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Regulatory T  cells (Tregs) restrict overexuberant lymphocyte activation. While close 
proximity between Tregs and their suppression targets is important for optimal inhibition, 
and literature indicates that draining lymph nodes (LNs) may serve as a prime location 
for the suppression, signaling details orchestrating this event are not fully characterized. 
Using a protocol to enable peripheral generation of inducible antigen-specific Tregs 
(asTregs) to control allergen-induced asthma, we have identified an antigen-specific 
mechanism that locks asTregs within hilar LNs which in turn suppresses airway inflam-
mation. The suppressive asTregs, upon antigen stimulation in the LN, downregulate 
sphingosine-1-phosphate receptor 1 egress receptor expression. These asTregs in turn 
mediate the downregulation of the same receptor on incoming effector T cells. Therefore, 
asTregs and effector T cells are locked in these draining LNs for prolonged interactions. 
Disruption of individual steps of this retention sequence abolishes the inflammation 
controlled by asTregs. Collectively, this study identifies a new requirement of spatial 
congregation with their suppression targets essential for asTreg functions and suggests 
therapeutic programs via Treg traffic control.

Keywords: inducible regulatory T  cell, antigen specific suppression, hilar lymph node, airway inflammation, 
egress, s1p1

inTrODUcTiOn

Regulatory T cells (Tregs) play a crucial role in balancing the activation state of the immune system 
(1, 2). From two natural developmental origins of Tregs, thymic migrants represent a population of 
self-reactive T cells that escape negative selection (2–5) and become a steady pool of Tregs available 
in the periphery, designated as tTregs. Peripheral induction of Tregs (pTreg) is more tuned to local 
antigenic stimulation and cytokine milieu and is therefore more dynamically regulated (6–8). These 
two populations together form a major immune suppressive network. TCRs cloned from tTregs 
cannot support an overrepresentation of these cells in transgenic mice, and the population size of 
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these Tregs is limited to a niche percentage set by other TCR spe-
cificities (9). This by design leaves a gap in immune suppression 
to be filled by pTregs risen in response to environmental factors. 
TCR specificities of these two populations are mostly non-
redundant, suggesting the emergence of pTregs is likely driven 
by the novel antigens not available in the thymus (10). Functional 
analyses confirm this sharing. For instance, populating a host 
with tTregs may to a large extent suppress systemic inflammation, 
however, local autoimmunity can still take place (10). In some 
cases, pTreg-mediated suppression appears to be central to the 
negative feedback to local immune activation, such as in oral and 
mucosal tolerance (11, 12), and particularly in airway inflamma-
tion (13). In experimental settings, signaling via TCR coupled to 
anti-inflammatory cytokines, TGF-β and IL-10, typically leads to 
the generation of canonical pTregs that share Foxp3 and CD25 
expression with tTregs, mostly but not exclusively characterized 
by the lack of Helios and neuropilin 1 (14, 15). These features have 
been used by some to distinguish tTregs from pTregs (16, 17). 
A similar population of Tregs induced by vaccination does not 
express CD25 but are equally suppressive (18).

Although the exact regulatory mechanisms of Tregs are still 
being debated, a surprisingly large set of proposed models require 
spatial proximity between Tregs and their suppression targets, 
such as those mediated by granzyme-induced cytolysis (19, 20) 
and inhibitory effects of membrane bound TGF-β (21). A recent 
discovery of Treg inhibition that centers on indirect suppression 
via dendritic cells (DCs), through Indoleamine 2,3-dioxygenase 
production (22) and CTLA-4-mediated costimulatory molecule 
depletion (23), is also based on direct contact. We reported recently 
that strong binding by Tregs triggers DC cytoskeleton polar-
ization, limiting the DCs ability to engage conventional T cells  
(24, 25). While cell/cell contact is essential, one less illuminated 
aspect of Treg inhibition is whether or not the suppression is 
the same regardless of the location of contact. There is some 
evidence to suggest that Tregs can function in the parenchyma. 
For instance, Tregs can mediate tissue repair after drug-induced 
muscle injury (26). The bulk of literature suggests that apart 
from inflammatory tissue, lymph nodes (LNs) are also central 
to Treg suppression. In vivo and in vitro evidence suggests that 
in LNs, Tregs show prolonged binding to DCs which limits the 
DCs mobility and reduces antigen presentation to T cells (27–29). 
Tregs migrate in a ordered sequence from the circulation to LNs 
for functional suppression (30). While intuitively LN structures 
are optimal for maximum engagement and exchange between 
the suppressor and the suppressed, the mechanistic basis for this 
retention is not known.

In this report, we describe an egress-blocking mechanism 
that gathers antigen-induced Tregs and antigen-specific effector 
T cells (Teffs) in local draining LNs. We previously demonstrated 
that coimmunization with antigen plus its cognate coding DNA 
construct induced a set of CD4+CD25−Foxp3+CTLA-4lowPD-
1lowGITRhi Tregs, designated as antigen-specific Treg (asTreg) here. 
In an asthma model, these cells expressed inhibitory cytokines 
including IL-10 and TGF-β and inhibited antigen-specific T cell 
proliferation in the lung (31, 32). We report here that these 
asTregs mediate their suppressive function mainly in hilar lymph 
node (hLN) that drains the lung. Antigenic stimulation of these 

asTregs downregulates their surface sphingosine-1-phosphate 
receptor 1 (S1p1), which normally mediates LN egress traffic. 
The retained asTregs in turn trigger S1p1 downregulation on the 
incoming antigen-specific Teffs. As a consequence, asTregs not 
only suppress proinflammatory Teffs in this extended cohabita-
tion but also lock those suppressed cells in LNs until their func-
tional withering. Disruption of this collective retention abolishes 
the suppressive capacity of these asTregs and exacerbates asthma 
symptoms. This work therefore reveals a spatiotemporal regula-
tion of Tregs essential for their suppressive capacity.

resUlTs

OVa antigen Plus OVa-coding Dna as a 
Treatment can reduce OVa-sensitized 
asthma through Tregs
We previously developed a vaccine based on coimmunization 
of OVA peptide (aa323–339 restricted by I-Ad, recognized 
by DO11.10 TCR) with a DNA construct carrying the same 
epitope coding sequence. The immunization induced antigen-
specific CD4+CD25− asTregs and prevented the host from OVA 
sensitization-induced asthma (33). To evaluate the therapeutic 
value of this protocol in established asthma, we induced airway 
inflammation in BALB/c mice by multi-step sensitization/
challenging of intranasal injection of OVA (Figure  1A). The 
symptomatic mice were then treated with coimmunization 
of OVA  +  pVAX1-OVA (Co-OVA) per schedule described 
in Figure  1A, with antigen-mismatched control treatment of 
Der p 1  +  pVAX1-Der-p1 (Dermatophagoides pteronyssinus 
peptidase 1, Co-DERP1). In the asthmatic mice, respiratory 
resistance and T cell infiltration in the lung were reduced fol-
lowing the Co-OVA treatment (Figures 1B–D), in comparison 
with the limited effect of PBS sham or Co-DERP1 control 
treatment. Histology study showed that inflammatory reactions 
in the lung were evident in the sham and control treatments, 
while the Co-OVA ameliorated the inflammatory infiltration 
(Figures 1E,F).

In Co-OVA-immunized Foxp3-eGFP transgenic mice without 
asthma induction (scheme in Figure S1A in Supplementary 
Material), a subset of CD25−Foxp3+ T  cells appeared in 
CD4+CD25− population (9% versus 0.9%) while the size of 
CD25+FoxP3+ tTreg population barely changed, suggesting that 
the Co-OVA protocol preferentially led to CD4+ T cell conver-
sion to asTregs, without recruiting or expanding tTreg pool on 
site (Figures S1B,C in Supplementary Material). As a systematic 
control for the Co-OVA, Co-DERP1 immunization showed 
similar induction in the CD4+CD25− population rather than the 
CD25+FoxP3+ tTreg population (Figure S1C in Supplementary 
Material). Functionally, the Co-OVA asTregs sorted to homogene-
ity were able to suppress DO11.10 T cell proliferation in response 
to OVA stimulation in  vitro (Figures S1D–F in Supplementary 
Material). Although any activated T cells or Tregs would compete 
with the naïve T cells for antigen and available IL-2, as both of 
them express CD25 and might be antigen-specific, the near 
absence of any DO11.10 T  cell proliferation still suggested an 
active suppression event.
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FigUre 1 | Continued  
Coimmunization alleviates airway inflammation through regulatory T cells. (a) Experimental scheme for coimmunization in the asthma model. Airway inflammation 
was induced from days −28 to 0 with OVA per marked dates. Mice were then coimmunized on day 0 and 14. Plethysmography and the infiltration were tested on 
day 21. Both antigen-matched immunization (Co-OVA) and mismatched immunization (Co-DERP1) were performed. (B) Plethysmography under methylcholine 
chloride stimulation. Naïve mice (black circle), PBS (black dot)-, Co-OVA (red dot)-, and Co-DERP1 (blue dot)-treated asthmatic mice are shown. n = 4. Same color 
labeling is used in similar settings there forth. (c) Cellular infiltration in lung tissues. Dynamics after coimmunization was analyzed with FACS. n = 4. (D) FACS data 
of T cell infiltration in the lung. (e) H&E histology of the lung infiltration on day 21. (F) Infiltrating cells per H&E slides were analyzed for each group. Every image 
represents an eye-field under microscope.
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To study whether those asTregs responded to the antigen 
specifically, they were stimulated with OVA or Der p1-loaded 
APCs in vitro (Figure 2A). Co-OVA asTregs upon OVA but not 
control Der p1 stimulation secreted IL-10, TGF-β, and IL-35 
(Figure 2B; Figure S1G in Supplementary Material) and showed 
robust proliferation (Figure  2C; Figure S1H in Supplementary 
Material). Those functions were entirely dependent on MHC 
class II (Figures 2B,C). In a mirror image, Co-DERP1 asTregs 
responded to Der p1 rather than OVA with a similar spectrum 
of activations (Figures  2D,E). This proliferation upon cognate 
antigen stimulation appeared to be substantial in comparison 
with a more strained antigen-driven division of tTregs reported in 
some articles (34–37). Our results therefore suggest that asTregs 
may rise in the presence of overt, specific antigens.

To rule out additional in-host changes that may act as confound-
ing factors in parallel to asTreg induction, we produced Co-OVA 
or Co-DERP1 asTregs via the coimmunization protocol, isolated 
and transferred them into OVA or Der p 1-sensitized asthmatic 
mice, thus leaving antigen specificity matching/mismatching 
between effector T  cells and asTregs the only variable in the 
system (two-step schemes are in Figures 2F,G). OVA asthmatic 
mice receiving Co-OVA asTreg transfer rather than Co-DERP1 
asTreg showed amelioration both in plethysmography readouts 
and in T cell infiltration. Similar reductions in Der p1 asthmatic 
mice were only evident with Co-DERP1 asTregs (Figures 2H,I). 
These data collectively demonstrate that asTregs induced by 
coimmunization inhibit T  cell responses and inflammation in 
asthma in an antigen-specific manner.

accumulation of asTregs in lung hln
Although there is agreement that Treg-mediated suppression 
requires close proximity, either to Teff (38–42) or DCs (43, 44), 
it is less clear where the primary location of such a suppressive 
function is carried out. We transferred GFP+Co-OVA asTregs into 
recipient OVA-sensitized asthmatic mice and examined the lung 
and its associated lymphoid organs for GFP+ cells 2 days after their 
infusion. Unexpectedly, measured by total cell numbers recover-
able, most of the asTregs were located in the lung-associated hLN, 
limited numbers of asTregs were found in the auxiliary LN and 
they were essentially undetectable in the lung (Figure 3A). Visual 
inspection also revealed an expanded size of the hLN (Figure S2A 
in Supplementary Material). The exceptionally high recovery 
of these cells in hLN might be influenced by the prior imprint 
priming in the donor and their expansion upon antigen exposure 
in the recipients. We did not pursue these possibilities further. 
Histology of hLN sections showed that the asTregs distributed in 
both B cell and non-B cell zones (Figure S2B in Supplementary 

Material). To follow their dynamic changes in hLN, numbers 
of GFP+ asTregs were continuously monitored over a period of 
2  weeks. In our system, both specific and non-specific asTregs 
trafficked into hLN on day 2. However in hLN, Co-OVA asTregs 
increased by days 7 and 14 (Figure  3B), whereas Co-DERP1 
asTregs faded gradually, suggesting an antigen-driven retention 
of OVA-induced asTregs.

Draining LNs are the primary location of antigen-specific 
T cell priming (45, 46). Maternal blocking of lymphotoxin ablates 
secondary lymphoid organs in the offspring (47). To demonstrate 
the role of hLN for asTregs to exert their suppression, LN-null 
mice were generated by maternal injection of LTβR-Ig during 
gestation. After asthma induction in these LN-null mice, asTregs 
were adoptively transferred. hLN in mice born following the 
maternal injection of LTβR-Ig was not visible (Figure S2C in 
Supplementary Material). Yet, the absence of hLN did not affect 
the asthma establishment (Figures  3C,D). However, in these 
mice, infusion of Co-OVA asTregs was no longer able to suppress 
asthma, measured by both airway restriction and CD4+ T  cell 
infiltration into the lung (Figures 3C,D). These results suggest 
that in our model, the anatomic structure of LNs in general, 
particularly hLN, is essential for the suppression of T cells; the 
mere provision of the full complement of asTregs is not sufficient.

antigen Triggered reduction of s1P1 
Mediates the chemotactic retention  
of asTregs in hln
Lymphocyte ingress and egress with respect to LNs are regulated 
by chemotactic factors (48–50). The same regulation is also 
exerted on Tregs (51). To identify any surface molecules that 
might be responsible for the retention of asTreg, we compared 
the expression profile of chemokine receptors and adhesion 
molecules on the antigen-matched asTregs recovered from hLN 
2 days after their transfer with those of the mismatched control 
(Figure  4A). Ingress receptors on Co-OVA asTregs, including 
CCR4, CCR6, CCR7, CCR8, CCR9, and CXCR3 were found to 
be expressed at levels similar to those on Co-DERP1 asTregs; nor 
was any difference detected for adhesion molecules VLA-4, CD44, 
CD69, and CD62L (Figure 4B). Interestingly, both populations 
showed no detectable CCR3 and CCR5. However, the expression 
dynamics of egress chemokine receptor S1p1 on the Co-OVA 
asTregs showed a precipitous drop after the transfer, in a sharp 
comparison with the steady expression on Co-DERP1 asTregs 
(Figure 4C). Antigen-triggered S1p1 regulation helps T cells to 
localize in the peripheral lymphoid organs (52), however whether 
it holds true for asTregs in vivo is not known. To confirm this 
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FigUre 3 | Antigen-specific regulatory T cells (asTregs) accumulate in lung hilar lymph node (LN). (a) With the same model as Figure 2F, OVA-induced asthmatic 
recipient mice were analyzed for eGFP+ asTreg in lymphoid organs by FACS, 2 days after Co-OVA asTreg transfer. Shown are eGFP+ asTreg distributions in hLN, 
lung, spleen, and axillary lymph node (axLN). Each spot represents one mouse, n = 4. ND, not detectable. (B) hLN asTreg kinetics. On days 2, 7, and 14, eGFP+ 
asTregs were analyzed in hLN of Co-OVA asTreg (red line) or Co-DERP1-treated recipients (blue line) by FACS. n = 4. Respiratory resistance (c) and inflammatory 
infiltration (D) with or without hLN. Asthmatic (black dot), naïve (black circle), and Co-OVA treated (red dot) mice were analyzed. n = 6. Data shown represent three 
independent experiments.

FigUre 2 | Continued  
Antigen-specific regulatory T cell (asTreg) transfer ameliorates antigen-matched asthma in vivo. (a–e) Coimmunization-induced asTregs show specificity in vitro.  
(a) Experimental scheme for in vitro re-stimulation of sorted asTregs. Foxp3-eGFP Tg mice were immunized on day −21 and −7. On day 0, asTregs were sorted by 
FACS (Figure S1B in Supplementary Material), labeled and cocultured with antigen-loaded APCs. Both antigen-matched (Co-OVA asTregs with OVA; Co-DERP1 
with Der p 1) and mismatched ones (Co-OVA asTregs with Der p 1; Co-DERP1 with OVA) were performed. eFluor670 dilution was analyzed on day 3 and day 5. 
Cytokine secretion was analyzed 24 h post restimulation by FACS. (B,c) Co-OVA asTregs were re-stimulated with OVA or Der p 1. Intracellular suppressive 
cytokines secretion (b) and Treg proliferation (c) were analyzed. Anti-MHC-II mAb was added to block MHC-TCR signal. n = 4. (D,e) as above, Co-DERP1 asTregs 
were re-stimulated with OVA or Der p 1. n = 4. Data shown represent 3 independent experiments. (F) Experimental scheme for asthma treatment by asTreg transfer. 
(g) Antigen-matched and mismatched pairs of asTreg-transfer were performed. (h) Respiratory resistance of OVA asthmatic recipient mice (red and blue) or Der p 1 
asthmatic recipients (orange and green) were analyzed on day 14 with plethysmography. n = 4. (i) Dynamics of CD4+ T cell presence in lung tissues by FACS. Data 
shown represent three independent experiments.
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central hypothesis, donor Co-OVA asTregs were cocultured with 
antigen-loaded APCs in vitro. As depicted in Figure 4D, expres-
sion of S1p1 on the asTregs was significantly reduced only in the 
culture with OVA-loaded APCs. This reduction was blocked by 
the addition of anti-MHC-II mAb, suggesting the class II antigen 
presentation was essential to induce the S1p1-dependent reten-
tion of those asTregs.

Transwell experiments in vitro with donor Co-OVA asTregs 
before transfer, and those hLN Co-OVA and Co-DERP1 asTregs 
recovered day 7 after their transfer into OVA-sensitized mice 
(without endogenous induction of asTregs by DNA/antigen 
coimmunization) (Figure 4E), also confirmed that antigen-driven 
S1p1 downregulation on specific Co-OVA asTregs impaired their 

chemotactic capability under a S1p gradient (Figure 4F). These 
results suggest that asTregs, upon second stimulation by the same 
antigen in hLN, downregulated their surface S1p1 and no longer 
heeded the call of S1P in the periphery; and asTregs activated 
otherwise without this second antigenic hit were not restrained 
in hLN. To verify that S1p1 reduction on the asTregs was required 
for the asthma amelioration, we overexpressed S1p1 in asTregs 
(designated as S1p1ov asTreg) (Figure  4G; Figures S3A,B in 
Supplementary Material: QC of S1p1 overexpression). After 
adoptive transfer, the S1p1ov asTregs were no longer retained 
in hLN (Figure 4H) and failed to suppress asthma (Figure 4I). 
Therefore, the antigen-triggered S1p1 reduction on the asTregs is 
crucial for its accumulations in hLN and asthma treatment.
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FigUre 4 | Continued  
Antigen-triggered S1p1 reduction retains antigen-specific regulatory T cells (asTregs) in hilar lymph node (hLN). (a) Similar to Figure 2F. Both antigen-matched 
(Co-OVA, red) and mismatched (Co-DERP1, blue) treatments by asTregs were performed on OVA asthmatic recipient mice. (B) Ingress chemokine receptors and 
adhesion molecules on hLN asTregs were analyzed 2 days after the transfer. (c) Egress chemokine receptor S1p1 on hLN asTregs posttransfer. ND, at day 30, 
Co-DERP1 asTregs could not be detected in hLN. FACS data showed S1p1 expression on asTregs at day 15. n = 4. (D) Sorted Co-OVA asTregs were cocultured 
with antigen-loaded APCs. PMA + Ionomycin were added as positive control. Anti-MHC class II mAb was added to block antigen stimulation to TCR. n = 3.  
(e,F) In vitro transwell experiment for asTregs’ chemotactic migration toward S1p ligand gradient. Donor asTregs freshly sorted as control (orange). Co-OVA (red) or 
Co-DERP1 asTregs (blue) recovered from hLN 7 days after the transfer were analyzed. n = 3. (g) Experimental scheme for S1p1-overexpressing asTreg treatment. 
(h) S1p1 overexpression on asTreg (red circle) showed impaired retention in hLN comparing with the wild type (red dot). n = 3. (i) Respiratory resistance of OVA 
asthmatic recipient mice on day 14. Recipient treated with S1p1-overexpressing Co-OVA asTreg (red circle) failed to ameliorate asthma comparing with wild type 
asTregs (red dot). n = 3. Data shown represent three independent experiments.
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antigen-specific Tregs control naïve  
T cell Priming and Trap inflammatory  
Teff in hln
Asthmatic remodeling of the airways is a chronic process: persis-
tent priming of T cells is a crucial underlying cause (53, 54). We 
analyzed whether Co-OVA asTregs limited airway inflammation 
by reducing T  cell priming in hLN. OVA-sensitized, asTreg-
recipient asthmatic mice were infused with cognate DO11.10 
CD4+ T cells on day 7 after the asTreg transfer, and the maturation 
and polarization of these T cells in hLN were analyzed 3 days later 
(Figure  5A). Most KJ1-26 (DO11.10 TCR-clonal) donor cells 
retained their CD62L+CD44− naïve state in Co-OVA asTreg-
treated recipients (Figure 5B) and were CD25 and CD69 negative 
(Figures 5C,D), confirming their resting state. It should be noted 
that any activated T cells or Tregs might contribute to the sup-
pression by competition for antigen and IL-2 in vivo, as was seen 
in the in vitro assay, however the high percentage of resting T cells 
in the Co-OVA group was indicative of an active suppression. In 
addition, Th2 polarization of donor cells in hLN was also con-
trolled by specific asTreg treatment as a two- to threefold reduc-
tion in the number of IL-4+ KJ1-26 cells was seen (Figure 5E). A 
small (~1.5%) yet statistically significant increase of IL-10+ donor 
T  cells was evident in the same treatment group (Figure  5F), 
collectively indicating a switch to a less pro-inflammatory state 
in these T  cells. Both PBS and non-specific Co-DERP1 asTreg 
recipients showed activation and polarization of donor DO11.10 
T  cells (Figures  5B–F), suggesting the priming controlled by 
Co-OVA asTregs was antigen dependent. These results support 
the notion that antigen-specific naïve T cell priming is controlled 
in hLN in the presence of antigen-specific asTregs.

As hLN is the main location of asTreg-mediated suppres-
sion, we were curious if effector T  cells were also attracted to 
this location for optimal inhibition, which would also limit the 
number of those T cells in the lung. DO11.10 CD4+ T cells from 
sensitized mice as Teff were i.t. (intratracheal) transferred into the 
asTreg-treated OVA asthma model 7 days after the asTreg transfer 
(Figure 6A; Figure S4A in Supplementary Material). As the base-
line without asTreg treatment, within 24 h, half of donor inflam-
matory T cells infiltrated lung tissues which cannot be washed 
out as bronchoalveolar lavage (Figure S4B in Supplementary 
Material). Recruitment of lung-infiltrating DO11.10 Teffs back 
to recipients’ hLN was detected at 36 h. The number and percent-
age of DO11.10 Teffs in hLN were increased in allergen-specific 
Co-OVA asTreg-transferred group (Figures 6B,C). Non-specific 
asTreg-treated recipient mice showed a lower T cell recruitment to 

hLN similar to the sham-treated. Importantly this accumulation 
of Teff also relied on the antigenic match between the suppressor 
asTregs and the suppressed Teffs.

We analyzed the donor DO11.10 cells’ apoptosis and prolifera-
tion, as these factors affected the output of these cells from hLN. 
As shown in Figure 6, Teffs were less proliferative as measured 
by Ki67 staining (Figure 6D) and had higher levels of apoptosis 
(Figure 6E) in the presence of Co-OVA asTregs.

The antigen-Driven ln cohabitation of 
asTregs and Teffs is s1p1-Dependent
Mirroring the asTregs, expression profile of ingress chemokine 
receptors, adhesion molecules and egress chemokine receptor 
S1p1 on DO11.10 Teffs recovered from the hLN on day 10 was 
analyzed (Figure  7A). No statistical difference was observed 
except for significantly increased CXCR3 and VLA-4, as well 
as a decreased S1p1 (Figure S5 in Supplementary Material and 
Figure 7B). To verify the role of these molecules in Teff traffick-
ing through hLN in the presence of asTregs, donor DO11.10 
Teffs were premodified with CXCR3 and VLA-4-specific short 
harprin RNA (shRNA) or the vector with S1p1-overexpressing 
sequence (Figures S3C–E in Supplementary Material). Modified 
donor cells were transferred and analyzed in parallel experiments 
(Figures 7C,D). While neither sham nor Co-DERP1 immunized 
retained Teffs, forced expression of S1p1 enabled the egress of Teffs 
from hLN (Figure 7D). CXCR3 and VLA-4 knockdowns showed 
a marginal decrease of Teff retention (Figure  7D). Therefore, 
while Teff egress, similar to Treg, is mostly regulated by S1p1, they 
may be additionally controlled by enhanced retention via CXCR3 
and VLA-4. These observations suggest that these receptors are 
coordinated for the eventual entrapment of Teffs in hLN.

Together, we identified an antigen-specific S1p1 downregula-
tion on Tregs and effector T cells, preventing their egress from 
hilar LNs in an allergen-induced asthma model, thereby enabling 
long-lasting and efficient suppression of effector T cells at this site. 
This regulatory event in the LN is critical to the amelioration of 
airway inflammation in the lung.

DiscUssiOn

One of the effector locations of Tregs is LNs (30, 55–59). There 
has been no direct confirmation whether this anatomic confine-
ment is obligatory for overall systematic immune inhibition nor 
is the molecular nature of the gathering understood. We report 
here that in asthma, Treg-mediated suppression strictly requires 
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FigUre 5 | Antigen-specific regulatory T cells (asTregs) control naïve T cell priming in hilar lymph node (hLN). (a) Experimental scheme for analyzing naïve T cell 
priming. DO11.10 spleen CD4+ T cells were used to test T cell priming. Asthmatic recipients were transferred asTregs for 7 days, then i.v. infused with donor 
DO11.10 CD4+ T cells. Maturation and polarization of these cells were analyzed within hLN using KJ1-26 as marker. Both antigen-matched (Co-OVA, red) and 
mismatched (Co-DERP1, blue) were analyzed. (B) Phenotype of DO11.10 donor cells in hLN. Statistical analysis is shown in the right panel. n = 5. (c,D) Activation 
markers CD25 (c) and CD69 (D) on DO11.10 cells in hLN. n = 5. (e) IL-4 expression in DO11.10 cells in hLN. n = 5. (F) IL-10 expression in DO11.10 cells in hLN. 
n = 5. Data shown represent three independent experiments.
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the coretention of induced antigen-specific asTregs and antigen- 
specific CD4+ T cells. Our findings reveal that Treg/Teff congrega-
tion in LNs as an essential requirement for effective suppression.

Lymph nodes as the main location of Treg-mediated suppres-
sion, at least for asTregs that are converted at the site of inflamma-
tion/active immune response, is supported by indirect evidence. 
IL-2 is required for Treg maintenance (60, 61) and suppressive 
capacity (62). In resting state, sporadic Stat5 activation in Tregs 
is found to be in isolated clusters evenly distributed in LNs. The 
clusters are also composed of DCs and CD4+ T cells that sparingly 
produce IL-2 in accumulative response to self-antigens (44). As 
it is hard to imagine an alternative steady source of IL-2, it is 
logically consistent that a robust suppression takes place in this 
IL-2-rich environment, although this argument does not suggest 
an autonomous signaling cascade that forces both Tregs and 
conventional T cells into LNs.

The ingress of lymphocytes, including Tregs, into fully 
developed draining LNs requires CCR7 (30). In addition, Treg-
related CCR4, CCR8, and CCR9 (63–66), Th2-related CCR3 (67), 
Th1-related CCR5 and CXCR3 (68, 69), and Th17-related CCR6 
(70) are important to each of their respective subsets. Therefore, 
it is a little surprising that they were not found to be involved 
in the asTreg accumulation in hLN. This may mainly reflect that 
their expression is not regulated by antigenic stimulation at this 
stage. For instance, it has been reported that tTregs first leave the 
circulation to enter inflamed tissues via CCR2, CCR4, CCR5, and 
P- and E-selectin. Once they are activated, they move to DLNs via 
CCR2, CCR5, and CCR7 (30). These are considered to be factors 
positively regulating their eventual accumulation in LNs. We 
do not know how much antigenic-specific stimulation regulates 
this ingress, although our limited comparison between antigen-
matched and mismatched asTreg stimulation failed to reveal a 
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FigUre 6 | Antigen-specific regulatory T cells (asTregs) trap inflammatory effector T cell (Teff) in hilar lymph node (hLN). (a) Experimental scheme to mimic 
inflammatory infiltration in the lung. DO11.10 mice were sensitized with OVA to build up Th2 inflammation, then spleen CD4+ T cells were purified and i.t. transferred 
into the lung of asTreg-treated asthmatic recipient mice on day 7 (Figure S4 in Supplementary Material). Thirty-six hours later, recruitment of inflammatory  
DO11.10 cells back to hLN was analyzed. 3 days later, proliferation, apoptosis and cytokine secretion for these inflammatory DO11.10 cells were analyzed in hLN. 
(B,c) Recruitment of DO11.10 cells from the lung to hLN 36 h after i.t. transfer. Absolute number (B) and percentage in hLN CD4+ cells (c) were analyzed with 
KJ1-26 marker. n = 6. (D,e) Proliferation (Ki67+) (D) and apoptosis (AnnexinV+PI−) (e) of DO11.10 cells in hLN 3 days after i.t. transfer. n = 6. Data shown represent 
three independent experiments.
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significant TCR-dependent regulation. Instead a double hit of 
cognate antigen via TCR on asTregs was found to mainly regulate 
S1p1, stopping asTregs at the time of exit. TCR stimulation and 
Akt activation suppress transcriptional factor Foxo1 phospho-
rylation (71), and as a result, downstream KLF2 transcription is 
suppressed and S1p1 is downregulated (52). This pivotal pathway 
is functional for αβ (72, 73) and γδ T cells (74). One lingering 
unknown in this study is the collective signaling that retains Teffs 
in the same draining LNs. The same signaling events (double hit) 
sufficient to retain asTregs were also available to Teffs, yet they 
additionally require asTregs for S1p1 downregulation. We are 
at this stage unable to provide molecular details to explain this 
subtle discrepancy, although we postulate that signaling in Teffs 
via TCR may be strong enough to support the egress, yet to be 
restrained by asTregs to allow S1p1 downregulation.

Physiologically, S1p function is multifaceted; it behaves in gen-
eral as a tone-setter between vascular permeability and lympho-
cyte egress (75). S1P (lysophospholipid sphingosine 1-phosphate) 
is synthesized via phosphorylation of intracellular sphingosine.  
Extracellular S1P has at least five G protein-coupled receptors 

(designated S1p1-5) (76). Among them S1p1 signaling via PI3K 
and Rac GTPases is a robust egress mediator for CD8+ and CD4+ 
T cells, controlling their exit from the thymus and secondary 
lymphoid organs (77). How this rheostat regulation is coupled 
to immune cell activation is beginning to be understood. In Th2 
responses, CD4+ cells express extracellular matrix protein-1 
(ECM1). ECM1 deficiency in these cells reduces S1p1 expres-
sion and leads to their inability to leave LNs (78). Our data 
reveal that the presence of specific antigen alone is sufficient 
to trigger asTreg S1p1 downregulation in LNs. Interestingly, 
it has been reported that S1p1 signaling through Akt-mTOR 
pathway is a negative regulator of Treg suppressive capacity 
(79). Therefore, the downregulation of S1p1 as a consequence 
of TCR stimulation in asTregs will in theory potentiate their 
suppression.

This report deals with a relatively isolated aspect of Treg regu-
lation: egress control of induced Treg in LNs and its implications 
in an inflammatory response. Whether this mechanism applies 
to other types of Tregs or autoimmunity in general needs more 
comprehensive investigation. In addition, it remains a question 
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FigUre 7 | Antigen-specific regulatory T cells (asTregs) control the traffic of inflammatory effector T cells (Teffs) in hilar lymph node (hLN). (a) Similar to Figure 6a. 
3 days after the i.t. transfer (day 10), chemokine receptors and adhesion molecules were analyzed on KJ1-26+ cells in hLN. Both antigen-matched (Co-OVA, red) 
and mismatched (Co-DERP1, blue) treatments were analyzed. (B) Enrichment of the CXCR3+, VLA-4+, S1p1− population in DO11.10 T cells in hLN. n = 6.  
(c) Experimental scheme for lentivirus knockdown assay. CXCR3 and VLA-4 knockdown, and S1p1-overexpression were performed on donor inflammatory 
DO11.10 T cells, and they were i.t. transferred into asthmatic asTreg-recipient mice on day 7. (D) On day 10, KJ1-26+ cells recruited back to hLN were analyzed. 
n = 6. Data shown represent two independent experiments.
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whether this regulation is applicable for effector memory T cell 
migration to draining LNs upon a secondary challenge. In spite 
of the limitations, revealing chemotaxis/traffic control used by 
antigen-specific Tregs to suppress inflammation in  vivo, our 
report has two implications. In recent years, the focus of Treg 
suppression has been gradually shifted to a contact-dependent 
scenario, our results provide a backdrop of how these specific 
regulations are carried out in anatomically optimal locations. In 
addition, this regulation may hold therapeutic potential beyond 
vaccine-based control of asthma. Incidentally, strong clinical 
and pre-clinical efforts are being made to identify S1P receptor 
agonists and antagonists (80). FTY720 (Finglimod) (81), an 
antagonist of S1p1 receptor, has been prescribed to treat multiple 
sclerosis. In light of the role of S1p1 discussed in this report, Treg 
functions modulated by these compounds become interesting 
experimental topics, to explore new disease-intervention meth-
ods based on traffic control of Tregs.

MaTerials anD MeThODs

Mice
Foxp3-eGFP/C mice were purchased from JAX. DO11.10 
mice were kindly provided by Dr. Minghui Zhang (Tsinghua 

University, Beijing, China). BALB/c mice were purchased from 
Vitalriver (Beijing, China). All mice were bred and maintained 
under SPF conditions at the central animal facility of Shanghai 
Medical College (SHMC). All protocols of animal experiments 
are approved by the Committee of Experiment Animals of 
SHMC.

reagents
DNA vaccines (pVAX1-OVA and pVAX1-Der-p1) were pro-
duced previously (82) and prepared by EndoFree Plasmid Maxi 
Kit (Qiagen). His-tagged recombinant Der p 1 protein was pre-
pared by Ni-NTA agarose (Qiagen) and Detoxi-Gel Endotoxin 
Removing Gel (Thermo). Endotoxin of each vaccine was below 
10 EU/mg. All reagents were from Sigma-Aldrich unless speci-
fied otherwise. Magnetic CD4+ T cell purification kit was pur-
chased from R&D System. LTβR-Ig protein was a kind gift from  
Dr. Yangxin Fu (University of Chicago) and Dr. Mingzhao Zhu 
(Institute of Biophysics, Chinese Academy of Science). Lentiviral 
systems of S1p1 overexpression, CXCR3, and VLA-4 knockdown 
were gifts from Dr. Ying Wan (Third Military Medical University, 
Chongqing, China). Antibodies for CCR5 (7A4), CCR7 (4B12), 
CD44 (IM7), CD62L (MEL-14), CD4 (GK1.5), CD25 (PC61.5), 
CD69 (H1.IF3), DO11.10 TCR (KJ1-26), IL-35/IL-12p35 
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(4D10p35), B220 (RA3-6B2), and MHC-II (M5/114.15.2), as well 
as all ELISA kits, were purchased from eBioscience. Antibodies 
for CCR3 (TG14), CXCR3 (CXCR3-173), CCR6 (29-2L17), 
CCR9 (9B6), CD11a (M17/4), and CD49d (R1-2) were from 
Biolegend. Antibodies for S1p1 (H-60), CCR8 (c-17), and Ki67 
(M-19) were from Santa Cruz. Antibody for IL35/EBI3 was from 
R&D System.

Flow cytometry
Single cell suspension was collected from various tissues 
(hLNs, lungs, and spleens) from sacrificed mice. Surface CD 
markers were stained at 4°C for 20  min, protected from light. 
After according treatments, intracellular staining was carried 
out following surface staining, 4% PFA/PBS fixation and 0.2% 
TritonX-100 permeabilization. Data were acquired with BD Aria 
flow cytometer (BD Biosciences, USA) and analyzed by Flowjo 
(Treestar). Cells were sorted by BD Aria III flow cytometer (BD 
Biosciences, USA).

asthma Model and Treatment
Asthma model as previously reported were modified (33). In 
brief, mice were i.p. sensitized with 100  µg OVA/alum on day 
−28 and day −14, followed with OVA spray (1 mg/mL in PBS) 
at days −7, −4, −1 for 30  min/day/mouse. To treat asthma 
with coimmunization, OVA +  pVAX1-OVA (Co-OVA) or Der 
p 1  +  pVAX1-Der-p1 (Co-DERP1) was i.m. immunized at 
100 µg + 100 μg dosage (single dose, in right thigh), on day 0 and 
day 14. To deplete Tregs in vivo, low-dose cyclophosphamide (Cy) 
was i.v. injected at 20 mg/kg, on day 7 and day 14. To treat asthma 
with CD25−asTregs, Foxp3-eGFP mice (donors) were coimmun-
ized on day −21 and −7. On day 0, GFP+ cells were sorted from 
CD4+CD25− population of donor splenocytes, then i.v. trans-
ferred into asthmatic mice (recipients) at 3 × 105 asTregs/mouse. 
On day 14, asthma of recipients was evaluated. Plethysmography 
was analyzed as reported (33). Briefly, mice were anesthetized 
and ventilated. Respiratory resistance was stimulated with 
methylcholine chloride and recorded by AniRes 2005 system 
(BestLab Technology Co., Beijing, China). Respiratory resistance 
was analyzed as relative area of peak (R-area) above the baseline 
before stimulation. To test infiltrating CD4+ T cells, lungs were 
perfused with 10  mL PBS, minced into single-cell suspension 
and analyzed on flow cytometer. H&E histology was analyzed 
by counting infiltrated cells in slide image based on nuclei with 
ImageJ.

cell culture and In Vitro suppression
All culture experiments were performed in DMEM with 10% 
FBS, at 37°C 5% CO2. Sorted asTregs or hLN cells were restimu-
lated with OVA or Der p 1 (10 µg/mL) in the presence of DCs 
(DC:T = 1:5, 105 T cells/well) for 24 h. Four hours before collec-
tion, monensin (BD GolgiStop) and brefeldin A (BD GolgiPlug) 
were added into the culture to block cytokine secretion. Cells 
were fixed and permeabilized for intracellular cytokine stain. 
To evaluate asTreg proliferation, sorted asTregs were labeled 
with 10  µM eFluor670 (eBioscience) and restimulated with 
OVA or Der p 1 in the presence of DCs (DC:T = 1:1, 5 × 104 

each cells/well) for 3 days, then analyzed as eFluor dilution by 
flow cytometry. To determine asTregs’ suppression, DO11.10 
CD4+ T cells were labeled with 10 µM eFluor670, stimulated by 
OVA (10 µg/mL) with DCs (T:DC = 5:1), then sorted asTregs 
were added (asTreg:T = 1:5, 5 × 104 asTregs/well). Division was 
analyzed 3 days later.

adoptive Transfer
To test naïve T cell priming, CD4+ T cells from naive DO11.10 
mice were purified and i.v. transferred into asTreg recipi-
ent mice on day 7 at 5  ×  106/mouse. On day 10, hLNs were 
collected and KJ1-26 cells were stained for maturation and 
polarization. For i.t. transfer of Teffs, CD4+ T cell of asthmatic 
DO11.10 mice was purified with magnetic beads (R&D 
System). asTreg-transferred asthmatic mice were anesthetized 
i.p. with 80 mg/kg pentobarbital, and a sterilized cut (~5 mm) 
was made right above trachea. 107 purified cells were loaded 
in 50 µl microinjector then intratracheally injected on day 7. 
After 36 h, hLN cells of recipients were stained and KJ1-26+ 
cells were analyzed.

lentivirus
To overexpress S1p1 (NM_007901.3, 1149bp), HIV-based 
lentiviral expression system was used (Cell Biolabs). S1p1 gene 
was synthesized from cDNA and cloned into expression vec-
tor pSMPUW-IRES-Bsd. Together with packaging plasmids, 
pSMPUW-IRES-Bsd-S1p1 was transfected into 293FT  cells. 
Lentiviruses were harvested from the culture supernatant, con-
centrated and added into asTreg suspensions at virus:cell = 3:1 
ratio. After 24  h, S1p1 expression on cells were validated by 
S1p-dependent chemotaxis. Four hours after transfection with 
validated batch of virus, S1p1 overexpressed (S1p1ov) asTregs 
were i.v. transferred. S1p1 overexpression on Teff followed the 
same procedure. To knockdown CXCR3 or VLA-4, FIV-based 
lentivirus coding shRNA was used (System Biosciences). shRNA 
carried by the pFIV U6/H1 puro vector were cotransfected 
into 293FT cells with packing plasmids. Lentiviruses were col-
lected and transfected into DO11.10 Teffs at virus:cell  =  3:1 
ratio. Expression of CXCR3 and VLA-4 was determined by 
surface stain. IP-10-dependent chemotaxis was checked by 
transwell migration with CXCR3 shRNA transfected T  cells. 
The shRNA and control sequences were CXCR3 shRNA sense 
5′-AAAGTGTGGATGTTGTTCACGCG-3′, antisense 5′-AAA 
ACGCGTGAACAACATCCACA-3′, VLA-4 shRNA sense 5′-AA 
AGCAATGGATATGTTGATGTA-3′, antisense 5′-AAAATACAT 
CAACATATCCATTG-3′, control shRNA sense 5′-AAAGCTC 
CGAACGTGTCACGTTT-3′, antisense 5′-AAAAAAACGTG 
ACACGTTCGGAG-3′.

Peripheral ln ablation
Lymph node null mice were prepared according to a standard 
protocol (47). Pregnant female BALB/c mice were i.v. injected 
with 100 µg of purified murine LTβR-Ig on gestation day 12. To 
confirm the successful LN ablation, offspring mice were sensi-
tized and challenged to induce asthma, and representative mice 
were studied for the absence of peripheral LN including hLN, 
popliteal LN, and axillary LN.
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Microscopy
To determine asTreg distribution in hLN, hLNs of asTreg-
transferred recipient asthmatic mice were collected on day 2 after 
asTreg transfer and frozen in liquid nitrogen immediately. hLNs 
were mounted in OCT (Tissue-Tek) and 5 µm cryosection were 
cut with Cryostat (Leica). Slides were fixed with 4% PFA and 
stained with anti-B220-PE. Images were acquired using the A1R 
confocal microscopy and NIS-Element AR software (Nikon). 
Image analysis was done using ImageJ.

Transwell Migration
105 asTregs (WT or S1p1ov) or asthmatic DO11.10 Teff (WT, 
CXCR3 shRNA or S1p1ov) were added in upper chamber 
of Transwell 96-well plate (Corning). Medium or 20  nM 
chemokine S1p (Cayman Chemical) or IP-10 (R&D systems) 
were added into lower chamber, respectively. Cells were allowed 
to migrate for 4  h at 37°C. The number of migrated cells was 
assessed by FACS with 105 calibration beads (Sepherotech) as 
internal control. Results are expressed as Migration Index = fold 
increase of specific migration over unspecific migration without 
chemoattractant.

statistics
Data were showed as mean  ±  SD. Data were analyzed using 
one-tailed Mann–Whitney U test between two groups 
(Figures  1E,G,H, 2B–E, 3C,D, 4D,F, 5B–F, 6B–E, and 7B,D; 
Figures S1C,F and S3C in Supplementary Material) and two-way 
ANOVA for multiple dimensional comparison (Figures  1B,C, 
2H,I, 3B, and 4C,G,H). Differences were considered to be statis-
tically significant with *p < 0.05 and **p < 0.01.

eThics sTaTeMenT

All mice were bred and maintained under SPF conditions at the 
central animal facility of Shanghai Medical College (SHMC). All 
protocols of animal experiments are approved by the Committee 
of Experiment Animals of SHMC.
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