theoretically increase the length of HCDR3 (76, 77).
SHM related insertion/deletions (In/Dels) contribute substantially
to the diversity of the human antibody repertoire, with an esti-
mated frequency of 1.3–6.5% in circulating B cells, though short
(1–2 residues) insertions are much more frequent than long inser-
tions (77, 78). Interestingly, In/Dels from somatic mutation play a
critical role in some bnAbs against HIV-1. The VRC01-like CH31-
class bnAbs (Table 1) have a nine-residue insertion in H-CDR1
(32). The VRC06 bnAb has a seven-residue insertion in H-FR3
(33). The PGT128-class bnAbs have a 5–6 residue insertion in
H-CDR2 (29). However, the contribution of SHM related inser-
tion to long HCDR3s is hard to assign due to the complex nature
of VDJ junctions. A convincing result from an in depth analysis
of HCDR3 length by next-generation sequencing demonstrated
that SHM typically does not alter the length of HCDR3 and
long HCDR3s are not generated primarily through SHM related
insertions (68).

LONG HCDR3s USUALLY ARISE DURING VDJ
RECOMBINATION
B cell precursors with long HCDR3s tend to be auto-reactive
and are negatively selected during B cell development, which is
a recognized mechanism for the bias against long HCDR3s in
human mature B cell repertoire (37). However, deep sequenc-
ing the human HCDR3 repertoire revealed that long HCDR3s
are present in the mature naïve B cell repertoire at a significant
frequency (68). The naïve B cell pool contains 3.5% B cells of
HCDR3s ≥24 residues and 0.43% B cells of very long HCDR3s
(≥28 residues). The features of P- and N-addition length from VDJ
recombination show positive correlations with increasing HCDR3
length. Further, the B cells encoding long HCDRs display biased
germline gene usage. Long HCDR3s show a strong association
with the use of the D2 (D2-2 and D2-15) and D3 (D3-3) gene
families and the use of J6 gene segment. Interestingly, many of the
HIV-1 bnAbs with long HCDR3s use these preferred D and J gene
segments. The PG9-class and PGT121-class bnAbs use the D3-3

and J6 gene segments and show very long HCDR3s (Table 1). It
should be noted that these long HCDR3-associated human D and
J gene segments are substantially longer than other D and J gene
segments (68). Small animals such as mice and rabbits do not have
similar long D and J gene segments, which might be why they do
not generate antibodies with long HCDR3s and why small animal
species are not considered suitable as HIV-1 bnAb-based vaccina-
tion models (66). This further supports the idea that long HCDR3s
are established in humans primarily during VDJ recombination
before the antigen-driven affinity maturation process.

D–D FUSION RECOMBINANTS CAN GENERATE LONG
HCDR3s
D–D fusion is a V(DD)J recombination event that allows the
generation of extremely long HCDR3s. D–D fusions are difficult
to produce through normal V(D)J recombination because they
violate the 12/23 rule (79). Although rare, these non-12/23 recom-
bination events have been reported in in vitro and in vivo systems
(80–82). High-throughput deep sequencing demonstrated that the
frequency of D–D fusion in the naïve B cell population is about
1 in 800 naive B cells (79). The frequency is reduced in mem-
ory B cells. However, due to potential mismatches from somatic
hypermutation, it is a challenge to accurately determine the fre-
quency of D–D fusion in somatic-mutated memory B cells. The
contribution of D–D fusion to long HCDR3s of HIV-1 bnAbs is
unknown because almost all the bnAbs exhibit extensive hyper-
mutation that make it hard to accurately match the germline D
gene segments of HIV-1 bnAbs. HIV-1 bnAbs of PGT145 and
PG9 classes (Table 1) have extremely long HCDR3s (34 and 30
residues, respectively) and are highly somatically mutated. IMGT
junction analysis (51) of the HCDR3 of PGT145 reveals a 12 bp
D4-17 sequence with three mismatches as well as an 11 bp D5-24
sequence with two mismatches, indicating that the long HCD3 of
PGT145 might be the product of a D–D fusion. Therefore, it is
possible that some HIV-1 bnAbs are derived from naïve B cells
with D–D fusions.

VH REPLACEMENT CONTRIBUTES SIGNIFICANTLY TO LONG
HCDR3
VH replacement is a well-recognized mechanism of antibody gene
rearrangement (73, 83). It occurs through recombinase activated
gene (RAG)-mediated secondary recombination (84) and con-
tributes to the diversified naïve B cell repertoire (85). It is a process
in which secondaryV–V(D)J recombination results in replacement
of the variable gene while preserving the original D–J recombina-
tion. It appears to occur early in B cell development as a mechanism
to rescue non-functional and unwanted IgH genes to further diver-
sify the IgH repertoire (86–88). The secondary recombination
during VH replacement involves a cryptic recombination signal
sequence (RSS) within a previously rearranged V(D)J joint with a
23 bp RSS from an upstream invading VH gene (86). During this
process, a short stretch of nucleotides from previously rearranged
VH genes are left within the newly formed HCDR3 and, therefore,
elongate the HCDR3 region and provide a potentially identifiable
“footprint” of VH replacement (75, 89).

By footprint analysis, the frequency of VH replacement in
normal peripheral B cells was estimated to be 5.7% (52), which
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is significantly higher than that of D–D fusions. Although not
all VH replacements necessarily result in VH genes with long
HCDR3s, a high frequency of anti-HIV antibodies contain poten-
tial VH replacement footprints and many of these antibodies also
have long HCDR3s (52). Seventy-three percent of anti-HIV CD4
induced (CD4i) antibodies and all PGT-class bnAbs (Table 1) con-
tain VH replacement footprints. Both CD4i and PGT antibodies
tend to be encoded by IgH genes of long HCDR3s, which are
used to reach recessed regions of the Env (39, 52). These observa-
tions indicate that VH replacement may contribute significantly
to HIV-1 antibodies that use long HCDR3s.

However, the detection of VH replacement by footprint analy-
sis is controversial. Footprint determination of VH replacement
could result in false positives because footprints can be mimic-
ked by processes other than VH replacement, such as N-addition
(72, 90). It could also result in false negative sequences because
not every VH replacement products will have a detectable foot-
print (85, 90). Yet, footprint analysis is currently the only available
choice for VH replacement studies on human primary samples and
there is no question that VH replacement can generate antibodies
with long HCDR3s.

DISCUSSION
Three of the four potential immunologic mechanisms for the
generation of antibodies with long HCDR3s occur mainly at the
time of V(D)J recombination during primary B cell development.
There are 3.5% B cells with HCDR3s≥24 amino acid residues and
0.43% B cells with very long HCDR3s (≥28 residues) in the naïve
B cell population (68). This is a significant number when one
considers the total of more than 1012 potentially different anti-
bodies in the human B cell repertoire. Therefore, long HCDR3s,
while relatively low in frequency, are a normal part of the naïve
B cell repertoire that can actively participate in humoral immune
responses. B cells with long HCDR3s appear to be selected by Env
antigens to generate HIV-1 bnAbs targeting conserved epitopes
located within deep regions of the HIV-1 envelope trimer. Long
HCDR3s alone should not necessarily be viewed as an obstacle to
the development of an HIV-1 vaccine targeting the long HCDR3
bnAb responses. Yet, how to induce highly mutated and auto-
reactive HIV-1 bnAb response remains a true challenge for HIV-1
vaccine development (60).

The high frequency of VH replacement footprints in many
HIV-1 bnAbs suggests a new strategy for HIV-1 vaccine develop-
ment; we should first understand the mechanism regulating VH
replacement events during B cell development (90, 91) and then
find a safe procedure to increase the frequency of VH replace-
ment events before immunization. This strategy should increase
the frequency of long HCDR3 germline B cells of HIV-1 bnAbs in
the naïve B cell pool, which, in turn, may improve the potential
of generating bnAb responses against HIV-1. Increasing the fre-
quency of long HCDR3-containing B cells through manipulating
the level of VH replacement may lead to more opportunities in
generating bnAbs of long CDRH3s. But this remains to be tested
because increasing the frequency of HIV-1 bnAbs’ germline B cells
may not be sufficient to generate bnAb responses.

Recent studies on the generation of HIV-1 bnAbs in HIV-
1 infected individuals have highlighted the co-evolution of the

HIV-1 Env diversity and the breadth of neutralizing antibody
responses against Env (26, 56, 57, 92), which indicates an antigen-
driven pathway for HIV-1 bnAbs. Since it was demonstrated that
Envs from different HIV-1 strains are not equal in activating HIV-
1 bnAbs’ germline B cells (26, 57, 93), a proper Env antigen with
the right conformational epitopes may be required to activate
HIV-1 bnAb germline B cells (61, 94) that presumably exist in
most healthy individuals. Many of the HIV-1 bnAbs with long
HCDR3s, such as PG9 and PGT151, recognize conformational
epitopes that are not well exposed in recombinant gp120 or gp140
(30, 46). Therefore, the construction of recombinant Env proteins
of native gp140 trimers (39) and/or constrained gp120s (95) that
can preferentially expose epitopes recognized by bnAbs would be
good antigen candidates in this regard. Further, a proper immu-
nization strategy, such as sequential immunizations with selected
diverse Env antigens and proper follicular helper T cells, will likely
be required to drive the antibody responses toward highly mutated
bnAbs (17, 20, 50).

ACKNOWLEDGMENTS
We would like to thank Dr. George Lewis for helpful conver-
sations, Dr. Marvin Reitz and Dr. Brian Taylor for editing the
manuscript. We thank Dr. Anthony West for sharing the Antibody
Database [version 2.0(5)]. Yongjun Guan was supported in part
by grants 1R56AI098576 and R01AI087181 from NIAID, NIH,
and by Grant #OPP1033109 from the Bill and Melinda Gates
Foundation.

REFERENCES
1. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S, et al.

Human neutralizing monoclonal antibodies of the IgG1 subtype protect against
mucosal simian-human immunodeficiency virus infection. Nat Med (2000)
6:200–6. doi:10.1038/72309

2. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, et al. Vectored
immunoprophylaxis protects humanized mice from mucosal HIV transmission.
Nat Med (2014) 20:296–300. doi:10.1038/nm.3471

3. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY, Liu J, et al. Thera-
peutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in
SHIV-infected rhesus monkeys. Nature (2013) 503:224–8. doi:10.1038/
nature12744

4. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM, Bleeker WK, et al.
Effective, low-titer antibody protection against low-dose repeated mucosal SHIV
challenge in macaques. Nat Med (2009) 15:951–4. doi:10.1038/nm.1974

5. Horwitz JA, Halper-Stromberg A, Mouquet H, Gitlin AD, Tretiakova A,
Eisenreich TR, et al. HIV-1 suppression and durable control by combining
single broadly neutralizing antibodies and antiretroviral drugs in human-
ized mice. Proc Natl Acad Sci U S A (2013) 110:16538–43. doi:10.1073/pnas.
1315295110

6. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S, et al.
HIV therapy by a combination of broadly neutralizing antibodies in humanized
mice. Nature (2012) 492:118–22. doi:10.1038/nature11604

7. Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D, et al. Pro-
tection of Macaques against pathogenic simian/human immunodeficiency virus
89.6PD by passive transfer of neutralizing antibodies. J Virol (1999) 73:4009–18.

8. Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K, Weisgrau KL, et al.
Highly potent HIV-specific antibody neutralization in vitro translates into effec-
tive protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A
(2012) 109:18921–5. doi:10.1073/pnas.1214785109

9. Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R, Ross W, et al.
Neutralizing antibody directed against the HIV-1 envelope glycoprotein can
completely block HIV-1/SIV chimeric virus infections of macaque monkeys.
Nat Med (1999) 5:204–10. doi:10.1038/5568

www.frontiersin.org June 2014 | Volume 5 | Article 250 | 5

http://dx.doi.org/10.1038/72309
http://dx.doi.org/10.1038/nm.3471
http://dx.doi.org/10.1038/nature12744
http://dx.doi.org/10.1038/nature12744
http://dx.doi.org/10.1038/nm.1974
http://dx.doi.org/10.1073/pnas.1315295110
http://dx.doi.org/10.1073/pnas.1315295110
http://dx.doi.org/10.1038/nature11604
http://dx.doi.org/10.1073/pnas.1214785109
http://dx.doi.org/10.1038/5568
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yu and Guan Long HCDR3s in neutralizing antibodies

10. Shingai M, Nishimura Y, Klein F, Mouquet H, Donau OK, Plishka R, et al.
Antibody-mediated immunotherapy of macaques chronically infected with
SHIV suppresses viraemia. Nature (2013) 503:277–80. doi:10.1038/nature12746

11. Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q, et al. Prevention
of virus transmission to macaque monkeys by a vaginally applied monoclonal
antibody to HIV-1 gp120. Nat Med (2003) 9:343–6. doi:10.1038/nm833

12. Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibod-
ies present new prospects to counter highly antigenically diverse viruses. Science
(2012) 337:183–6. doi:10.1126/science.1225416

13. Haynes BF, McElrath MJ. Progress in HIV-1 vaccine development. Curr Opin
HIV AIDS (2013) 8:326–32. doi:10.1097/COH.0b013e328361d178

14. Koff WC. HIV vaccine development: challenges and opportunities towards
solving the HIV vaccine-neutralizing antibody problem. Vaccine (2011)
30(29):4310–5. doi:10.1016/j.vaccine.2011.11.014

15. Kwong PD, Mascola JR, Nabel GJ. The changing face of HIV vaccine research.
J Int AIDS Soc (2012) 15:17407. doi:10.7448/IAS.15.2.17407

16. Kwong PD, Mascola JR, Nabel GJ. Broadly neutralizing antibodies and the search
for an HIV-1 vaccine: the end of the beginning. Nat Rev Immunol (2013)
13:693–701. doi:10.1038/nri3516

17. Mouquet H, Nussenzweig MC. HIV: roadmaps to a vaccine. Nature (2013)
496:441–2. doi:10.1038/nature12091

18. Sattentau QJ, McMichael AJ. New templates for HIV-1 antibody-based vaccine
design. F1000 Biol Rep (2010) 2:60. doi:10.3410/B2-60

19. Stamatatos L. HIV vaccine design: the neutralizing antibody conundrum. Curr
Opin Immunol (2012) 24:316–23. doi:10.1016/j.coi.2012.04.006

20. West AP Jr, Scharf L, Scheid JF, Klein F, Bjorkman PJ, Nussenzweig MC. Struc-
tural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell (2014)
156:633–48. doi:10.1016/j.cell.2014.01.052

21. Bonsignori M, Hwang KK, Chen X, Tsao CY, Morris L, Gray E, et al. Analysis
of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific
broadly neutralizing antibodies and their inferred unmutated common ances-
tors. J Virol (2011) 85:9998–10009. doi:10.1128/JVI.05045-11

22. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez
BM, et al. Analysis of memory B cell responses and isolation of novel mono-
clonal antibodies with neutralizing breadth from HIV-1-infected individuals.
PLoS One (2010) 5:e8805. doi:10.1371/journal.pone.0008805

23. Georgiev IS, Doria-Rose NA, Zhou T, Kwon YD, Staupe RP, Moquin S, et al.
Delineating antibody recognition in polyclonal sera from patterns of HIV-1
isolate neutralization. Science (2013) 340:751–6. doi:10.1126/science.1233989

24. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS, et al. Broad
and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature
(2012) 491:406–12. doi:10.1038/nature11544

25. Li Y, O’Dell S,Wilson R,Wu X, Schmidt SD, Hogerkorp CM, et al. HIV-1 neutral-
izing antibodies display dual recognition of the primary and coreceptor binding
sites and preferential binding to fully cleaved envelope glycoproteins. J Virol
(2012) 86:11231–41. doi:10.1128/JVI.01543-12

26. Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution
of a broadly neutralizing HIV-1 antibody and founder virus. Nature (2013)
496:469–76. doi:10.1038/nature12053

27. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J, et al.
Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-
infected individuals. Nature (2009) 458:636–40. doi:10.1038/nature07930

28. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TY, et al.
Sequence and structural convergence of broad and potent HIV antibodies that
mimic CD4 binding. Science (2011) 333:1633–7. doi:10.1126/science.1207227

29. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, et al. Broad
neutralization coverage of HIV by multiple highly potent antibodies. Nature
(2011) 477:466–70. doi:10.1038/nature10373

30. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad
and potent neutralizing antibodies from an African donor reveal a new HIV-1
vaccine target. Science (2009) 326:285–9. doi:10.1126/science.1178746

31. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR, Seaman MS, et al. Rational
design of envelope identifies broadly neutralizing human monoclonal antibod-
ies to HIV-1. Science (2010) 329:856–61. doi:10.1126/science.1187659

32. Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, et al. Focused evolution
of HIV-1 neutralizing antibodies revealed by structures and deep sequencing.
Science (2011) 333:1593–602. doi:10.1126/science.1207532

33. Zhou T, Zhu J, Wu X, Moquin S, Zhang B, Acharya P, et al. Multidonor analysis
reveals structural elements, genetic determinants, and maturation pathway for
HIV-1 neutralization by VRC01-class antibodies. Immunity (2013) 39:245–58.
doi:10.1016/j.immuni.2013.04.012

34. Chang TW. Selecting low frequency antigen-specific single B lymphocytes. In:
Ueberheide B, editor. United States Patent Number 5326696. Houston, TX: Tanox
Biosystems, Inc. (1994).

35. Scheid JF, Mouquet H, Feldhahn N, Walker BD, Pereyra F, Cutrell E, et al.
A method for identification of HIV gp140 binding memory B cells in human
blood. J Immunol Methods (2009) 343:65–7. doi:10.1016/j.jim.2008.11.012

36. Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, et al. Human
immunodeficiency virus type 1 elite neutralizers: individuals with broad and
potent neutralizing activity identified by using a high-throughput neutralization
assay together with an analytical selection algorithm. J Virol (2009) 83:7337–48.
doi:10.1128/JVI.00110-09

37. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC.
Predominant autoantibody production by early human B cell precursors. Science
(2003) 301:1374–7. doi:10.1126/science.1086907

38. Doores KJ, Fulton Z, Huber M, Wilson IA, Burton DR. Antibody 2G12 recog-
nizes di-mannose equivalently in domain- and nondomain-exchanged forms
but only binds the HIV-1 glycan shield if domain exchanged. J Virol (2010)
84:10690–9. doi:10.1128/JVI.01110-10

39. Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, et al. Crystal struc-
ture of a soluble cleaved HIV-1 envelope trimer. Science (2013) 342:1477–83.
doi:10.1126/science.1245625

40. Lyumkis D, Julien JP, de Val N, Cupo A, Potter CS, Klasse PJ, et al. Cryo-EM
structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science
(2013) 342:1484–90. doi:10.1126/science.1245627

41. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, et al. Structural def-
inition of a conserved neutralization epitope on HIV-1 gp120. Nature (2007)
445:732–7. doi:10.1038/nature05580

42. Kong L, Lee JH, Doores KJ, Murin CD, Julien JP, McBride R, et al. Supersite of
immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein
gp120. Nat Struct Mol Biol (2013) 20(7):796–803. doi:10.1038/nsmb.2594

43. Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, et al. Complex-type
N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl
Acad Sci U S A (2012) 109:E3268–77. doi:10.1073/pnas.1217207109

44. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, et al. A potent
and broad neutralizing antibody recognizes and penetrates the HIV glycan
shield. Science (2011) 334:1097–103. doi:10.1126/science.1213256

45. Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E, de la Pena AT, et al.
Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-
gp120 interface on intact HIV-1 Env trimers. Immunity (2014) 40:669–80.
doi:10.1016/j.immuni.2014.04.008

46. Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, et al. Broadly
neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion
conformation of gp41 on cleaved envelope trimers. Immunity (2014) 40:657–68.
doi:10.1016/j.immuni.2014.04.009

47. Scharf L, Scheid JF, Lee JH, West AP Jr, Chen C, Gao H, et al. Antibody 8ANC195
reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep (2014)
7(3):785–95. doi:10.1016/j.celrep.2014.04.001

48. Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A, Purtscher
M, et al. Generation of human monoclonal antibodies against HIV-1 pro-
teins; electrofusion and Epstein-Barr virus transformation for peripheral blood
lymphocyte immortalization. AIDS Res Hum Retroviruses (1994) 10:359–69.
doi:10.1089/aid.1994.10.359

49. Zhu Z, Qin HR, Chen W, Zhao Q, Shen X, Schutte R, et al. Cross-reactive HIV-
1-neutralizing human monoclonal antibodies identified from a patient with
2F5-like antibodies. J Virol (2011) 85:11401–8. doi:10.1128/JVI.05312-11

50. Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s
pathways. Immunol Rev (2013) 254:225–44. doi:10.1111/imr.12075

51. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene
F, et al. IMGT, the international ImMunoGeneTics information system. Nucleic
Acids Res (2009) 37:D1006–12. doi:10.1093/nar/gkn838

52. Liao H, Guo JT, Lange MD, Fan R, Zemlin M, Su K, et al. Contribution of V(H)
replacement products to the generation of anti-HIV antibodies. Clin Immunol
(2013) 146:46–55. doi:10.1016/j.clim.2012.11.003

Frontiers in Immunology | B Cell Biology June 2014 | Volume 5 | Article 250 | 6

http://dx.doi.org/10.1038/nature12746
http://dx.doi.org/10.1038/nm833
http://dx.doi.org/10.1126/science.1225416
http://dx.doi.org/10.1097/COH.0b013e328361d178
http://dx.doi.org/10.1016/j.vaccine.2011.11.014
http://dx.doi.org/10.7448/IAS.15.2.17407
http://dx.doi.org/10.1038/nri3516
http://dx.doi.org/10.1038/nature12091
http://dx.doi.org/10.3410/B2-60
http://dx.doi.org/10.1016/j.coi.2012.04.006
http://dx.doi.org/10.1016/j.cell.2014.01.052
http://dx.doi.org/10.1128/JVI.05045-11
http://dx.doi.org/10.1371/journal.pone.0008805
http://dx.doi.org/10.1126/science.1233989
http://dx.doi.org/10.1038/nature11544
http://dx.doi.org/10.1128/JVI.01543-12
http://dx.doi.org/10.1038/nature12053
http://dx.doi.org/10.1038/nature07930
http://dx.doi.org/10.1126/science.1207227
http://dx.doi.org/10.1038/nature10373
http://dx.doi.org/10.1126/science.1178746
http://dx.doi.org/10.1126/science.1187659
http://dx.doi.org/10.1126/science.1207532
http://dx.doi.org/10.1016/j.immuni.2013.04.012
http://dx.doi.org/10.1016/j.jim.2008.11.012
http://dx.doi.org/10.1128/JVI.00110-09
http://dx.doi.org/10.1126/science.1086907
http://dx.doi.org/10.1128/JVI.01110-10
http://dx.doi.org/10.1126/science.1245625
http://dx.doi.org/10.1126/science.1245627
http://dx.doi.org/10.1038/nature05580
http://dx.doi.org/10.1038/nsmb.2594
http://dx.doi.org/10.1073/pnas.1217207109
http://dx.doi.org/10.1126/science.1213256
http://dx.doi.org/10.1016/j.immuni.2014.04.008
http://dx.doi.org/10.1016/j.immuni.2014.04.009
http://dx.doi.org/10.1016/j.celrep.2014.04.001
http://dx.doi.org/10.1089/aid.1994.10.359
http://dx.doi.org/10.1128/JVI.05312-11
http://dx.doi.org/10.1111/imr.12075
http://dx.doi.org/10.1093/nar/gkn838
http://dx.doi.org/10.1016/j.clim.2012.11.003
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yu and Guan Long HCDR3s in neutralizing antibodies

53. Kwong PD, Mascola JR. Human antibodies that neutralize HIV-1: identification,
structures, and B cell ontogenies. Immunity (2012) 37:412–25. doi:10.1016/j.
immuni.2012.08.012

54. Tiller T, Tsuiji M, Yurasov S, Velinzon K, Nussenzweig MC, Wardemann H.
Autoreactivity in human IgG+ memory B cells. Immunity (2007) 26:205–13.
doi:10.1016/j.immuni.2007.01.009

55. Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, et al.
Broadly cross-reactive antibodies dominate the human B cell response against
2009 pandemic H1N1 influenza virus infection. J Exp Med (2011) 208:181–93.
doi:10.1084/jem.20101352

56. Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ, et al.
Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope
through immune escape. Nat Med (2012) 18:1688–92. doi:10.1038/nm.2985

57. Wibmer CK, Bhiman JN, Gray ES, Tumba N, Abdool Karim SS, Williamson C,
et al. Viral escape from HIV-1 neutralizing antibodies drives increased plasma
neutralization breadth through sequential recognition of multiple epitopes
and immunotypes. PLoS Pathog (2013) 9:e1003738. doi:10.1371/journal.ppat.
1003738

58. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol (2012)
30:429–57. doi:10.1146/annurev-immunol-020711-075032

59. Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, Kunert R, et al. Cardi-
olipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies.
Science (2005) 308:1906–8. doi:10.1126/science.1111781

60. Verkoczy L, Diaz M. Autoreactivity in HIV-1 broadly neutralizing antibodies:
implications for their function and induction by vaccination. Curr Opin HIV
AIDS (2014) 9:224–34. doi:10.1097/COH.0000000000000049

61. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design
in vaccine development with HIV-1 as a case study. Nat Biotechnol (2012)
30:423–33. doi:10.1038/nbt.2197

62. Mouquet H, Nussenzweig MC. Polyreactive antibodies in adaptive immune
responses to viruses. Cell Mol Life Sci (2012) 69:1435–45. doi:10.1007/s00018-
011-0872-6

63. Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M, Le K, et al. B cells
from knock-in mice expressing broadly neutralizing HIV antibody b12 carry
an innocuous B cell receptor responsive to HIV vaccine candidates. J Immunol
(2013) 191:3179–85. doi:10.4049/jimmunol.1301283

64. Wu TT, Johnson G, Kabat EA. Length distribution of CDRH3 in antibodies.
Proteins (1993) 16:1–7. doi:10.1002/prot.340160102

65. Zemlin M, Klinger M, Link J, Zemlin C, Bauer K, Engler JA, et al. Expressed
murine and human CDR-H3 intervals of equal length exhibit distinct repertoires
that differ in their amino acid composition and predicted range of structures.
J Mol Biol (2003) 334:733–49. doi:10.1016/j.jmb.2003.10.007

66. Ivanov II, Schelonka RL, Zhuang Y, Gartland GL, Zemlin M, Schroeder HW Jr.
Development of the expressed Ig CDR-H3 repertoire is marked by focusing of
constraints in length, amino acid use, and charge that are first established in
early B cell progenitors. J Immunol (2005) 174:7773–80. doi:10.4049/jimmunol.
174.12.7773

67. Arnaout R, Lee W, Cahill P, Honan T, Sparrow T, Weiand M, et al. High-
resolution description of antibody heavy-chain repertoires in humans. PLoS
One (2011) 6:e22365. doi:10.1371/journal.pone.0022365

68. Briney BS, Willis JR, Crowe JE Jr. Human peripheral blood antibodies with long
HCDR3s are established primarily at original recombination using a limited
subset of germline genes. PLoS One (2012) 7:e36750. doi:10.1371/journal.pone.
0036750

69. Ohno S, Mori N, Matsunaga T. Antigen-binding specificities of antibodies are
primarily determined by seven residues of VH. Proc Natl Acad Sci U S A (1985)
82:2945–9. doi:10.1073/pnas.82.9.2945

70. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromoso-
mal V(D)J recombination. Cell (2002) 109(Suppl):S45–55. doi:10.1016/S0092-
8674(02)00675-X

71. Tonegawa S. Somatic generation of antibody diversity. Nature (1983)
302:575–81. doi:10.1038/302575a0

72. Briney BS, Crowe JE Jr. Secondary mechanisms of diversification in the human
antibody repertoire. Front Immunol (2013) 4:42. doi:10.3389/fimmu.2013.
00042

73. Chen C, Nagy Z, Prak EL, Weigert M. Immunoglobulin heavy chain gene
replacement: a mechanism of receptor editing. Immunity (1995) 3:747–55.
doi:10.1016/1074-7613(95)90064-0

74. Wilson PC, Wilson K, Liu YJ, Banchereau J, Pascual V, Capra JD. Receptor
revision of immunoglobulin heavy chain variable region genes in normal
human B lymphocytes. J Exp Med (2000) 191:1881–94. doi:10.1084/jem.191.
11.1881

75. Zhang Z, Burrows PD, Cooper MD. The molecular basis and biological signifi-
cance of VH replacement. Immunol Rev (2004) 197:231–42. doi:10.1111/j.0105-
2896.2004.0107.x

76. Reason DC, Zhou J. Codon insertion and deletion functions as a somatic diver-
sification mechanism in human antibody repertoires. Biol Direct (2006) 1:24.
doi:10.1186/1745-6150-1-24

77. Wilson PC, de Bouteiller O, Liu YJ, Potter K, Banchereau J, Capra JD, et al.
Somatic hypermutation introduces insertions and deletions into immunoglob-
ulin V genes. J Exp Med (1998) 187:59–70. doi:10.1084/jem.187.1.59

78. Briney BS, Willis JR, Crowe JE Jr. Location and length distribution of somatic
hypermutation-associated DNA insertions and deletions reveals regions of anti-
body structural plasticity. Genes Immun (2012) 13:523–9. doi:10.1038/gene.
2012.28

79. Briney BS, Willis JR, Hicar MD, Thomas JW II, Crowe JE Jr. Frequency and
genetic characterization of V(DD)J recombinants in the human peripheral blood
antibody repertoire. Immunology (2012) 137:56–64. doi:10.1111/j.1365-2567.
2012.03605.x

80. Klonowski KD, Primiano LL, Monestier M. Atypical VH-D-JH rearrangements
in newborn autoimmune MRL mice. J Immunol (1999) 162:1566–72.

81. Sanz I. Multiple mechanisms participate in the generation of diversity of human
H chain CDR3 regions. J Immunol (1991) 147:1720–9.

82. Watson LC, Moffatt-Blue CS, McDonald RZ, Kompfner E, Ait-Azzouzene D,
Nemazee D, et al. Paucity of V-D-D-J rearrangements and VH replacement
events in lupus prone and nonautoimmune TdT-/- and TdT+/+ mice. J Immunol
(2006) 177:1120–8. doi:10.4049/jimmunol.177.2.1120

83. Darlow JM, Stott DI. V(H) replacement in rearranged immunoglobulin genes.
Immunology (2005) 114:155–65. doi:10.1111/j.1365-2567.2004.02084.x

84. Zhang Z, Zemlin M, Wang YH, Munfus D, Huye LE, Findley HW, et al. Con-
tribution of VH gene replacement to the primary B cell repertoire. Immunity
(2003) 19:21–31. doi:10.1016/S1074-7613(03)00170-5

85. Koralov SB, Novobrantseva TI, Konigsmann J, Ehlich A, Rajewsky K. Antibody
repertoires generated by VH replacement and direct VH to JH joining. Immunity
(2006) 25:43–53. doi:10.1016/j.immuni.2006.04.016

86. Nemazee D. Receptor editing in lymphocyte development and central tolerance.
Nat Rev Immunol (2006) 6:728–40. doi:10.1038/nri1939

87. Yunk L, Meng W, Cohen PL, Eisenberg RA, Luning Prak ET. Antibodies in a heavy
chain knock-in mouse exhibit characteristics of early heavy chain rearrange-
ment. J Immunol (2009) 183:452–61. doi:10.4049/jimmunol.0804060

88. Zhang Z. VH replacement in mice and humans. Trends Immunol (2007)
28:132–7. doi:10.1016/j.it.2007.01.003

89. Huang L, Lange MD, Zhang Z. VH replacement footprint analyzer-I, a java-
based computer program for analyses of immunoglobulin heavy chain genes
and potential VH replacement products in human and mouse. Front Immunol
(2014) 5:40. doi:10.3389/fimmu.2014.00040

90. Meng W, Jayaraman S, Zhang B, Schwartz GW, Daber RD, Hershberg U, et al.
Trials and tribulations with VH replacement. Front Immunol (2014) 5:10.
doi:10.3389/fimmu.2014.00010

91. Liu J, Lange MD, Hong SY, Xie W, Xu K, Huang L, et al. Regulation of VH
replacement by B cell receptor-mediated signaling in human immature B cells.
J Immunol (2013) 190:5559–66. doi:10.4049/jimmunol.1102503

92. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN, DeKosky BJ,
et al. Developmental pathway for potent V1V2-directed HIV-neutralizing anti-
bodies. Nature (2014) 509:55–62. doi:10.1038/nature13036

93. McGuire AT, Glenn JA, Lippy A, Stamatatos L. Diverse recombinant HIV-1 Envs
fail to activate B cells expressing the germline B cell receptors of the broadly neu-
tralizing anti-HIV-1 antibodies PG9 and 447-52D. J Virol (2014) 88:2645–57.
doi:10.1128/JVI.03228-13

94. Jardine J, Julien JP, Menis S, Ota T, Kalyuzhniy O, McGuire A, et al. Rational HIV
immunogen design to target specific germline B cell receptors. Science (2013)
340:711–6. doi:10.1126/science.1234150

95. Guan Y, Liu T, Sajadi MM, Yu L, Huang W, Seaman M, et al. A common
transitional Env conformation revealed by a new broadly neutralizing anti-
body as a novel HIV-1 vaccine target. AIDS Vaccine 2013. Barcelona: (2013).
13.56 p.

www.frontiersin.org June 2014 | Volume 5 | Article 250 | 7

http://dx.doi.org/10.1016/j.immuni.2012.08.012
http://dx.doi.org/10.1016/j.immuni.2012.08.012
http://dx.doi.org/10.1016/j.immuni.2007.01.009
http://dx.doi.org/10.1084/jem.20101352
http://dx.doi.org/10.1038/nm.2985
http://dx.doi.org/10.1371/journal.ppat.1003738
http://dx.doi.org/10.1371/journal.ppat.1003738
http://dx.doi.org/10.1146/annurev-immunol-020711-075032
http://dx.doi.org/10.1126/science.1111781
http://dx.doi.org/10.1097/COH.0000000000000049
http://dx.doi.org/10.1038/nbt.2197
http://dx.doi.org/10.1007/s00018-011-0872-6
http://dx.doi.org/10.1007/s00018-011-0872-6
http://dx.doi.org/10.4049/jimmunol.1301283
http://dx.doi.org/10.1002/prot.340160102
http://dx.doi.org/10.1016/j.jmb.2003.10.007
http://dx.doi.org/10.4049/jimmunol.174.12.7773
http://dx.doi.org/10.4049/jimmunol.174.12.7773
http://dx.doi.org/10.1371/journal.pone.0022365
http://dx.doi.org/10.1371/journal.pone.0036750
http://dx.doi.org/10.1371/journal.pone.0036750
http://dx.doi.org/10.1073/pnas.82.9.2945
http://dx.doi.org/10.1016/S0092-8674(02)00675-X
http://dx.doi.org/10.1016/S0092-8674(02)00675-X
http://dx.doi.org/10.1038/302575a0
http://dx.doi.org/10.3389/fimmu.2013.00042
http://dx.doi.org/10.3389/fimmu.2013.00042
http://dx.doi.org/10.1016/1074-7613(95)90064-0
http://dx.doi.org/10.1084/jem.191.11.1881
http://dx.doi.org/10.1084/jem.191.11.1881
http://dx.doi.org/10.1111/j.0105-2896.2004.0107.x
http://dx.doi.org/10.1111/j.0105-2896.2004.0107.x
http://dx.doi.org/10.1186/1745-6150-1-24
http://dx.doi.org/10.1084/jem.187.1.59
http://dx.doi.org/10.1038/gene.2012.28
http://dx.doi.org/10.1038/gene.2012.28
http://dx.doi.org/10.1111/j.1365-2567.2012.03605.x
http://dx.doi.org/10.1111/j.1365-2567.2012.03605.x
http://dx.doi.org/10.4049/jimmunol.177.2.1120
http://dx.doi.org/10.1111/j.1365-2567.2004.02084.x
http://dx.doi.org/10.1016/S1074-7613(03)00170-5
http://dx.doi.org/10.1016/j.immuni.2006.04.016
http://dx.doi.org/10.1038/nri1939
http://dx.doi.org/10.4049/jimmunol.0804060
http://dx.doi.org/10.1016/j.it.2007.01.003
http://dx.doi.org/10.3389/fimmu.2014.00040
http://dx.doi.org/10.3389/fimmu.2014.00010
http://dx.doi.org/10.4049/jimmunol.1102503
http://dx.doi.org/10.1038/nature13036
http://dx.doi.org/10.1128/JVI.03228-13
http://dx.doi.org/10.1126/science.1234150
http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yu and Guan Long HCDR3s in neutralizing antibodies

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 25 February 2014; accepted: 12 May 2014; published online: 02 June 2014.
Citation: Yu L and Guan Y (2014) Immunologic basis for long HCDR3s
in broadly neutralizing antibodies against HIV-1. Front. Immunol. 5:250. doi:
10.3389/fimmu.2014.00250

This article was submitted to B Cell Biology, a section of the journal Frontiers in
Immunology.
Copyright © 2014 Yu and Guan. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Immunology | B Cell Biology June 2014 | Volume 5 | Article 250 | 8

http://dx.doi.org/10.3389/fimmu.2014.00250
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/B_Cell_Biology
http://www.frontiersin.org/B_Cell_Biology/archive

	Immunologic basis for long HCDR3s in broadly neutralizing antibodies against HIV-1
	Introduction
	HIV-1 broadly neutralizing antibodies have unique features
	Immunologic mechanisms for generating antibodies with long HCDR3
	Contribution of somatic hypermutation to long HCDR3s
	Long HCDR3s usually arise during VDJ recombination
	D–D fusion recombinants can generate long HCDR3s
	VH replacement contributes significantly to long HCDR3
	Discussion
	Acknowledgments
	References


