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Sphingolipids are the major constituent of the mucus secreted by the cells of epithelial 
linings of lungs where they maintain the barrier functions and prevent microbial invasion. 
Sphingolipids are interconvertible, and their primary and secondary metabolites have both 
structural and functional roles. Out of several sphingolipid metabolites, sphingosine-1 
phosphate (S1P) and ceramide are central molecules and decisive for sphingolipid sig-
naling. These are produced by enzymatic activity of sphingosine kinase-1 (SK-1) upon 
the challenge with either biological or physiological stresses. S1P and ceramide rheostat 
are important for the progression of various pathologies, which are manifested by inflam-
matory cascade. S1P is a well-established secondary messenger and associated with 
various neuronal, metabolic, and inflammatory diseases other than respiratory infections 
such as Chlamydia pneumoniae, Streptococcus pneumoniae, and Mycobacterium 
tuberculosis. These pathogens are known to exploit sphingolipid metabolism for their 
opportunistic survival. Decreased sphingosine kinase activity/S1P content in the lung 
and peripheral blood of tuberculosis patients clearly indicated a dysregulation of sphin-
golipid metabolism during infection and suggest that sphingolipid metabolism is import-
ant for management of infection by the host. Our previous study has demonstrated that 
gain of SK-1 activity is important for the maturation of phagolysosomal compartment, 
innate activation of macrophages, and subsequent control of mycobacterial replication/
growth in macrophages. Furthermore, S1P-mediated amelioration of lung pathology and 
disease severity in TB patients is believed to be mediated by the selective activation or 
rearrangement of various S1P receptors (S1PR) particularly S1PR2, which has been 
effective in controlling respiratory fungal pathogens. Therefore, such specificity of S1P–
S1PR would be paramount for triggering inflammatory events, subsequent activation, 
and fostering bactericidal potential in macrophages for the control of TB. In this review, 
we have discussed and emphasized that sphingolipids may represent effective novel, yet 
dual specific drug targets for controlling pulmonary infections.

Keywords: sphingolipids, ceramide, sphingosine kinase-1, macrophages, lungs, microbes

inTRODUCTiOn

Sphingolipids are crucial bioactive molecules and involved in several fundamental and pathophysi-
ological processes. A novel therapeutic potential of sphingolipids has been documented for the treat-
ment of asthma, cystic fibrosis, respiratory tract infection, and acute lung injuries (1–3). Sphingolipids 
are one of the active constituents of the mucus secreted by alveolar epithelium, which protects the 
lung tissue from invading pathogens. A large number of intermediate metabolites in the mucus are 
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FigURe 1 | Pathway for synthesis of ceramide, sphingomyelin, and sphingosine-1 phosphate. (A) The de novo synthesis of ceramide starts with 
palmitoyl-CoA and serine in endoplasmic reticulum. Ceramide is then converted to sphingomyelin, which is the structural component of outer leaflet of plasma 
membrane. (B) Enhanced ceramide concentration in lungs results in inflammation and cell damage therefore dynamic balance of sphingosine/S1P/ceramide is 
important for pathological manifestation during TB infection.
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secreted by alveolar epithelium where they act as surfactants and 
maintain the barrier integrity. One of the important aspects of 
sphingolipids is their interconvertible nature, which enables them 
to both integrate and regulate plethora of cellular functions (4, 5) 
(Figure  1). Among various sphingolipids metabolites, ceramide 
and sphingosine-1 phosphate (S1P) are the best studied in context 
of various pathologies. While ceramide and free sphingosine 
induce cell death and promote sterile inflammation, S1P and 
ceramide-1-phosphate (C1P) promote cell division and survival 
and maintain homeostasis (6). Therefore, a fine balance in the level 
of ceramide and other sphingosine metabolites particularly S1P is 
critical for cellular homeostasis. S1P initiates its signals via G pro-
tein-coupled receptors, named as S1P receptors (S1PR). Till date, 
five different types of S1PR (S1PR1–5) have been discovered, and 
their temporal expression in cells determines the fate of S1P signal-
ing in various organs. Of five S1PR, receptors 1, 2, and 3 have been 
studied in context of immune regulation and pathogen control. 

Interaction of S1P with S1PR1 enhances vascular permeability and 
T cell egress as seen in many autoimmune and respiratory diseases 
such as experimental autoimmune encephalomyelitis, airway 
hyper responsiveness, and pulmonary eosinophil sequestration 
(7, 8). Pharmacological inhibition of S1PR-1 signaling by FTY-720 
(structural analog of sphingosine) also known as Fingolimod has 
demonstrated that sphingolipids are important drug target for 
controlling autoimmune disorders (9–11).

Three major enzymes have been shown to execute overall 
sphingolipid metabolisms. These are sphingomyelin synthase/
lysase, ceramide synthase/lysase, and sphingosine kinase/lysase. 
The enzyme most frequently associated with human ailments is 
acid sphingomyelinase, which remains elevated and contributes 
to the pulmonary inflammation (1, 12, 13). However, sphingosine 
kinase-1 (SK-1) and SK-2 have been implicated in immune-cell 
regulation (14, 15). SK-1 has been shown to mediate mycobacte-
rial infection-induced innate immune response and also capable 
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FigURe 2 | Sphingolipids (S1P) mediate protective inflammatory response during infection. Certain environmental stress such as air pollution and 
respiratory diseases caused by genetic alterations (cystic fibrosis) led to an increase in sialylated glycosphingolipid content in epithelial cell lining of lungs, which 
serve as receptors for many bacteria (Mycoplasma pneumonia and Pseudomonas aeruginosa). Mycobacterium tuberculosis inhibits the activity of sphingosine 
kinase in macrophages, which results in decreased intracellular concentration of Ca2+ ions and subsequent phagosome maturation arrest that can be modulated 
by selective upregulation of S1PR2-associated antimicrobial signaling in the alveolar macrophages.
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of controlling mycobacterial infection (16). In the same line, S1P, 
a reaction product of SK-1, has also been implicated in controlling 
mycobacterial infection (17). Pathogenic mycobacteria inhibit 
both SK-1 enzymatic activity as well as its translocation toward 
phagolysosomal membrane, which prevents the maturation of 
phagolysosomal compartment (Figure 2) and secure survival of 
mycobacteria in inflammatory macrophages. Reduced serum titer 
of S1P in patients with pulmonary tuberculosis provides clinical 
evidence of such inhibition of SK-1 enzymes by mycobacteria 
(18). It could be due to the metabolism of S1P into ceramide in 
macrophages; however, it needs further investigation. S1P triggers 
multiple signaling pathways, including Ca++ mobilization from 
ER and the activation of phospholipases, such as phospholipase 
D, whose antimicrobial activity has been reported (19–21). Since 
sphingolipids and their derivatives have recently emerged as next 
generation drug targets for controlling infectious and inflamma-
tory disease; therefore, this review is focused on their dual fate 
in controlling respiratory infections especially mycobacterial 
infection.

SPHingOLiPiDS in ReSPiRATORY TRACT 
inFeCTiOnS

An increased expression of sialylated glycosphingolipids on lung 
epithelial cells in cystic fibrosis suggest that sphingolipids can inte-
grate into membrane lipids rafts organelle and serve as receptors 
for bacterial invasion and inflammatory response. Mycoplasma 
pneumonia infection of lungs results in the induction of autoanti-
bodies against glycosphingolipids, suggesting the involvement of 
sphingolipid in promoting inflammation in lung (22). Adherence 
of Pseudomonas aeruginosa to asialylated gangliosides, which is a 

type of sphingolipid, is increased on the surface of cystic fibrosis 
cells and has been associated with the severity of the disease (23). 
It has also been shown that interaction of P. aeruginosa with host 
epithelial cells activates host acid sphingomyelinase, leading to 
the generation of membrane bound ceramide, which triggers 
apoptosis (24, 25) of the host cell. Intriguingly, P. aeruginosa 
also produces and secretes sphingolipid-metabolizing enzymes, 
phospholipase-C (26), which can synthesize sphingomyelin from 
ceramide by enhancing the activity of alkaline ceramidase that 
break down ceramide. It seems that enzyme production by the 
bacteria and the type of reaction it catalyzes depend on substrate 
availability or reaction conditions like free sphingosine or cera-
mide. Compelling evidences demonstrate that certain pulmonary 
pathogen like Chlamydia cause the trafficking of sphingomyelin 
and S1PR from trans-Golgi apparatus (27, 28) toward their inclu-
sion membrane (29) for securing their intracellular survival, 
which contribute to immune evade mechanisms of these bacteria. 
Thus, these models, supporting our hypothesis, demonstrate dual 
fate of sphingolipids on both host as well as pathogen during 
infections.

ROLe OF SPHingOLiPiDS in FUngAL 
PATHOgeneSiS

With the exception of Sphingobacterium, Sphingomonas, and 
Bacteroides, prokaryotic cells do not contain their own sphin-
golipids. However, protozoan and fungal pathogens contain 
sphingolipids and are found to be involved in their pathogenic-
ity (30). Fungal sphingolipids are important for engulfment 
and subsequent phagocytosis by the macrophages (31). The 
pathogen-derived sphingolipids either compete or modulate the  
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sphingolipid signaling in host and interfere with immune  
response (32). Since last decade, fungal sphingolipids have 
emerged as a potential target for new antifungal drugs. The 
first ever evidence that fungi contain sphingolipids came from 
Candida albicans, which was first shown to produce glucosyl-
ceramides (32, 33). Recently, it has been shown that Cryptococcus 
neoformans, an opportunistic pathogen, produces inositol-phos-
phoryl ceramide synthase that plays a key role in virulence of the 
pathogen (34). Downregulation of the enzyme in C. neoformans 
strains has growth deficits when inside alveolar macrophages 
(31). Other than this, selective stimulation of S1PR2 in host 
has also shown to confer protection against pathogenesis of this 
fungus indicated therapeutic potential of S1PR (35) in controlling 
pathogenesis of this fungus. Other fungal species like Aspergillus 
niger is responsible for invasive pulmonary aspergillosis and also 
produce specific sphingolipids that play role in pathogenicity (36, 
37), raising further scope of targeting these sphingolipids in con-
trolling the pathogenesis of this fungus, which is one of the best 
known opportunistic fungal pathogen in immunocompromised 
patients.

SPHingOLiPiDS in MYCOBACTeRiAL 
DiSeASe

Mycobacterial infections represent the third major cause of 
worldwide annual mortalities and have raised serious concerns 
about the development of effective therapies for controlling infec-
tion. Sphingosine kinase-1 is a critical enzyme of sphingolipid 
metabolism and mediates mycobacteria-induced inflammatory 
responses in macrophages (38). In line with this, our novel 
and pioneer study (16) has demonstrated that SK-1 not only 
orchestrates mycobacterial infection-induced innate immune 
response but also affords optimum defense against mycobacte-
rial infection in macrophages. Our unpublished data suggest 
that boosting S1P level pharmacologically in host may offer 
therapeutic benefit in managing mycobacterial disease. However, 
among various species of mycobacteria, pathogenic species 
of mycobacteria particularly MDR/MTR strains contain their 
own type seventh secretion system, which they use to exploit 
macrophage defense mechanism for their replication (39–41). 
Kusner and Russell’s groups have already indicated the sig-
nificance of ceramide/sphingolipid in establishing mycobacterial 
persistency (42, 43), which may contribute to the drug resistance. 
Among those, mycobacteria-induced host sphingolipids (mainly 
ceramide) are anticipated to confer drug resistance in rifampin-
resistant clinical isolate of TB. This could be due to S1P-pAKT-
mediated upregulation of mTOR signaling in macrophages  
(44, 45) by various mycobacterial secretory components.

CLiniCAL PeRSPeCTiveS

We and other have demonstrated the potential of SK-1/S1P in 
reducing mycobacterial growth in preclinical models (17), which 
raised the hope of exploring sphingolipid mimetic as a potential 
approach for controlling infection. However, it still remains a 
challenge to predict the outcome of sphingolipid-directed thera-
peutics in clinical cases like non-reactive and/or extrapulmonary 

TB cases, which are manifested with aberrant pathology and are 
usually refractory for immune stimulation. First-generation TB 
drugs are used routinely for the management of acute TB cases 
where bacteria display normal pathophysiology, and it is expected 
that enhancing host sphingolipid signaling or metabolism may 
afford defense in host against acute infection. However, during 
chronic or persistent or non-reactive TB, enhanced pulmonary 
titer of ceramide/sphingolipids in hitratho would oppose immune 
attack mechanisms and would promote bacterial persistency by 
their virtue of promote hypoxia. Other mechanisms, which could 
favor mycobacterial survival either separately or in concert, could 
include sphingolipid-driven polarization of effector T cells and 
M1 macrophages toward Treg (46–48) and M2 macrophages 
(49, 50), which are refractory in nature and promote anti/sterile 
inflammatory response around granuloma. Under such cases, 
employing sphingolipids inhibitors in combination of TB drugs 
is believed to help in breaking mycobacterial persistency and 
ameliorating rifamycin resistance (51–53), which is still a major 
challenge for preventing relapse. Exploiting such dual specificity 
of both sphingolipids mimetics/inhibitors certainly represents 
novel and future approaches for managing respiratory infec-
tion like TB, and this is anticipated that such pharmacological 
interventions may also reduce the risk of developing lung cancer 
in TB patients.

COnCLUSiOn AnD FUTURe 
PROSPeCTive

Among all sphingolipids, ceramide has been the major cause for 
inflammation and cell death in lungs. However, other sphingolipid 
metabolites especially S1P and C1P have effects opposite to the 
ceramide, thus reducing inflammation and apoptosis of cells. It 
is intriguing to note that the above-reported data suggest that 
pathologies associated with Cystic fibrosis (CF), Chronic obstruc-
tive pulmonary discease (COPD), Respiratory dystress syndrome 
(RDS), and respiratory tract infections, where inflammation 
contributes the most, all depend on a balance between ceramide 
and S1P/C1P concentrations in the lung. More specifically, it 
is the ratio of ceramide versus S1P/C1P, which determines the 
extent of inflammation in lungs. Sphingolipids and its metabolites 
represent a promising drug targets, and within the lung, ceramide 
metabolism represents a key target for controlling inflamma-
tion. However, better understanding of sphingolipid-mediated 
pathologies and how sphingolipid metabolism can be modified 
to benefit the host may give a new insight into new therapeutic 
strategies and can provide alternative or adjuvant to existing 
therapeutic approaches for managing respiratory syndromes.

AUTHOR COnTRiBUTiOnS

Both authors have contributed equally to this work and approved 
it for publication.

FUnDing

This work was supported by the grant BT/PR8282/MED/ 
29/722/2013 from Department of Biotechnology (DBT), 
Government of India to HP. LS was supported by this grant.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Sharma and Prakash Sphingolipids and Respiratory Infections

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 378

ReFeRenCeS

1. Dhami R, He X, Schuchman EH. Acid sphingomyelinase deficiency attenuates 
bleomycin-induced lung inflammation and fibrosis in mice. Cell Physiol 
Biochem (2010) 26:749–60. doi:10.1159/000322342 

2. Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic 
responses, asthma and anaphylaxis. Pharmacol Ther (2007) 115:390–9. 
doi:10.1016/j.pharmthera.2007.05.011 

3. Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. The roles of sphin-
gosine-1-phosphate in asthma. Mol Immunol (2002) 38:1239–45. doi:10.1016/
S0161-5890(02)00070-6 

4. Ohanian J, Ohanian V. Sphingolipids in mammalian cell signalling. Cell Mol 
Life Sci (2001) 58:2053–68. doi:10.1007/PL00000836 

5. Hanada K, Nishijima M. Selection of mammalian cell mutants in sphin-
golipid biosynthesis. Methods Enzymol (2000) 312:304–17. doi:10.1016/
S0076-6879(00)12917-9 

6. Sawai H, Hannun YA. Ceramide and sphingomyelinases in the regulation 
of stress responses. Chem Phys Lipids (1999) 102:141–7. doi:10.1016/
S0009-3084(99)00082-1 

7. Tsai HC, Han MH. Sphingosine-1-phosphate (S1P) and S1P signaling path-
way: therapeutic targets in autoimmunity and inflammation. Drugs (2016) 
76:1067–79. doi:10.1007/s40265-016-0603-2 

8. Jin J, Hu J, Zhou W, Wang X, Xiao Q, Xue N, et  al. Development of a 
selective S1P1 receptor agonist, Syl930, as a potential therapeutic agent for 
autoimmune encephalitis. Biochem Pharmacol (2014) 90:50–61. doi:10.1016/ 
j.bcp.2014.04.010 

9. Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, et  al. 
Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows 
superior efficacy as compared with interferon-beta in mouse experimental 
autoimmune encephalomyelitis. Int Immunopharmacol (2011) 11:366–72. 
doi:10.1016/j.intimp.2010.10.005 

10. Aktas O, Kury P, Kieseier B, Hartung HP. Fingolimod is a potential novel 
therapy for multiple sclerosis. Nat Rev Neurol (2010) 6:373–82. doi:10.1038/
nrneurol.2010.76 

11. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in 
multiple sclerosis. Clin Neuropharmacol (2010) 33:91–101. doi:10.1097/
WNF.0b013e3181cbf825 

12. McGovern MM, Schuchman EH. Acid Sphingomyelinase Deficiency. Seattle, 
WA: University of Washington, Seattle (1993).

13. Becker KA, Riethmuller J, Luth A, Doring G, Kleuser B, Gulbins E. Acid 
sphingomyelinase inhibitors normalize pulmonary ceramide and inflamma-
tion in cystic fibrosis. Am J Respir Cell Mol Biol (2010) 42:716–24. doi:10.1165/
rcmb.2009-0174OC 

14. Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in 
immunity. Nat Rev Immunol (2011) 11:403–15. doi:10.1038/nri2974 

15. Chi H. Sphingosine-1-phosphate and immune regulation: trafficking and 
beyond. Trends Pharmacol Sci (2011) 32:16–24. doi:10.1016/j.tips.2010. 
11.002 

16. Prakash H, Luth A, Grinkina N, Holzer D, Wadgaonkar R, Gonzalez AP, 
et  al. Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis 
infection in macrophages. PLoS One (2010) 5:e10657. doi:10.1371/journal.
pone.0010657 

17. Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, et al. Sphingosine 
1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect 
Dis (2004) 189:2129–38. doi:10.1086/386286 

18. Malik ZA, Thompson CR, Hashimi S, Porter B, Iyer SS, Kusner DJ. Cutting 
edge: Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome mat-
uration in human macrophages via specific inhibition of sphingosine kinase. 
J Immunol (2003) 170:2811–5. doi:10.4049/jimmunol.170.6.2811 

19. Spiegel S, Milstien S. Sphingoid bases and phospholipase D activation. Chem 
Phys Lipids (1996) 80:27–36. doi:10.1016/0009-3084(96)02543-1 

20. Olivera A, Buckley NE, Spiegel S. Sphingomyelinase and cell-permeable 
ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 
fibroblasts. J Biol Chem (1992) 267:26121–7. 

21. Desai NN, Zhang H, Olivera A, Mattie ME, Spiegel S. Sphingosine-1-
phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by 
phospholipase D activation. J Biol Chem (1992) 267:23122–8. 

22. Nishimura M, Saida T, Kuroki S, Kawabata T, Obayashi H, Saida K, 
et  al. Post-infectious encephalitis with anti-galactocerebroside antibody 

subsequent to Mycoplasma pneumoniae infection. J Neurol Sci (1996) 140: 
91–5. doi:10.1016/0022-510X(96)00106-2 

23. Yu H, Zeidan YH, Wu BX, Jenkins RW, Flotte TR, Hannun YA, et al. Defective 
acid sphingomyelinase pathway with Pseudomonas aeruginosa infection 
in cystic fibrosis. Am J Respir Cell Mol Biol (2009) 41:367–75. doi:10.1165/
rcmb.2008-0295OC 

24. Manago A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, 
et al. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mito-
chondrial reactive oxygen species and mitochondrial acid sphingomyelinase. 
Antioxid Redox Signal (2015) 22:1097–110. doi:10.1089/ars.2014.5979 

25. Zhang Y, Li X, Carpinteiro A, Gulbins E. Acid sphingomyelinase amplifies 
redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. 
J Immunol (2008) 181:4247–54. doi:10.4049/jimmunol.181.6.4247 

26. Grassme H, Jendrossek V, Riehle A, von KG, Berger J, Schwarz H, et al. Host 
defense against Pseudomonas aeruginosa requires ceramide-rich membrane 
rafts. Nat Med (2003) 9:322–30. doi:10.1038/nm823 

27. Robertson DK, Gu L, Rowe RK, Beatty WL. Inclusion biogenesis and reac-
tivation of persistent Chlamydia trachomatis requires host cell sphingolipid 
biosynthesis. PLoS Pathog (2009) 5:e1000664. doi:10.1371/journal.ppat. 
1000664 

28. Wolf K, Hackstadt T. Sphingomyelin trafficking in Chlamydia pneumo-
niae-infected cells. Cell Microbiol (2001) 3:145–52. doi:10.1046/j.1462- 
5822.2001.00098.x 

29. Scidmore MA, Fischer ER, Hackstadt T. Sphingolipids and glycoproteins are 
differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 
(1996) 134:363–74. doi:10.1083/jcb.134.2.363 

30. Brennan PJ, Griffin PF, Losel DM, Tyrrell D. The lipids of fungi. Prog Chem 
Fats Other Lipids (1974) 14(Pt 2):49–89. doi:10.1016/0079-6832(75)90002-6 

31. Tafesse FG, Rashidfarrokhi A, Schmidt FI, Freinkman E, Dougan S, Dougan 
M, et  al. Disruption of sphingolipid biosynthesis blocks phagocytosis of 
Candida albicans. PLoS Pathog (2015) 11:e1005188. doi:10.1371/journal.
ppat.1005188 

32. Rouabhia M, Mukherjee PK, Lattif AA, Curt S, Chandra J, Ghannoum MA. 
Disruption of sphingolipid biosynthetic gene IPT1 reduces Candida albicans 
adhesion and prevents activation of human gingival epithelial cell innate 
immune defense. Med Mycol (2011) 49:458–66. doi:10.3109/13693786.2010
.535031 

33. Oura T, Kajiwara S. Candida albicans sphingolipid C9-methyltransferase is 
involved in hyphal elongation. Microbiology (2010) 156:1234–43. doi:10.1099/
mic.0.033985-0 

34. Luberto C, Toffaletti DL, Wills EA, Tucker SC, Casadevall A, Perfect JR, et al. 
Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of 
C. neoformans. Genes Dev (2001) 15:201–12. doi:10.1101/gad.856001 

35. McQuiston T, Luberto C, Del PM. Role of sphingosine-1-phosphate (S1P) 
and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by 
alveolar macrophages. Microbiology (2011) 157:1416–27. doi:10.1099/mic.0. 
045989-0 

36. Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG. New sphingolipids with 
a previously unreported 9-methyl-C20-sphingosine moiety from a marine 
algous endophytic fungus Aspergillus niger EN-13. Lipids (2007) 42:759–64. 
doi:10.1007/s11745-007-3079-8 

37. Wagner H, Fiegert E. [Sphingolipids and glycolipids of fungi and higher 
plants. 3. Isolation of a cerebroside from Aspergillus niger]. Z Naturforsch B 
(1969) 24:359. 

38. Yadav M, Roach SK, Schorey JS. Increased mitogen-activated protein 
kinase activity and TNF-alpha production associated with Mycobacterium 
smegmatis-but not Mycobacterium avium-infected macrophages requires 
prolonged stimulation of the calmodulin/calmodulin kinase and cyclic AMP/
protein kinase A pathways. J Immunol (2004) 172:5588–97. doi:10.4049/
jimmunol.172.9.5588

39. Lienard J, Movert E, Valfridsson C, Sturegard E, Carlsson F. ESX-1 exploits type 
I IFN-signalling to promote a regulatory macrophage phenotype refractory 
to IFNgamma-mediated autophagy and growth restriction of intracellular 
mycobacteria. Cell Microbiol (2016) 18:1471–85. doi:10.1111/cmi.12594 

40. Ates LS, Houben EN, Bitter W. Type VII secretion: a highly versatile 
secretion system. Microbiol Spectr (2016) 4. doi:10.1128/microbiolspec.
VMBF-0011-2015 

41. Shah S, Bohsali A, Ahlbrand SE, Srinivasan L, Rathinam VA, Vogel SN, et al. 
Cutting edge: Mycobacterium tuberculosis but not nonvirulent mycobacteria 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1159/000322342
https://doi.org/10.1016/j.pharmthera.2007.05.011
https://doi.org/10.1016/S0161-5890(02)00070-6
https://doi.org/10.1016/S0161-5890(02)00070-6
https://doi.org/10.1007/PL00000836
https://doi.org/10.1016/S0076-6879(00)12917-9
https://doi.org/10.1016/S0076-6879(00)12917-9
https://doi.org/10.1016/S0009-3084(99)00082-1
https://doi.org/10.1016/S0009-3084(99)00082-1
https://doi.org/10.1007/s40265-016-0603-2
https://doi.org/10.1016/
j.bcp.2014.04.010
https://doi.org/10.1016/
j.bcp.2014.04.010
https://doi.org/10.1016/j.intimp.2010.10.005
https://doi.org/10.1038/nrneurol.2010.76
https://doi.org/10.1038/nrneurol.2010.76
https://doi.org/10.1097/WNF.0b013e3181cbf825
https://doi.org/10.1097/WNF.0b013e3181cbf825
https://doi.org/10.1165/rcmb.2009-0174OC
https://doi.org/10.1165/rcmb.2009-0174OC
https://doi.org/10.1038/nri2974
https://doi.org/10.1016/j.tips.2010.
11.002
https://doi.org/10.1016/j.tips.2010.
11.002
https://doi.org/10.1371/journal.pone.0010657
https://doi.org/10.1371/journal.pone.0010657
https://doi.org/10.1086/386286
https://doi.org/10.4049/jimmunol.170.6.2811
https://doi.org/10.1016/0009-3084(96)02543-1
https://doi.org/10.1016/0022-510X(96)00106-2
https://doi.org/10.1165/rcmb.2008-0295OC
https://doi.org/10.1165/rcmb.2008-0295OC
https://doi.org/10.1089/ars.2014.5979
https://doi.org/10.4049/jimmunol.181.6.4247
https://doi.org/10.1038/nm823
https://doi.org/10.1371/journal.ppat.
1000664
https://doi.org/10.1371/journal.ppat.
1000664
https://doi.org/10.1046/j.1462-
5822.2001.00098.x
https://doi.org/10.1046/j.1462-
5822.2001.00098.x
https://doi.org/10.1083/jcb.134.2.363
https://doi.org/10.1016/0079-6832(75)90002-6
https://doi.org/10.1371/journal.ppat.1005188
https://doi.org/10.1371/journal.ppat.1005188
https://doi.org/10.3109/13693786.2010.535031
https://doi.org/10.3109/13693786.2010.535031
https://doi.org/10.1099/mic.0.033985-0
https://doi.org/10.1099/mic.0.033985-0
https://doi.org/10.1101/gad.856001
https://doi.org/10.1099/mic.0.
045989-0
https://doi.org/10.1099/mic.0.
045989-0
https://doi.org/10.1007/s11745-007-3079-8
https://doi.org/10.4049/jimmunol.172.9.5588
https://doi.org/10.4049/jimmunol.172.9.5588
https://doi.org/10.1111/cmi.12594
https://doi.org/10.1128/microbiolspec.VMBF-0011-2015
https://doi.org/10.1128/microbiolspec.VMBF-0011-2015


6

Sharma and Prakash Sphingolipids and Respiratory Infections

Frontiers in Immunology | www.frontiersin.org March 2017 | Volume 8 | Article 378

inhibits IFN-beta and AIM2 inflammasome-dependent IL-1beta production 
via its ESX-1 secretion system. J Immunol (2013) 191:3514–8. doi:10.4049/
jimmunol.1301331 

42. Speer A, Sun J, Danilchanka O, Meikle V, Rowland JL, Walter K, et al. Surface 
hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports 
replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol 
(2015) 97:881–97. doi:10.1111/mmi.13073 

43. Gutierrez MG, Gonzalez AP, Anes E, Griffiths G. Role of lipids in killing 
mycobacteria by macrophages: evidence for NF-kappaB-dependent and 
-independent killing induced by different lipids. Cell Microbiol (2009) 
11:406–20. doi:10.1111/j.1462-5822.2008.01263.x 

44. Zullo AJ, Jurcic Smith KL, Lee S. Mammalian target of rapamycin inhibition 
and mycobacterial survival are uncoupled in murine macrophages. BMC 
Biochem (2014) 15:4. doi:10.1186/1471-2091-15-4 

45. Yang CS, Song CH, Lee JS, Jung SB, Oh JH, Park J, et al. Intracellular network 
of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa 
ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for 
regulating mycobacteria-induced IL-23 expression in human macrophages. 
Cell Microbiol (2006) 8:1158–71. doi:10.1111/j.1462-5822.2006.00699.x 

46. Arlt O, Schwiebs A, Japtok L, Ruger K, Katzy E, Kleuser B, et al. Sphingosine-1-
phosphate modulates dendritic cell function: focus on non-migratory effects 
in  vitro and in  vivo. Cell Physiol Biochem (2014) 34:27–44. doi:10.1159/ 
000362982 

47. Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs 
the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol (2010) 
11:1047–56. doi:10.1038/ni.1939 

48. Goetzl EJ, Wang W, McGiffert C, Huang MC, Graler MH. Sphingosine 
1-phosphate and its G protein-coupled receptors constitute a multifunctional 
immunoregulatory system. J Cell Biochem (2004) 92:1104–14. doi:10.1002/
jcb.20053 

49. Park SJ, Lee KP, Kang S, Lee J, Sato K, Chung HY, et  al. Sphingosine 
1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage 
polarization through IL-4. Cell Signal (2014) 26:2249–58. doi:10.1016/j.cellsig. 
2014.07.009 

50. Weigert A, Tzieply N, von KA, Johann AM, Schmidt H, Geisslinger G, et al. 
Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. 
Mol Biol Cell (2007) 18:3810–9. doi:10.1091/mbc.E06-12-1096 

51. Ishitsuka A, Fujine E, Mizutani Y, Tawada C, Kanoh H, Banno Y, et al. FTY720 
and cisplatin synergistically induce the death of cisplatin-resistant melanoma 
cells through the downregulation of the PI3K pathway and the decrease in epi-
dermal growth factor receptor expression. Int J Mol Med (2014) 34:1169–74. 
doi:10.3892/ijmm.2014.1882 

52. Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA, et al. The receptor 
S1P1 overrides regulatory T cell-mediated immune suppression through Akt-
mTOR. Nat Immunol (2009) 10:769–77. doi:10.1038/ni.1743 

53. Maeurer C, Holland S, Pierre S, Potstada W, Scholich K. Sphingosine-1-
phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase 
PAM. Cell Signal (2009) 21:293–300. doi:10.1016/j.cellsig.2008.10.016 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Sharma and Prakash. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.4049/jimmunol.1301331
https://doi.org/10.4049/jimmunol.1301331
https://doi.org/10.1111/mmi.13073
https://doi.org/10.1111/j.1462-5822.2008.01263.x
https://doi.org/10.1186/1471-2091-15-4
https://doi.org/10.1111/j.1462-5822.2006.00699.x
https://doi.org/10.1159/
000362982
https://doi.org/10.1159/
000362982
https://doi.org/10.1038/ni.1939
https://doi.org/10.1002/jcb.20053
https://doi.org/10.1002/jcb.20053
https://doi.org/10.1016/j.cellsig.
2014.07.009
https://doi.org/10.1016/j.cellsig.
2014.07.009
https://doi.org/10.1091/mbc.E06-12-1096
https://doi.org/10.3892/ijmm.2014.1882
https://doi.org/10.1038/ni.1743
https://doi.org/10.1016/j.cellsig.2008.10.016
http://creativecommons.org/licenses/by/4.0/

	Sphingolipids Are Dual Specific Drug Targets for the Management of Pulmonary Infections: Perspective
	Introduction
	Sphingolipids in Respiratory Tract Infections
	Role of Sphingolipids in Fungal Pathogenesis
	Sphingolipids in Mycobacterial Disease
	Clinical Perspectives
	Conclusion and Future Prospective
	Author Contributions
	Funding
	References


