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IL-22-Expressing Murine
Lymphocytes Display Plasticity and
Pathogenicity in Reporter Mice

Wei Shen, Julie A. Hixon, Mairi H. McLean, Wen Qing Li and Scott K. Durum*

Cancer and Inflammation Program, Laboratory of Molecular Immunoregulation, Center for Cancer Research, National
Cancer Institute, National Institutes of Health, Frederick, MD, USA

IL-22 has multiple activities ranging from tissue repair to inflammation. To characterize
the pathogenicity and plasticity of cells that produce IL-22, a novel reporter mouse
strain was generated. Homeostatic IL-22 reporter expression was observed in intestinal
lymphoid cells identified as CD4 T cells and ILC3 cells. In a model of inflammatory bowel
disease, CD4 T cells strongly expressed the IL-22 reporter in mesenteric lymph node.
To examine plasticity of IL-22+ T cells, they were purified after generation in vitro or
in vivo from inflamed colon, and then cultured under Th1, Th2, or Th17 conditions. In
vitro-generated IL-22+ CD4 T cells showed relatively durable IL-22 expression under Th1
or Th2 conditions, whereas in vivo-generated cells rapidly lost IL-22 expression under
these conditions. In vitro-generated cells could not be diverted to express Th1 or Th2
cytokines despite the expression of “master regulators.” In vivo-generated cells could
be diverted, at very low frequency, to express Th1 or Th2 cytokines. Both in vitro- and
in vivo-generated cells could be induced in vitro to express high levels of IL-17A and
IL-17F, assigning them to a “Th17 biased” class. However, IL-27 potently downregulated
IL-22 expression. To examine IL-22+ T cell pathogenicity, in vitro-generated cells were
transferred into Rag1~'~ mice, retaining the modest reporter expression and inducing
moderate colitis. In contrast, IL-22 expressers from colitic mice, transferred into sec-
ondary hosts, lost reporter expression, acquired high T-bet and modest IFNy and IL-17
expression, and induced severe colitis. These findings are consistent with a model of
strong polarization under optimal in vitro conditions, but a plastic state of T cells in vivo.

Keywords: IL-22, Th17, Th22, T cell plasticity, IL-27

INTRODUCTION

IL-22 was initially discovered as an IL-9- or activation-induced transcript in T cells (1). IL-22 per-
forms important roles in host defense through its action on epithelial cells eliciting innate immune
reactions [reviewed in Ref. (2, 3)]. In contrast, roles of IL-22 in pathology of bowel (4, 5), liver (6),
and skin (7) have also been reported.

A number of sources of IL-22 have been described. Among T cells [reviewed in Ref. (2)],
a human subset designated “Th22” has been distinguished from Th17 cells and is a major IL-22
producer (8, 9). This pattern in humans differs from the mouse, in which Th17 cells were reported to
be major producers (7, 10). In man, Th1 cells were also shown to be capable of expressing IL-22 (11).
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In the mouse, expression of IL-22 has also been reported inThl
cells (12), NKT cells (13, 14), and yd T cells (15).

Several innate lymphocyte (ILC) subsets are reported to be
IL-22 producers. These include NK cells in humans (16, 17) and
mice (18, 19). Group 3 ILCs [reviewed in Ref. (20, 21)] consist
of several subsets, most of them, including LTi cells (22, 23), are
reported to be capable of producing IL-22. IL-22 production from
other Group 3 ILC includes cells that express natural cytotoxicity
receptors (NCR) (16, 18, 24-27) and NCR-negative ILCs (28, 29).

Transcription factors regulating murine IL-22 production
include Stat3 that appears to be essential for expression in T
cells (30, 31). Batf also appears to be required for expression
and directly binds the IL-22 promoter (32). RORyt promotes
expression, perhaps indirectly via upregulation of other recep-
tors [reviewed in Ref. (2)]. Stimulation of the aryl hydrocarbon
receptor (AHR) also promotes expression, but does not appear to
be essential [reviewed in Ref. (2)]. The Notch pathway promotes
IL-22 expression through what is believed to be an indirect
mechanism (33). Lastly, c-Maf is a transcriptional inhibitor of
IL-22, acting downstream of TGFf (34), and possibly mediates
the IL-27 inhibitory effect (35).

IL-22 expression in murine T cells [reviewed in Ref. (2)] is
induced by IL-23 or IL-6 and is inhibited by TGFp (7). IL-22 can
be strongly stimulated by the combination of IL-23, IL-6, and
IL-1 (36) and by IL-21 (30). Expression is promoted by ligands
of the AHR, such as 6-formylindolo(3,2-b)carbazole (FICZ) (37)
combined with alFNy and allL4 (38). Most of these studies have
examined induction of IL-22 expression in vitro, whereas in vivo,
it is less clear what factors positively and negatively regulate its
expression, as well as the characteristics of the IL-22-expressing
T cells. To examine IL-22 expression in vivo and to characterize
IL-22-expressing T cells, an IL-22 reporter mouse would advance
our understanding of these cells.

In the current study, we describe a novel IL-22 reporter
mouse. This was developed to address several questions.
What cells express IL-22 under homeostatic conditions
and during immune and inflammatory responses? Do T
cells expressing IL-22 represent a stable lineage pattern,
or are they plastic and capable of responding to a different
cytokine milieu? Because IL-22 has both protective and
pathogenic properties, are IL-22-expressing T cells protec-
tive or pathogenic? Using the reporter, we conclude that the
major IL-22 expressers in gut are ILC3s and CD4 T cells.
CD4 T cells expressing IL-22 showed greater stability of IL-22
expression when optimally polarized in vitro compared to those
from an inflammatory site in vivo. However, even optimally
polarized T cells from in vitro cultures demonstrated consider-
able plasticity after transfer in vivo. Finally, IL-22-expressing T
cells, transferred in vivo, demonstrated marked pathogenicity
in gut tissue, accompanied by loss of IL-22 expression and gain
of expression of other cytokines, such as IFNy and IL-17A.

MATERIALS AND METHODS

Mice
C57BL/6 mice were purchased from the Animal Production
Area, National Cancer Institute-FCRDC (Frederick, MD, USA).

Ragl™"~ were originally purchased from The Jackson Laboratory
(Bar Harbor, MN, USA) and maintained by homozygous breed-
ing at NCI-Frederick. Three strains of IL-22-tdTomato mice have
been produced at NCI, Frederick, MD, USA, and homozygous
strains have been selected and maintained at the same animal
facility. All mice used were 8-12 weeks old. NCI-Frederick is
accredited by AAALAC International and follows the Public
Health Service Policy for the Care and Use of Laboratory Animals.
Animal care was provided in accordance with the procedures
outlined in the Guide for Care and Use of Laboratory Animals
(National Research Council; 1996; National Academy Press;
Washington, DC, USA).

Flow Cytometry and Antibodies

To perform surface staining, 1 X 10° cells were placed in individual
wells of a 96-well round bottom plate and incubated with the
appropriate antibody cocktails for 15 min at 4°C on a slow rocker.
After the staining, cells were fixed in a solution of 2% ultrapure
formaldehyde (Polysciences, Inc., Warrington, PA, USA) in
FACS buffer for 20 min on ice, washed twice, and analyzed the
following day on the Canto II (BD Biosciences) or FACSCalibur
(BD Biosciences). Intracellular staining was performed using
Cytofix/Cytoperm Fixation/Permeabilization Solution Kit with
BD GolgiStop (BD biosciences) according to the manufacturer’s
instruction. Flow cytometry acquisition was performed on an
LSRIISorp. Data were analyzed using FACS Express or FlowJo
software (Tree Star, Inc., Ashland, OR, USA). Antibodies against
CD45 (clone 30-F11, BD Pharmingen), CD3 (clone 145-2Cl11,
BD Pharmingen), CD4 (clone GKI1.5, BD Pharmingen), CD8
(clone 5H10, Biolegend), T-bet (clone eBio4B10, eBioscience),
IL-17A (clone ebiol7B7, eBioscience), IL-4 (clone B11B,
Biolegend), IFNy (clone XMG 1.2, eBioscience), IL-22 (clone
A3.6M, eBioscience and clone poly5164, Biolegend), TGF-f
(clone 11A5, Biolegend), IL-17F (clone ebio18F10, eBioscience),
NKP46 (clone 29A 1.4, Biolegend), c-Kit (clone 2B8, Biolegend),
Sca-1 (clone D7, BD Pharmingen), and CD127 (clone A7R34,
eBioscience) were used.

In Vitro T Cell Differentiation

Purified CD4 T cells from mouse spleen cells were performed by
Dynal® Mouse CD4 Cell Negative Isolation Kit (Life Technology)
and cultured under Th22 conditions, including 1 pg/mlplatebound
anti-CD3 (eBioscience), 0.5 pg/ml anti-CD28 (eBioscience),
10 pg/ml anti-IL4 (Biolegend), 10 pg/ml anti-IFNy (Biolegend),
10 ng/ml IL-6 (Peprotech), 1 ng/ml TGF-p (Peprotech), and
200 nM 6-formylindolo(3,2-b)carbazole (FICZ, Sigma-Aldrich)
for 4 days. Cells were harvested and sorted for tdTomato signal
by flow cytometry using a FACSAria and cultured under different
Th1, Th2, Th17, and Th22 conditions. For Th1 and Th2 condition,
cells were stimulated with 1 pg/ml plate bound anti-CD3, 0.5 pg/
ml anti-CD28 in the presence of 10 pg/ml anti-IL4 (Th1), 10 ng/
ml IL-12 (Peprotech, Thl), 10 pg/ml anti-IFNy (Th2), 10 pg/
ml anti-IL12 (Biolegend, Th2), and 30 ng/ml IL-4 (Peprotech,
Th2). For Th17 cell differentiation, cells were cultured with 1 pg/
ml anti-CD3, 0.5 pg/ml anti-CD28, 10 pg/ml anti-IL4, 10 pg/
ml anti-IFNY, 10 ng/ml IL-6, 50 ng/ml IL-23 (R&D Biosystem),
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and 1 ng/ml TGF-p (Peprotech). Three days after activation,
cells were restimulated with 500 ng/ml ionomycin and 50 ng/
ml phorbol 12-myristate 13-acetate (Sigma-Aldrich) in the
presence of GolgiStop for 5 h, after which IFNy, IL-4, IL-17A,
and IL-17F-producing cells were analyzed using a BDCytoFix/
CytoPerm intracellular staining kit (BD Biosciences) following
the manufacturer’s instructions.

In Vitro-Generated Th22 Cell Transfer
Purified CD4 T cells cultured under Th22 polarization condition
for 4 days, followed by sorting of tdTomato positive and tdTomato
negative cells using a FACSAria (BD Biosciences). Sorted cells
and CD4 T cells (cultured under neutralized condition for 4 days)
were injected into the recipient mice (0.5 X 10° cells/mouse). Mice
were monitored twice a week with body weight, stool consistency,
and occult/gross blood in stool using Hemoccult Slides (Beckman
Coulter, Fullerton, CA, USA). Tissues were harvested 1 month
following cell transfer.

In Vivo-Generated Th22 Cell Transfer
Mesenteric lymph nodes were harvested from pre-colitis mice
(4 weeks after CD4*CD45RB"¢" cells were transferred into
Ragl™~ mice, see Supplementary Material). IL-22 producing
cells or non-producing cells were sorted of tdTomato fluorescent
protein using FACSAria, followed by injection into second hosts
(Ragl™"~ recipients, 0.5 X 10° cells/mouse). Mice were monitored
twice a week as described above, and tissues were harvested
1 month following cell transfer.

RNA Extraction from Th22 Cells and

RT-PCR

CD4 T cells were cultured under neutral (anti-CD3, anti-CD28)
condition or Th22 conditions (anti-CD3, anti-CD28, anti-1L4,
anti-IFNy, 10 ng/ml IL-6, 1 ng/ml TGF-p, and FICZ) for 4 days,
and sorted Th22 cells as described above were placed under Thl,
Th2, Th17, and Th22 conditions for 3 days, followed by isolation
of DNA-free total RNA using RNA II kit (MN) according to
the provided protocol. Concentration and purity of RNA yield
were established by spectrophotometry (Nanodrop, NanoDrop
Technologies, Wilmington, DE, USA) and quality confirmed by
electrophoresis. One microgram aliquots of each total RNA stock
were converted into cDNA via hex primed reverse transcrip-
tion (Thermoscript RT kit, Invitrogen). Th22 transcripts were
then analyzed for relative amounts of 1122, tdTomato, and 18s
ribosomal RNA via Tagman Gene expression analyses (Applied
Biosystems) using an ABI7300 thermocycler. C; values generated
from each sample with the 18s-specific probe set were used to
normalize expression of the two target genes (1122 and tdTomato)
using a AC; method with correction for variation in amplifica-
tion efficiency. Inflammatory cytokines and transcription factors
were analyzed by semiquantitative RT-PCR using oligonucleotide
primers (Integrated DNA Technologies; Coralville, IA, USA), as
described previously (39). Briefly, the amplified PCR fragments
were separated by electrophoresis on 1.2% agarose gel and visu-
alized using SYBR Safe DNA gel stain (Invitrogen). To quantify
the transcription levels, the amount of mRNA expression were

normalized relative to the expression of HPRT mRNA using
densitometric analysis by Image] 1.41 software.

Gene Profile Analysis of Th22 Cells
Treated with IL-27

In vitro-generated Th22-tdTomato cells were cultured with or
without mIL-27 (20 ng/ml, Cytokine) for 4 days. Following the
ionomycin and PMA stimulation with the GolgiStop for 5 h, cells
were harvested and proceeded with total RNA preparation. RNA
was then transcribed (Reverse Transcription kit, Qiagen) and
analyzed by either RT-PCR or micro array method using RT2
Profiler PCR array — Th17 response array (PAMM-073Z plate,
Qiagen) according to manufactures’ protocol.

Histological Analysis and Scoring

Tissues (mesenteric lymph nodes, small and large intestine) from
mice were fixed in 4% PFA overnight, replaced with 18% sucrose
for 16-24 h, and then frozen for sectioned, and stained with either
anti-RFP (abCam) or hematoxylin and eosin. H&E tissue sec-
tions were evaluated and graded in coded fashion by a veterinary
pathologist (Miriam Anver). Semi-quantitative scale from 0 to
4 was used where histopathological changes were identified as
minimal = 1, mild = 2, moderate = 3, and severe = 4. For the
colon, cumulative histopathology scores were calculated based on
the sum of individual changes of parameters (crypt hyperplasia,
goblet cell depletion, lymphocytic infiltrates, eosinophils, neu-
trophils, gut intraepithelial neoplasm, crypt abscess, and chronic
active inflammation). For the small intestine, cumulative histo-
pathology scores were calculated based on the sum of individual
changes of parameters (crypt hyperplasia, crypt loss, lymphocytic
infiltrates, and chronic active inflammation).

Statistics

Statistical analysis was performed using the GraphPad Prism
6.0 software. Data are expressed as mean + SEM. The Student
two-tailed unpaired, parametric ¢ test was used to assess statisti-
cal differences between two groups. Asterisks indicate statistical
differences, *p < 0.05, **p < 0.01, and ***p < 0.001.

RESULTS

IL-22 Reporter Construction and
Transgene Expression

A murine IL-22 reporter transgene was created using recom-
bineering to modify a bacterial artificial chromosome, as previ-
ously described (40), introducing tdTomato into exon 1 (Figure
S1 in Supplementary Material). Because the signal sequence was
disrupted by design, this results in accumulation of the reporter
in expressing cells, enabling their detection and isolation by flow
cytometry. The transgene was introduced into C57Bl/6 mice by
standard methods, and several founder lines were bred to homozy-
gosity. The selected founder line showed fidelity of expression to
the endogenous IL-22 gene by several criteria as follows. In vitro,
reporter expression was induced in CD4 T cells by the same com-
bination of stimuli as the IL-22 gene (Figure 1A), and there was a
similar quantitative expression of reporter transcripts compared
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FIGURE 1 | Correspondence of IL-22 reporter expression to endogenous IL-22. (A) Spleen CD4+* T cells from reporter mice were cultured 4 days in the
presence of IL-22-inducing conditions (FICZ + IL-6 + anti-IL-4 + anti-IFNy + IL-23). Cells were treated with GolgiStop for 5 h and stained for intracellular IL-22 or

three independent experiments. (B) /In vivo expression of IL-22 or reporter in different tissues. Cells were examined for the tdTomato reporter or stained with
anti-IL-22. MLN, mesenteric lymph node; ALN, axillary lymph node; PP, Peyers patch; IEL, intraepithelial cells isolated from small intestine; LP, lamina propria cells
purified from small intestine. Numbers in quadrants indicate percent of lymphocyte cells. Data are representative of two or more experiments.

CD3

mean + SEM). Numbers in quadrants indicate percent of CD3* cells. Data indicate

to the endogenous IL-22 gene measured by quantitative RT-PCR.
In vivo, the same lymphoid subsets expressed the reporter and
IL-22 (Figure 1B) mostly in lamina propria (LP) cells from gut,
but not other gut-associated lymphoid tissue (GALT), axillary
lymph node (ALN), spleen, or thymus.

Phenotype of Lymphoid Cells Expressing
the IL-22 Reporter

Lymphoid cells from LP were analyzed for markers on cells
expressing the IL-22 reporter under homeostatic conditions. The
more frequent population was ILC3, identified by the criteria
that they expressed IL-7R and lacked CD3 (Figure 2A). The
less frequent population was CD4 T cells (Figure 2A; Figure S2
in Supplementary Material). Both populations expressed Scal,
neither expressed cKit, NKp46, or CD8. To examine inflamed
tissue, colitis was induced by transfer of reporter CD4*CD45Rb"
T cells into Ragl~~ mice. The initially transferred T cell popula-
tion from spleen contained very few reporter-positive cells
(Figure 2B). Four weeks after transfer, mice were precolitic and

showed an expansion of IL-22 reporter T cells in MLN, LP, IEL,
and spleen (Figure 2B). At the onset of colitis, 8 weeks after
T cell transfer, the tdTomato signal diminished in mesenteric
lymph nodes (declining by 6 weeks as seen in Figures S3A,B in
Supplementary Material), indicating that IL-22 itself was not
directly associated with gut pathology, as will be discussed in a
later section.

IL-22-Expressing T Cells: Stronger

Polarization In Vitro than In Vivo

To evaluate plasticity of the IL-22 lineage when generated
in vitro, CD4 T cells were first cultured 4 days under IL-22 condi-
tions (aCD3 + aCD28 + FICZ + IL-6 + IL-23 + oIL-4 + olFNy).
Expressing cells were then enriched by sortingand placed in secondary
cultures for 3 days under conditions favoring differentiation into
other CD4 subsets, such as Th1, Th2, or Th17. Three days of Th1 cul-
ture conditions neither extinguished IL-22 reporter expression nor
induced expression of the Th1 signature cytokine IFNy (Figure 3A)
compared to positive controls (Figure 3A; Figure S4 in Supplementary
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FIGURE 2 | Identification of IL-22-producing T cells and innate lymphoid cells in normal LP and inflamed GALT. (A) Lymphoid cells from LP of
unmanipulated IL-22 reporter mice were stained for different markers of innate lymphocytes and T cells. (B) CD4*CD45Rb" T cells of reporter mice were transferred
into Rag1~~ mice and lymphoid cells from gut-associated lymphoid tissue were examined 4 weeks later (n = 4, data representative of three independent

Material). Th2 culture conditions similarly failed to extinguish
IL-22 reporter expression or induce expression of the Th2 signature
cytokine IL-4. On the other hand, IL-17 was coexpressed in about
15% of cells following the initial “IL-22” culture and increased under
subsequent Th17 culture conditions, although some IL-17 expressers
extinguished IL-22 reporter expression. Other cytokines and recep-
tors were examined at the level of transcripts (Figure 3B), the only
one showing major modulation was IL-10, which was upregulated
under Th2 or Th17 conditions. These results indicate that T cells
induced in vitro to express IL-22 were strongly polarized away from
the Thl or Th2 lineages. On the other hand, the relationship with
Th17 expression is consistent with a single lineage capable of both
IL-22 and IL-17 expression depending on environmental signals. We
will use the term “Th22” merely as a convenient term to describe T
cells currently expressing the IL-22 reporter.

Having examined the plasticity of T cells expressing IL-22
under different conditions, these cells were examined further
for expression of, what had been termed “master regulators,”
transcription factors known to control genes of the major subsets
(Figure 3C; Figures S5 and S6 in Supplementary Material). The
master regulators for Th1, Th2, Th17, and Tregs are T-bet, Gata3,
RORyt, and FoxP3, respectively. RORyt, high under IL-22 condi-
tions, remained relatively stable under subsequent Th1, Th2, or
Th17 conditions, perhaps contributing to the relative stability of
IL-22 expression. We noted that RORyt was not uniquely high
in Th22 cells but was also high in normal spleen or Th17 cells
(Figure S6 in Supplementary Material). Gata3 expression was
extremely low in IL-22-expressing T cells and not increased in
subsequent Th2 conditions, accounting in part for the absence
of IL-4 expression. On the other hand, T-bet was relatively well
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FIGURE 3 | IL-22-producing T cells generated in vitro: stability in 2° Th1, Th2, or Th17 culture.
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FIGURE 3 | Continued

T cells from IL-22 reporter mice or non-reporter WT mice were generated in a 1° culture as shown in Figure 1A and sorted for reporter expression. Th1, Th2, or
Th17 cells were generated in control 1° cultures. Sorted cells from 1° Th22 cultures (or control Th1, Th2, or Th17 cultures) were then placed in a 2° culture for

3 days under Th1 («CD3, aCD28, alL-4, IL-12), Th2 (@CD3, aCD28, alFNy, IL-4), or Th17 («CD3, aCD28, alL-4, alFNy, IL-6, IL-23, TGF-B, and IL-1p) conditions.
(A) Cells were treated with GolgiStop and stained for IFNy, IL-4, or IL-17, and analyzed for IL-22 reporter expression. Numbers in quadrants indicate percent of
CD45+ cells. (B) Cells were analyzed for expression of cytokines. Data represent mean + SEM (n = 6 total samples cumulative from two separate experiments),

*p < 0.05, *p < 0.01, and **p < 0.001; ns, not significant, determined by t-test. (C) Cells were analyzed for expression of what were formerly called “master
regulators” T-bet, Gata3, RORyt, FoxP3, or the membrane protein ICOS or transcription factors AHR or cMaf, an inhibitor of IL-22 expression. Gene expression was
normalized to Hprt levels. Data are expressed as mean + SEM (n = 8 total samples cumulative from two separate experiments), *p < 0.05, *p < 0.01, and

***p < 0.001; ns, not significant, determined by t-test. Data represent two independent experiments.

expressed together with IL-22 in the firstand subsequent cultures,
but was not accompanied by IFNy expression (Figures 3A,B),
indicating it is insufficient as a “master regulator” FoxP3,
required for Tregs, was extremely low in Th22 cells. High TGFp
expression was observed under all conditions, including normal
spleen (Figure S6 in Supplementary Material), and thus was not
unique to Th22 cells. Comparison with conventional Th1, Th2,
and Th17 cells (Figure 5A in Supplementary Material) shows
that in cells from conventional Thl, Th2, and Th17 cultures,
their signature cytokines, IFNy, IL-4, and IL-17A/F, are higher
than in cells derived from Th22 cultures recultured under the
same conditions. Thus, the Th22 bias generated from optimal
cultures was relatively stable in secondary cultures optimal for
other subsets.

Several transcription factors that are thought to regulate
IL-22 expression were evaluated for plasticity, including
the positive regulator and AHR, and the negative regulator
c-Maf (Figure 3C). AHR was strongly expressed in Th22 cells
and somewhat suppressed under subsequent Thl and Th17
conditions, and yet, despite its usual positive association with
IL-22, was not accompanied by downregulation of IL-22.
c-Maf was expressed in Th22 cells and strongly increased by
Thl conditions, but despite its association with inhibiting
IL-22 expression was not accompanied by downregulation of
IL-22. Expression of the membrane protein ICOS, which has
been associated with IL-22 expression, was strongly expressed
in Th22 cells, but little affected by subsequent culture
conditions. Comparing recultured Th22 cells to cells from
primary cultures favoring Th1, Th2, or Th17 (Figure S5B in
Supplementary Material) showed the latter transcribed much
higher levels of signature regulators including T-bet, GATA3,
RORYt, and FoxP3.

Having analyzed plasticity of IL-22 expressers generated
in vitro, we next examined IL-22 expressers generated in a
pathological setting in vivo by colitis induction. CD4 T cells from
reporter mice were injected into Ragl™~ hosts to induce colitis.
Four weeks later, IL-22-reporter-expressing T cells were purified
from MLN and placed into Th1, Th2, or Th17 culture conditions.
Under Th1 or Th2 conditions, these cells showed considerably
less stability of reporter expression (Figures 4B,C; Figure S8 in
Supplementary Material) than did IL-22 expressers generated
in vitro (Figure 4A) and acquired modest expression of Thl or
Th2 cytokines. This suggests that T cells, under physiological or
pathological conditions, may retain much more plasticity than
suggested by optimal priming in vitro.

Pathogenicity of Th22 Cells

IL-22, under different conditions has been reported to promote
epithelial repair, or on the other hand, to promote inflammation.
To evaluate the pathogenicity of in vitro-generated Th22 cells, a
colitis model was used.

In Vitro-Generated Th22

T cells were cultured under IL-22-promoting conditions, purified
for IL-22 reporter expression, and transferred into Ragl~'~ recipi-
ents to generate colitis. Four weeks later, analysis of GALT showed
that a small fraction of transferred CD3* cells had retained
reporter expression (Figures 5A,B) or IL-22 transcripts (Figure
S8 in Supplementary Material). A very small fraction expressed
IL-17A, and none expressed IFNy or IL-4. T cells derived from
IL-22 expressers induced an inflammatory response in both
small and large bowel, which was significantly stronger than
that induced by IL-22 negative cells from the same culture, or
CD4 T cells from “neutral cultures” (Figures 5C,D). By “neutral
culture,” we refer to polyclonally stimulated T cells, but without
other culture conditions favoring a particular subset. Thus, we
blocked IFNYy and IL-4, and did not add cytokines favoring dif-
ferentiation into different subsets. This seemed like a reasonable
control for Th22 culture conditions, and the transferred “neutral”
cells showed less pathogenicity compared to sorted Th22 cells.
Note that T-bet was not detected in the mice receiving Th22
cells generated in vitro (Figure 5E); this may have relevance by
comparison to in vivo-generated Th22 as will be shown.

In Vivo-Generated Th22

Since in vitro- and in vivo-generated Th22 cells differed in their
plasticity, we compared their pathogenicity. Two successive
T cell transfers (each of 4 weeks) were used to evaluate Th22
cells. In the first transfer, T cells from IL-22 reporter mice were
transferred into Ragl~'~ mice to generate Th22 cells in vivo. Four
weeks later at the precolitic stage, these in vivo-generated Th22
cells were purified from mesenteric lymph node and transferred
into secondary Ragl™~ recipients and analyzed 4 weeks later.
Exceedingly, few of the transferred CD3* cells retained reporter
expression in GALT 4 weeks after secondary transfer (Figure 6A).
Moreover, some of the transferred T cells had gained expression
of IFNY, IL-17A, and IL-17F, while losing IL-22 reporter expres-
sion (Figure 6B). This is consistent with preceding results show-
ing that IL-22 expressers that are optimally polarized in vitro do
not reflect the greater plasticity of T cells under physiological or
pathological conditions that occur in vivo. On the other hand,
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percent of CD4* cells (A,B), and lymphocyte cells (C). Bar graph represents percentage of CD4 T cells (n = 3), and plotted as mean + SEM. *p < 0.05 and
**p < 0.001; ns, not significant, determined by t-test. Data are indicative of three independent experiments.

colitis was much more strongly induced by in vivo than in vitro  the pathogenic cytokines IFNy, IL-17A, and F (Figure 6B),
Th22 (Figures 6C,D; Figure S7 in Supplementary Material).  although in other models of inflammatory bowel disease (IBD),
Pathogenicity may reflect the modest switch to expression of  the percentage of IFNy producers can be much higher (41).
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FIGURE 5 | Continued

indicate percentage of CD45* cells. Data are representative of two experiments.

T cells expressing the IL-22 reporter were generated in vitro for 4 days. Cells were sorted for reporter expression and mice received cells from a “neutral culture”
(xlFNy + alL-4 + aCD3 + aCD28) versus sorted IL-22 (+) or (=) cells from a Th22 culture as shown in Figure 1. Four weeks after receiving reporter-positive cells
and inducing colitis (A), T cells from GALT were analyzed for reporter expression. Numbers in quadrants indicate percent of CD45* cells. Data are representative of
two experiments. (B) Different cytokines were determined in LP cells by intracellular staining and flow cytometry. Numbers in quadrants indicate percent of CD45+
cells. Note: comparing (A,B), tdTomato fluorescence was somewhat reduced by fixation and permeabilization in (B). Data are representative of two experiments.
(C) Intestinal tissues were evaluated histologically for ileitis and colitis. Histopathological scores were determined for the distal colon and distal small intestine (n = 8
total mice per group cumulative from two separate experiments). (D) H&E staining for representative sections in which “Rag1-'-" shows control sections from mice
that received no T cells. (E) Flow cytometry analysis of T-bet in lamina propria cells from Rag1~~ mice receiving Th22 or non-Th22 cells. Numbers in quadrants

The decrease in IL-22 reporter expression could also account
for increased pathogenicity (compare Figures 6B and 5B) if
IL-22 had a protective effect. The striking upregulation of T-bet
(Figure 6E) may account for increased IFNy or other pathogenic
features.

Effect of IL-27 on Th22 Cells

IL-22 expression by human T cells was recently reported to
be suppressed by IL-27 (42). In the mouse, it has been shown
that IL-27 can inhibit Th17 development (43, 44). IL-27 recep-
tor transcripts were detected (Figure 3B), so we evaluated the
effect of IL-27 on Th22 first generated in vitro. IL-27 strongly
inhibited IL-22 expression (Figure 7A). This is consistent with
observed reductions in RORyt and AHR and upregulation of
TGEp (Figure 7B). The cytokine profile shifted to a generally less
inflammatory pattern showing reductions in IL-17s, Ccl2, Ccl5,
and IL-9, and increased IL-10 and IL-27 itself (Figure 7C).

DISCUSSION

A novel IL-22 reporter mouse was developed, enabling us to
purify expressing cells and examine their properties, including
plasticity, lifespan, and pathogenicity. Under homeostatic condi-
tions, IL-22 reporter expression was prominent in the GALTSs
in ILCs and CDAT cells. T cell expression was relatively stable
if IL-22 expression was induced in vitro, but not in vivo. There
was strong association with the capacity to express IL-17 and
no coexpression with IFNy or IL-4 during in vitro cultures that
can promote expression of the latter. These findings are consist-
ent with a single T cell lineage having the capacity to express
either or both IL-22 and IL-17, which is distinct from Th1 and
2 lineages. IL-22-expressing T cells, generated in vivo or in vitro,
induced IBD following transfer in vivo. Transferred T cells were
shown to persist in vivo for at least 2 months, although losing
IL-22 expression. Although loss of IL-22 expression could be
explained by expansion of contaminating IL-22-reporter negative
cells, cytokines are not constitutively expressed by T cells, so it
is reasonable to interpret this as loss of IL-22 expression from a
lineage previously expressing it.

The complex regulation of IL-22 expression in T cells has been
the subject a very thorough review (2). There are many dem-
onstrated regulators of IL-22 expression in these cells. Positive
extracellular stimuli include IL-6, IL-23, IL-21, IL-1p, IL-18, and
Notch ligands. TGFp and the ICOS pathway are negative stimuli.
Transcription factors include STAT3 and Batf, which are essen-
tial, AHR and RORyt, which augment expression, and c-Maf

and IRF4, which inhibit. The relative stability of the mouse Th22
phenotype that was generated in vitro could relate to persistence
of receptors or transcription factors. Phenotypic stability could
also relate to epigenetic modifications of the IL-22 gene itself as
has been discussed in the context of other cytokine genes in T cell
subsets (45), and it will be interesting to analyze the IL-22 gene
for such modifications.

A recent study employed a fate reporter for IL-22 (46), in
which cells were permanently marked after activating the IL-22
locus. As in our study, gut ILC3s were marked under homeostatic
conditions. In the T cell lineage, perhaps because that reporter
was slow to react, there was little homeostatic expression or
in vitro induction. However, under inflammatory conditions,
marked CD4 cells, as in our study, could express IFNy, consistent
with plasticity, rather than fidelity to a stable Th22 lineage.

Our findings contrast with some others regarding the expres-
sion of NKp46 on ILCs expressing IL-22. We observed background
staining for NKp46 (Figure 2) (using two different antibodies),
similar to that of Sonnenberg et al. (3, 29) p. 202. However,
other studies have observed IL-22 expression from NKp46* ILCs
[reviewed in Ref. (25) p. 203]. These discrepancies may partly
arise not only from the differences in animal colonies or isolation
procedures but also from the frequent use of stimulants ex vivo
(such as IL-23), whereas our observations are on cells directly
isolated from mucosa.

Although early studies had concluded that in vitro-generated
Th1 and Th2 cell types were not interconvertible (47, 48), more
recent studies in vivo reveal, for example, Th2 reprograming to
express Thl features (49). Th17 cells were reported to be non-
plastic in one study in vivo (50), whereas a number of studies
in vivo reported plasticity (51-53). In our study of CD4 IL-22
expressers, reprograming appeared to be inversely correlated
with intensity of polarization. “Strong” in vitro polarization
yielded cells with relatively durable IL-22 expression under
Thl or 2 culture conditions. “Weaker” in vivo polarization in
inflamed tissue yielded IL-22 expressers that lost expression
under Th1 or 2 culture conditions. This variable range of polari-
zation is reminiscent of Th1, Th2, and Th17 phenotypes which
also become strongly polarized with optimal stimuli in vitro
and were once thought to be stable lineages [reviewed in Ref.
(45)]. However, T cells in an in vivo milieu, as in our study,
appear less differentiated and have more stem-like properties
(54), with the potential for a broad repertoire of responses
regulated by the cytokine milieu at the moment. Even more
strongly polarized IL-22 expressers generated in vitro lost
expression when transferred into an inflammatory milieu
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FIGURE 6 | Continued

representative of two experiments.

(A) T cells from IL-22 reporter mice were first transferred into Rag1~'~ mice to induce colitis. Four weeks later, MLN T cells expressing the IL-22 reporter were
transferred to secondary hosts. After 4 weeks in mice receiving IL-22 reporter-positive cells (A), T cells from gut-associated lymphoid tissues were analyzed for
reporter expression. Numbers in quadrants indicate percentage of CD45* cells. Data are representative of two experiments. (B) Intracellular cytokines were
examined in lamina propria cells by flow cytometry. Numbers in quadrants indicate percent of CD45+* cells. Data are representative of two experiments. (C) Intestinal
tissues were evaluated histologically for inflammatory bowel disease. Histopathological scores were determined for the distal colon and distal small intestine (n = 8
total mice per group cumulative from two separate experiments). (D) H&E staining for representative sections. (E) Flow cytometry analysis of T-bet in lamina propria
cells from in vivo transfer of T cells expressing or not expressing the IL-22 reporter. Numbers in quadrants indicate percentage of CD45* cells. Data are
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FIGURE 7 | IL-27 effects on products of IL-22 expressers. T cells
expressing the IL-22 reporter were generated in vitro as shown in Figure 1.
Cells were sorted for reporter expression and treated with IL-27 under
conditions favoring IL-22 expression or other Th differentiation conditions for
4 days and evaluated for transcripts by PCR. (A) IL-22 expression. Data are
analyzed by regular PCR (left panel) or real-time PCR (right panel, mean + SEM,
n = 3). (B) Regulators and transcription factors were examined by gPCR.
Gene expression was normalized to Hprt levels. Data are expressed as

mean + SEM (n = 3) “p < 0.05, *p < 0.01, and **p < 0.001; ns, not significant,
determined by t-test. Data are representative of two independent experiments.
(C) Cytokines from IL-27-treated Th22 cells were evaluated by microarray
using Th17 response PCR array. Data represent the fold changes compared
to non-treated cells. Data are representative of two independent experiments.

in vivo. The loss of IL-22 expression that we observed in vivo
could be due to several possible mechanisms. Loss of expres-
sion could be due to cytokines that suppress, such as TGFp or

IL-27 as shown here. Loss of expression could also be due to
insufficient levels of inducing cytokines, such as IL-23 or IL-6,
or to other unknown mechanisms.

Human Th22 cells exhibit less plasticity than mouse T cells
expressing IL-22 and were reported to maintain IL-22 expression
under Th1 or 2 culture conditions (55). Also, in contrast to IL-17
induction that was readily induced in mouse IL-22 expressers in
our experiments, human Th22 cells were not amenable to IL-17
induction (55) (although some human Th17 coexpress IL-22).
Thus, human “Th22” cells appear to constitute a subset distinct
from Th17 cells (9), whereas mouse cells, from our data are “Th17
biased” (Figures 3A,B).

Although IL-22 expression could be extinguished under
Thl or Th2 culture conditions, we did not observe induction
of Thl or Th2 signature cytokines, IFNy or IL-4, respec-
tively, under in vitro conditions (Figures 3A,B). However,
under inflammatory conditions, in vivo, IFNy and IL-4 were
induced from these cells (Figure 6), perhaps contributing to
the pathogenicity of the transferred cells (Figure 6). In the
mouse, primary T cells had been reported to express IL-22
transcripts after culture under Thl (but not Th2) conditions
(11); however, IL-22 protein was detected only under Th17, but
not Th1 or 2 conditions (10). Human T cells have been reported
to coexpress IFNy (but not IL-4) with IL-22 (8, 9). Perhaps sur-
prisingly, T-bet, the “master regulator” of IFNy, was relatively
well expressed together with IL-22 in the first and subsequent
cultures, but was not associated with IFNy expression, in
contrast to other conditions reporting coexpression (36). This
could be explained by a lack of accessibility of the IFNy gene
due to a failure of pioneer nuclear factors to render its opening
(45). This illustrates the point that the term “master regulator”
is overly simplistic as has been shown experimentally in several
lineages (56, 57).

Pathogenicity of Th22 cells was manifested as severe IBD
following transfer into Ragl™~ mice. This pathogenicity was
considerably greater if the Th22 cells derived from precolitic
mice (Figure 6) than from Th22 cultures (Figure 5); however, the
former would have TCR specificities for gut microbiota, whereas
the latter would have random TCR specificities. Although IL-22
has been shown to contribute to pathogenicity in some models
(6, 7, 28), pathogenicity of Th22 cells in our experiments seems
unlikely to be due to IL-22 itself. Although our experiments do
not directly address whether IL-22 itself is pathogenic, we suggest
that it is not pathogenic because its expression does not correlate
with disease by several criteria. First, the peak of IL-22 expression
in colon and ileum (Figure S3A in Supplementary Material) at
4 weeks after transfer precedes the peak of pathology at 8 weeks.
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Second, the most pathogenic cells (Figure 6) express much less
IL-22 than the less pathogenic cells (Figure 5). Third, there is
a dramatic loss of expression after transfer, T cells decline from
nearly 90% positive (Figure 4B) in the transferred population
down to 1 or 2% in GALT (Figure 6A) - it therefore seems
unlikely that the pathology is due to IL-22. Although these are
correlations, they are more consistent with IL-22 per se being
non-pathogenic, whereas the T cells that once expressed IL-22
are capable inducing pathology.

Since the reporter became silenced in most cells following
transfer. IL-22 could have a protective role in that higher expres-
sion (Figure 5C) was associated with less pathology than low
expression (Figure 6C). IL-17A and F would be candidates for
pathogenicity since they are clearly pathogenic in this model
and the cells were shown to produce modestly higher IL-17A
and F as well as IFNy and IL-4 (Figure 6), which can also be
colitogenic. The higher colitogenic population was also associ-
ated with a striking increase in T-bet expression (Figure 6C).
Silencing of IL-22 following transfer could result from a lack of
inducing factors in vivo, or active suppression, for example, by
IL-27 (Figure 7) or TGFp (34) . Future studies could address the
mechanism of Th22 plasticity in vivo. Determining this mecha-
nism could lead to methods for maintaining IL-22 expression in
Th22 cells, and inhibiting IFNy and IL-4, leading to a therapeutic
benefit in IBD.
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