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We previously reported the anti-allergic effect of high molecular weight form of hyaluronic
acid (HMW-HA). In doing so, HA targets CD44 and inhibits FcεRI signaling and cross-talk
between epidermal growth factor receptor (EGFR) and FcεRI. We previously reported the
role of histone deacetylases (HDACs) in allergic inflammation and allergic inflammation-
promoted enhanced tumorigenic potential. We reported regulatory role of HA in the
expression of HDAC3. In this review, we will discuss molecular mechanisms associated
with anti-allergic effect of HA in relation with HDACs. The role of microRNAs (miRNAs) in
allergic inflammation has been reported. We will also discuss the role of miRNAs in allergic
inflammation in relation with HA-mediated anti-allergic effects.
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The Role of Hyaluronic Acid in Allergic Inflammation

Hyaluronic acid (HA), a major component of the extracellular matrix (ECM), plays a key role in
regulating inflammation. HA enhances proteoglycan synthesis, reduces the production and activity
of pro-inflammatory mediators and matrix metalloproteinases, and alters the behavior of immune
cells (1). Inflammation is associatedwith accumulation and turnover ofHApolymers bymultiple cell
types. Increased accumulation of HA has been demonstrated in joint tissue of rheumatoid arthritis
(RA) patients (2); in lung disease, both in humans (3) and animal experimental models (4); in
inflammatory liver disease; during vascular disease (5); in rejected kidney transplants (6) as well
renal tissue of patients experiencing diabetic nephropathy (7); in the intestine of patients undergoing
flares of inflammatory bowel disease (IBD) (8).

Circulating HA might be a marker of asthma control, as it correlates with airway resistance and
has good sensitivity in the detection of impaired asthma control (9). The increased level of HA is
correlated with asthma (10). In addition, HA appears to provide the scaffolding for inflammatory
cell accumulation as well as for new collagen synthesis and deposition (10). HA deposition appears
largely due to up-regulation of hyaluronan synthase 1 (HAS1) and hyaluronan synthase 2 (HAS2).
HAS2 mRNA is markedly increased in asthmatic fibroblasts (11). In cases of inflammation, HA
contains a variety of HA polymers with overlapping lengths and functions. HA exists as both
a pro-and anti-inflammatory molecule in vivo, and these contradictory functions depend upon
polymer length. High molecular weight form of hyaluronic acid (HMW-HA) elicits protective anti-
inflammatory effects that protect lung epithelial cells from apoptosis and is protective against liver
injury, acting to reduce pro-inflammatory cytokines in a T-cell-mediated injury model (12). HMW-
HA inhibits macrophage proliferation and cytokine release, leading to decreased inflammation in
the early wound of a preclinical post laminectomy rat model (13). HMW-HA exerts a negative effect
on the activation of mitogen-activated protein kinase (MAPK) by allergic inflammation (14). HA
with an average molecular mass <500 kDa can be considered a fragment. HA fragments with an
average molecular weight of 200 kDa have been shown to stimulate chemokines, cytokines, growth
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factors, proteases, and by macrophages (15–20). Organic contact
sensitizers induce production of reactive oxygen species (ROS)
and a concomitant breakdown of HA to pro-inflammatory low
molecular weight fragments in the skin (21). Importantly, inhi-
bition of either ROS-mediated or enzymatic HA breakdown pre-
vents sensitization as well as elicitation of Chediak–Higashi Syn-
drome (CHS) (21). Mucus hyper secretion with elevated MUC5B
mucin production is a pathologic feature in many airway diseases
associated with oxidative stress (22). ROS-induced MUC5AC
expression in normal human bronchial epithelial cells (NHBE) is
dependent on HA depolymerization and epidermal growth factor
receptor (EGFR)/MAPK activation (22). Although most of the
work on lowmolecular weight HA (LMW-HA) fragments initially
illustrated a pro-inflammatory response, a number of studies have
shown that HA fragments can also be protective. In a murine
model of colitis, intraperitoneal injection of HA <750 kDa pro-
tects colonic epithelium in a Toll-like receptor (TLR) 4-dependent
manner (23). This functional difference between HAs of vary-
ing sizes is a matter of controversy since many studies have
reported opposing results in regard to which type of HA can
bring about cellular changes (24). These contradictory functions
of HA, depending on the polymer length, may result from dif-
ferential effects of these HA on HA receptors such as CD44 and
receptor for HA-mediated motility (RHAMM). Exogenous HAs
used in many studies are not homogenous with respect to size.
Therefore, it is difficult to conclude that size alone determines the
function of HAs of various sizes. These discrepancies may also
be due to differences in experimental settings, purity of HA (25),
and the possibility of diverse responses to HA depending on the
cell type. Although many reports suggest anti-allergic effect of
exogenousHA, the effect of endogenousHMW-HAon the allergic
inflammation needs further investigation.

Hyaluronic acid levels are elevated in allergic animals and
the increase correlates with the influx of inflammatory cells.
This increase in HA levels is largely due to up-regulation of
hyaluronidase-1 (HYAL-1) and hyaluronidase-2 (HYAL-2) (26).
HYAL-1, -2, and -3 are expressed in airway epithelium and
may operate in a coordinated fashion to depolymerize HA
during allergen-induced asthmatic responses associated with
up-regulation of tumor necrosis factor-alpha (TNF-alpha) and
interleukin-1 beta (IL-1beta) (27). Degradation of HA byHYAL-1
primarily depends upon CD44 or other HA receptors to inter-
nalize HA fragments. Patients deficient in HYAL-1 have been
reported with plasmaHA levels at 40 times normal (28). The find-
ing of HYAL-2 in complex with CD44 at the plasma membrane
suggests that HA-binding proteinsmay enhance the activity of HA
degrading enzymes, andCD44 bindingmay provideHYAL-2with
a preferable conformation of HA. IL-1beta exerts inflammatory
activity via CD44 by the mediation of HA fragments derived from
HA depolymerization (29).

CD44, a receptor for HA, expressed on CD4(+) T cells plays
a critical role in the accumulation of antigen-specific Th2 cells,
but not Th1 cells, in the airway and in the development of air-
way hyper-responsiveness (AHR) induced by antigen challenge
(30). Airway fibroblasts from patients with asthma produced sig-
nificantly increased concentrations of LMW-HA compared with
those of normal fibroblasts (30). CD44, but not CD62L, is required

for leukocyte extravasations during a Th2-type inflammatory
response such as allergic dermatitis (31). HMW-HA inhibits inter-
action between IgE and FcεRI and between FcεRI and protein
kinase C δ (PKCδ) during allergic inflammation (14). A role for
CD44 in the regulation of allergic inflammation in vivo has been
shown by studies in which anti-CD44 treatment inhibited the
development of optimal contact allergic responses (32). CD44
has been shown to be responsible for the development of pul-
monary eosinophilia (33). CD44-hyaluronan interaction is nec-
essary for allergic asthma (34). The serum-derived hyaluronan-
associated protein (SHAP)–HA complex has an inhibitory role
in the development of airway hyper responsiveness and allergic
airway inflammation which may be attributed, at least in part,
to negative feedback mechanisms exerted by SHAP (35). It will
be necessary to examine effects of HAs of various sizes on the
expression and/or activity of CD44.

The Role of HDAC3 in Allergic Inflammation

Histone acetylation/deacetylation plays an important role in
the regulation of inflammatory genes associated with allergic
inflammation (36). Histone deacetylase-3 (HDAC3)-deficient
macrophages are unable to activate almost half of the inflamma-
tory gene expression program when stimulated with lipopolysac-
charide (LPS) (37). Pulmonary inflammation is ameliorated in
mice lacking HDAC3 in macrophages (38). The induction of
cyclooxygenase (COX)-2, which occurs during allergic inflam-
mation, is accompanied by degradation of HDAC1 (39). HDAC2
expression and activity are decreased in asthmatic subjects, smok-
ers, and smoking asthmatic subjects (40). HDAC3, induced by
antigen stimulation, interacts with FcεRI and is necessary for
allergic inflammation both in vitro and in vivo (41). DNA methyl
transferase I (DNMT1) acts as a negative regulator of allergic
inflammation and the down-regulation of DNMT1 induces the
expression of HDAC3 (42). HDAC3 is necessary for the induc-
tion of TNF-α, a cytokine increased during allergic inflamma-
tion, in cardiomyocytes during LPS stimulation (43). HDAC3
mediates allergic inflammation by regulating the expression of
monocyte chemoattractant protein-1 (MCP1) (41). HMW-HA,
but not LMW-HASs, decreases the expression of HDAC3 in
human vascular endothelial cells to promote angiogenesis which
is accompanied by allergic inflammation (44).

Role of miRNAs in Allergic Inflammation

microRNAs (miRNAs) are small (20–23 nucleotides), single-
stranded non-coding RNAs that play important roles in the post-
transcriptional regulation of gene expression in mammalian cells
by regulating translation. Upon binding of their 5′ extremity (seed
sequence encompassing nucleotides 2–7 or 2–8) with a comple-
mentary site located most of the time in the 3′ un-translated
region (3′UTR) of target mRNAs, miRNAs alter gene expression
by translational repression or RNA degradation (45). Because
miRNAs regulate the expression of transcription factors that regu-
late the expression ofmiRNAs themselves,miRNAs form feedback
loops. miR-384 and HDAC3 form a negative feedback loop to
regulate allergic inflammation [(46), Figure 1A]. This suggests the
involvement of miR-384 in the anti-allergic effect of HA. Several
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FIGURE 1 | HA–HDAC3–miRNA network in allergic inflammation.
(A) Allergen activates FcεRI signaling and induces the expression of
HDAC3. HDAC3, through forming a negative feedback loop with miR-384,
regulates allergic inflammations in vitro and in vivo. PCA, passive
cutaneous anaphylaxis; PSA, passive systemic anaphylaxis; TpCR,
triphasic cutaneous reaction. (B) Potential effect of HA metabolism on

allergic inflammation. HA fragments generated by HYALs may promote
allergic inflammation while high MW-HA exerts anti-allergic inflammation by
HASs. (C) Promoter analysis shows the binding of various transcriptional
regulators to the promoter sequences of HYALs and HASs. Various
miRNAs bind to the 3′-UTR of HYALs and HDAC3. UTR denotes
un-translated region.

reports suggest role of HDACs in the expression regulation of
miRNAs (47–50). miRNA let-7a regulates the expression of IL-
13, a cytokine necessary for allergic lung disease (51). The down-
regulation ofmiR-145 inhibits Th2 cytokine production andAHR
(52). HA–CD44 interaction enhances the expression of miR-10b
(53). miR-199a-3p andmiR-34amiR-590-3p target CD44 (54, 55).
Polymorphisms of CD44 3′UTR weaken the binding of miRNAs
(55), suggesting that miRNAs regulate the expression of CD44.
Given the fact that CD44 is involved in allergic inflammation,
miRNAs may regulate HA-mediated anti-allergic inflammation.

The Regulation of HA Metabolism by
miRNAs and HDAC3

In silico screening of expression data with predicted miR-23
target sites combined with in vivo testing, predicts HAS2 as
novel direct target of miR-23 (56). miR-23a-3p in non-senescent
fibroblasts leads to the decreased HAS2-mediated HA synthe-
sis (57). This implies that miR-23 may regulate the production
of HA during allergic inflammation. Based on our previous
report (44), HA–CD44 may decrease the expression of HDAC3
(Figure 1B). Promoter analysis shows that HAS1 and HAS2

contain the binding sites for YY1, STAT6, NF-kB, and HDAC2
(Figure 1C), suggesting that the production of HA is under epi-
genetic regulation. Because HDAC3 shows an inverse relationship
with HDAC2 (41), HDAC3 may regulate the expression of HASs
tomediate allergic inflammation.Many reports suggest that HASs
may increase the production of HMW-HA to exert anti-allergic
effects (Figure 1B). Thus, the decreased expression of HDAC3 by
HA–CD44 interaction may increase the expression of HAS1 and
HAS2 to exert anti-allergic effect (Figure 1B). HDAC3, increased
during allergic inflammation, may regulate the expression of
HYALs and HASs differentially to increase the production of
LMW-HA. This may result in allergic inflammation (Figure 1B).

Promoter analysis shows that HYAL-1, -2, and -3 contain bind-
ing sites for various transcriptional regulators including HDAC2
(Figure 1C), suggesting the role of HDAC3 in the expression
regulation of HYALs. TargetScan analysis predicts the binding
of miRNAs, such as miR-24,-28, -134, and -370, to the 3′-UTR
sequences of HYAL-1 (Figure 1C). TargetScan analysis predicts
the binding of various miRNAs to the 3′-UTR sequences of
HYAL-2 and HYAL-3 (Figure 1C). These miRNAs may prevent
the production of HA fragments by negatively regulating the
expression of these HYALs. Thus, these miRNAs may mediate
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allergic inflammation. TargetScan analysis predicts the binding of
miR-212,-132, and -590 to the 3′-UTR of HDAC3 (Figure 1C).
These miRNAs may exert anti-allergic effects by decreasing the
expression of HDAC3. Taken together, miRNAs and HDAC3
may regulate allergic inflammation through their effects on HA
metabolism.

Concluding Remarks and Perspectives

In this study, we show the possible involvement of miRNAs
and HDAC3 in the regulation of HA metabolism. HA–HDAC3
–miRNA network described in this review may offer valu-
able mechanism for HA-mediated anti-allergic effects. For bet-
ter understanding of HA-mediated anti-allergic effect, it will be

necessary to identify downstream targets of HA. The down-
stream targets of HA would be valuable for the development of
anti-allergic drugs. Identification of more miRNAs that regulate
allergic inflammation in relation to HA and HDAC3 will be
necessary for better understanding of HA-mediated anti-allergic
inflammation.
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